Advertisement

Beyond Classes of Graphs with “Few” Minimal Separators: FPT Results Through Potential Maximal Cliques

  • Mathieu Liedloff
  • Pedro Montealegre
  • Ioan TodincaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9224)

Abstract

In many graph problems, like Longest Induced Path, Maximum Induced Forest, etc., we are given as input a graph G and the goal is to compute a largest induced subgraph G[F], of treewidth at most a constant t, and satisfying some property \(\mathcal {P}\). Fomin et al. [12] proved that this generic problem is polynomial on the class of graphs \({\mathcal {G}}_{{\text {poly}}}\), i.e., the graphs having at most \({\text {poly}}(n)\) minimal separators for some polynomial \({\text {poly}}\), when property \(\mathcal {P}\) is expressible in counting monadic second order logic (CMSO).

Here we consider the class \({\mathcal {G}}_{{\text {poly}}}+ kv\), formed by graphs of \({\mathcal {G}}_{{\text {poly}}}\) to which we may add a set of at most k vertices with arbitrary adjacencies, called modulator. We prove that the generic optimization problem is fixed parameter tractable on \({\mathcal {G}}_{{\text {poly}}}+ kv\), with parameter k, if the modulator is also part of the input. The running time is of type \(\mathcal {O}\left( f(k+t, \mathcal {P})\cdot n^{t+5} \cdot ({\text {poly}}(n)^2)\right) \), for some function f.

Notes

Acknowledgements

We would like to thank Fedor Fomin and Nicolas Nisse for fruitful discussions on this subject.

References

  1. 1.
    Berry, A., Bordat, J.P., Cogis, O.: Generating all the minimal separators of a graph. Int. J. Found. Comput. Sci. 11(3), 397–403 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1–2), 1–45 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bodlaender, H.L.: Fixed-parameter tractability of treewidth and pathwidth. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) The Multivariate Algorithmic Revolution and Beyond. LNCS, vol. 7370, pp. 196–227. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms 21(2), 358–402 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Borie, R.B., Gary Parker, R., Tovey, C.A.: Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica 7(5–6), 555–581 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: grouping the minimal separators. SIAM J. Comput. 31(1), 212–232 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor. Comput. Sci. 276(1–2), 17–32 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cameron, K., Hell, P.: Independent packings in structured graphs. Math. Program. 105(2–3), 201–213 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic. Cambridge University Press, Cambridge (2012)CrossRefzbMATHGoogle Scholar
  11. 11.
    Fomin, F.V., Liedloff, M., Montealegre, P., Todinca, I.: Algorithms parameterized by vertex cover and modular width, through potential maximal cliques. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 182–193. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  12. 12.
    Fomin, F.V., Todinca, I., Villanger, Y.: Large induced subgraphs via triangulations and CMSO. SIAM J. Comput. 44(1), 54–87 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: STACS 2010, LIPIcs, pp. 383–394. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  14. 14.
    Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. Ann. Pure Appl. Logic 130(1–3), 3–31 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)zbMATHGoogle Scholar
  16. 16.
    Heggernes, P., van’t Hof, P., Jansen, B.M.P., Kratsch, S., Villanger, Y.: Parameterized complexity of vertex deletion into perfect graph classes. Theor. Comput. Sci. 511, 172–180 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lagergren, J.: Upper bounds on the size of obstructions and intertwines. J. Comb. Theor. Ser. B 73(1), 7–40 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mancini, F.: Minimum fill-in and treewidth of split+ke and split+kv graphs. Discrete Appl. Math. 158(7), 747–754 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Marx, D.: Parameterized coloring problems on chordal graphs. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 83–95. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–768 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Comb. Theor. Ser. B 92(2), 325–357 (2004). Special Issue Dedicated to Professor W.T. TutteMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mathieu Liedloff
    • 1
  • Pedro Montealegre
    • 1
  • Ioan Todinca
    • 1
    Email author
  1. 1.Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022OrléansFrance

Personalised recommendations