Skip to main content

Algorithms and Complexity for Metric Dimension and Location-domination on Interval and Permutation Graphs

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9224))

Abstract

We study the problems Locating-Dominating Set and Metric Dimension, which consist of determining a minimum-size set of vertices that distinguishes the vertices of a graph using either neighbourhoods or distances. We consider these problems when restricted to interval graphs and permutation graphs. We prove that both decision problems are NP-complete, even for graphs that are at the same time interval graphs and permutation graphs and have diameter 2. While Locating-Dominating Set parameterized by solution size is trivially fixed-parameter-tractable, it is known that Metric Dimension is W[2]-hard. We show that for interval graphs, this parameterization of Metric Dimension is fixed-parameter-tractable.

This is a short version of the full paper [16] available on arXiv:1405.2424.

G. Mertzios—Partially supported by the EPSRC Grant EP/K022660/1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that the intervals \(I_T\) are not part of the final construction.

References

  1. Babai, L.: On the complexity of canonical labelling of strongly regular graphs. SIAM J. Comput. 9(1), 212–216 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann, M., Mihalák, M., Ram, L.S.: Network discovery and verification. IEEE J. Sel. Area Comm. 24(12), 2168–2181 (2006)

    Article  MATH  Google Scholar 

  3. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bousquet, N., Lagoutte, A., Li, Z., Parreau, A., Thomassé, S.: Identifying codes in hereditary classes of graphs and VC-dimension. SIAM J. Discrete Math. 29(4), 2047–2064 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Charon, I., Hudry, O., Lobstein, A.: Minimizing the size of an identifying or locating-dominating code in a graph is NP-hard. Theor. Comput. Sci. 290(3), 2109–2120 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chartrand, G., Eroh, L., Johnson, M., Oellermann, O.: Resolvability in graphs and the metric dimension of a graph. Disc. Appl. Math. 105(1–3), 99–113 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Colbourn, C., Slater, P.J., Stewart, L.K.: Locating-dominating sets in series-parallel networks. Congr. Numer. 56, 135–162 (1987)

    MathSciNet  MATH  Google Scholar 

  8. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Díaz, J., Pottonen, O., Serna, M., van Leeuwen, E.J.: On the complexity of metric dimension. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 419–430. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  11. Epstein, L., Levin, A., Woeginger, G.J.: The (weighted) metric dimension of graphs: hard and easy cases. Algorithmica 72(4), 1130–1171 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fernau, H., Heggernes, P., van’t Hof, P., Meister, D., Saei, R.: Computing the metric dimension for chain graphs. Inform. Process. Lett. 115, 671–676 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Flotow, C.: On powers of m-trapezoid graphs. Disc. Appl. Math. 63(2), 187–192 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Foucaud, F.: Decision and approximation complexity for identifying codes and locating-dominating sets in restricted graph classes. J. Discrete Alg. 31, 48–68 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Foucaud, F., Gravier, S., Naserasr, R., Parreau, A., Valicov, P.: Identifying codes in line graphs. J. Graph Theor. 73(4), 425–448 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Foucaud, F., Mertzios, G., Naserasr, R., Parreau, A., Valico, P.: Identification, location-domination and metric dimension on interval and permutation graphs. II. Algorithms and complexity. Algorithmica, to appear (2016). arXiv:1405.2424

  17. Foucaud, F., Naserasr, R., Parreau, A., Valicov, P.: On powers of interval graphs and their orders. arXiv:1505.03459

  18. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  19. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  20. Gravier, S., Klasing, R., Moncel, J.: Hardness results and approximation algorithms for identifying codes and locating-dominating codes in graphs. Algorithmic Oper. Res. 3(1), 43–50 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Comb. 2, 191–195 (1976)

    MathSciNet  MATH  Google Scholar 

  22. Hartung, S.: Exploring parameter spaces in coping with computational intractability. Ph.D. Thesis, TU Berlin, Germany (2014)

    Google Scholar 

  23. Hartung, S., Nichterlein, A.: On the parameterized and approximation hardness of metric dimension. In: Proceedings of the CCC 2013, pp. 266–276 (2013)

    Google Scholar 

  24. Hoffmann, S., Wanke, E.: Metric Dimension for gabriel unit disk graphs Is NP-complete. In: Bar-Noy, A., Halldórsson, M.M. (eds.) ALGOSENSORS 2012. LNCS, vol. 7718, pp. 90–92. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Google Scholar 

  26. Kim, J.H., Pikhurko, O., Spencer, J., Verbitsky, O.: How complex are random graphs in first order logic? Random Struct. Alg. 26(1–2), 119–145 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kloks, T.: Treewidth: Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994)

    Book  MATH  Google Scholar 

  28. Manuel, P., Rajan, B., Rajasingh, I., Chris-Monica, M.: On minimum metric dimension of honeycomb networks. J. Discrete Alg. 6(1), 20–27 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Müller, T., Sereni, J.-S.: Identifying and locating-dominating codes in (random) geometric networks. Comb. Probab. Comput. 18(6), 925–952 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  31. Raychaudhuri, A.: On powers of interval graphs and unit interval graphs. Congr. Numer. 59, 235–242 (1987)

    MathSciNet  MATH  Google Scholar 

  32. Slater, P.J.: Leaves of trees. Congr. Numer. 14, 549–559 (1975)

    MathSciNet  MATH  Google Scholar 

  33. Slater, P.J.: Domination and location in acyclic graphs. Networks 17(1), 55–64 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. Slater, P.J.: Dominating and reference sets in a graph. J. Math. Phys. Sci. 22(4), 445–455 (1988)

    MathSciNet  MATH  Google Scholar 

  35. Suomela, J.: Approximability of identifying codes and locating-dominating codes. Inform. Process. Lett. 103(1), 28–33 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ungrangsi, R., Trachtenberg, A., Starobinski, D.: An implementation of indoor location detection systems based on identifying codes. In: Aagesen, F.A., Anutariya, C., Wuwongse, V. (eds.) INTELLCOMM 2004. LNCS, vol. 3283, pp. 175–189. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Adrian Kosowski for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Parreau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Foucaud, F., Mertzios, G.B., Naserasr, R., Parreau, A., Valicov, P. (2016). Algorithms and Complexity for Metric Dimension and Location-domination on Interval and Permutation Graphs. In: Mayr, E. (eds) Graph-Theoretic Concepts in Computer Science. WG 2015. Lecture Notes in Computer Science(), vol 9224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53174-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53174-7_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53173-0

  • Online ISBN: 978-3-662-53174-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics