# Triangulating Planar Graphs While Keeping the Pathwidth Small

• Therese Biedl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9224)

## Abstract

Any simple planar graph can be triangulated, i.e., we can add edges to it, without adding multi-edges, such that the result is planar and all faces are triangles. In this paper, we study the problem of triangulating a planar graph without increasing the pathwidth by much. We show that if a planar graph has pathwidth k, then we can triangulate it so that the resulting graph has pathwidth O(k) (where the factors are 1, 8 and 16 for 3-connected, 2-connected and arbitrary graphs). With similar techniques, we also show that any outer-planar graph of pathwidth k can be turned into a maximal outer-planar graph of pathwidth at most $$4k+4$$. The previously best known result here was $$16k+15$$.

## References

1. 1.
Babu, J., Basavaraju, M., Chandran, L.S., Rajendraprasad, D.: 2-connecting outer-planar graphs without blowing up the pathwidth. Theor. Comput. Sci. 554, 119–134 (2014)
2. 2.
Biedl, T.: A 4-approximation for the height of drawing 2-connected outer-planar graphs. In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS, vol. 7846, pp. 272–285. Springer, Heidelberg (2013)
3. 3.
Biedl, T.: On triangulating $$k$$-outer-planar graphs. Discrete Appl. Math. 181, 275–279 (2015)
4. 4.
Biedl, T., Kant, G., Kaufmann, M.: On triangulating planar graphs under the four-connectivity constraint. Algorithmica 19(4), 427–446 (1997)
5. 5.
Biedl, T., Velázquez, L.E.R.: Drawing planar 3-trees with given face areas. Comput. Geom. Theor. Appl. 46(3), 276–285 (2013)
6. 6.
Bodlaender, H.L.: Treewidth: algorithmic techniques and results. In: Privara, I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 19–36. Springer, Heidelberg (1997)
7. 7.
de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990)
8. 8.
Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996)
9. 9.
Felsner, S., Liotta, G., Wismath, S.: Straight-line drawings on restricted integer grids in two and three dimensions. J. Graph Algorithms Appl. 7(4), 335–362 (2003)
10. 10.
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 1st edn. Academic Press, New York (1980)
11. 11.
Gutwenger, C., Mutzel, P., Zey, B.: On the hardness and approximability of planar biconnectivity augmentation. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 249–257. Springer, Heidelberg (2009)
12. 12.
Kant, G., Bodlaender, H.L.: Triangulating planar graphs while minimizing the maximum degree. In: Nurmi, O., Ukkonen, E. (eds.) SWAT 1992. LNCS, vol. 621, pp. 258–271. Springer, Heidelberg (1992)
13. 13.
Schnyder, W.: Embedding planar graphs on the grid. In: ACM-SIAM Symposium on Discrete Algorithms (SODA 1990), pp. 138–148 (1990)Google Scholar
14. 14.
Suderman, M.: Pathwidth and layered drawings of trees. Int. J. Comput. Geom. Appl. 14(3), 203–225 (2004)