Advertisement

On the Complexity of Approximation and Online Scheduling Problems with Applications to Optical Networks

  • Shmuel ZaksEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9224)

Abstract

We present scheduling problems that stem from optical networks, and discuss their complexity. We present lower bounds and inapproximability results for several optimization problems. They include offline and online scenarios, and concern problems that optimize the use of components in the optical networks, specifically Add-Drop Multiplexers (ADMs) and regenerators.

References

  1. 1.
    Akiyama, J., Chvátal, V.: A short proof of the linear arboricity for cubic graphs. Bull. Liberal Arts Sci. Nippon Med. Sch. 2, 1–3 (1981)Google Scholar
  2. 2.
    Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theoret. Comput. Sci. 237(1–2), 123–134 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bermond, J.-C., Fouquet, J.L., Habib, M., Péroche, B.: On linear \(k\)-arboricity. Discrete Math. 52, 123–132 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  5. 5.
    Chen, S., Ljubic, I., Raghavan, S.: The regenerator location problem. Networks, 55(3), 205–220 (2010)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Călinescu, G., Frieder, O., Wan, P.-J.: Minimizing electronic line terminals for automatic ring protection in general wdm optical networks. IEEE J. Sel. Area Commun. 20(1), 183–189 (2002)CrossRefGoogle Scholar
  7. 7.
    Călinescu, G., Wan, P.-J.: Traffic partition in wdm/sonet rings to minimize sonet ADMs. J. Comb. Optim. 6(4), 425–453 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Eilam, T., Moran, S., Zaks, S.: Lightpath arrangement in survivable rings to minimize the switching cost. IEEE J. Sel. Area Commun. 20(1), 172–182 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Epstein, L., Levin, A.: Better bounds for minimizing SONET ADMs. In: 2nd Workshop on Approximation and Online Algorithms, Bergen, Norway, September 2004Google Scholar
  10. 10.
    Fedrizzi, R., Galimberti, G.M., Gerstel, O., Martinelli, G., Salvadori, E., Saradhi, C.V., Tanzi, A., Zanardi, A.: Traffic independent heuristics for regenerator site selection for providing any-to-any optical connectivity. In: Proceedings of IEEE/OSA Conference on Optical Fiber Communications (OFC) (2010)Google Scholar
  11. 11.
    Flammini, M., Marchetti-Spaccamela, A., Monaco, G., Moscardelli, L., Zaks, S.: On the complexity of the regenerator placement problem in optical networks. IEEE/ACM Trans. Networking 19(2), 498–511 (2011)CrossRefGoogle Scholar
  12. 12.
    Flammini, M., Monaco, G., Moscardelli, L., Shachnai, H., Shalom, M., Tamir, T., Zaks, S.: Minimizing total busy time in parallel scheduling with application to optical networks. Theor. Comput. Sci. 411(40–42), 3553–3562 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Flammini, M., Shalom, M., Zaks, S.: On minimizing the number of ADMs in a general topology optical network. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 459–473. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Gerstel, O., Lin, P., Sasaki, G.: Wavelength assignment in a WDM ring to minimize cost of embedded SONET rings. In: INFOCOM 1998, Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies (1998)Google Scholar
  15. 15.
    Kim, S.W., Seo, S.W.: Regenerator placement algorithms for connection establishment in all-optical networks. IEEE Proc. Commun. 148(1), 25–30 (2001)CrossRefGoogle Scholar
  16. 16.
    Leonardi, S., Vitaletti, A.: Randomized lower bounds for online path coloring. In: Rolim, J.D.P., Serna, M., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 232–247. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Mertzios, G.B., Sau, I., Shalom, M., Zaks, S.: Placing regenerators in optical networks to satisfy multiple sets of requests. IEEE Trans. Networking 20(6), 1870–1879 (2012)CrossRefzbMATHGoogle Scholar
  18. 18.
    Mertzios, G.B., Shalom, M., Wong, P.W.H., Zaks, S.: Online regenerator placement. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 4–17. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Pachnicke, S., Paschenda, T., Krummrich, P.M.: Physical impairment based regenerator placement and routing in translucent optical networks. In: Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, p. OWA2. Optical Society of America (2008)Google Scholar
  20. 20.
    Shalom, M., Wong, P.W., Zaks, S.: Optimal on-line colorings for minimizing the number of adms in optical networks. J. Discrete Algorithms 8(2), 174–188 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Shalom, M., Zaks, S.: A 10/7 + \(\epsilon \) approximation scheme for minimizing the number of ADMs in SONET rings. In: First Annual International Conference on Broadband Networks, San-José, California, USA, pp. 254–262, October 2004Google Scholar
  22. 22.
    Sriram, K., Griffith, D., Su, R., Golmie, N.: Static vs. Dynamic Regenerator Assignment in Optical Switches: models and Cost Trade-offs. Workshop on High Performance Switching and Routing (HPSR), pp. 151–155 (2004)Google Scholar
  23. 23.
    Thomassen, C.: Two-coloring the edges of a cubic graph such that each monochromatic component is a path of length at most 5. J. Comb. Theor. Ser. B 75(1), 100–109 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Yang, X., Ramamurthy, B.: Dynamic routing in translucent WDM optical networks. In: Proceedings of the IEEE International Conference on Communications (ICC), pp. 955–971 (2002)Google Scholar
  25. 25.
    Yang, X., Ramamurthy, B.: Sparse regeneration in translucent wavelength-routed optical networks: Architecture, network design and wavelength routing. Photonic Netw. Commun. 10(1), 39–53 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceTechnionHaifaIsrael

Personalised recommendations