Advertisement

Testing Full Outer-2-planarity in Linear Time

  • Seok-Hee HongEmail author
  • Hiroshi Nagamochi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9224)

Abstract

A graph is 1-planar, if it admits a 1-planar embedding, where each edge has at most one crossing. Unfortunately, testing the 1-planarity of a graph is known as NP-complete.

This paper initiates the study of the problem of the testing 2-planarity of a graph, in particular, testing the “full-outer-2-planarity” of a graph. A graph is outer-2-planar, if it admits an outer-2-planar embedding, that is every vertex is on the outer boundary and no edge has more than two crossings. A graph is fully-outer-2-planar, if it admits a fully-outer-2-planar embedding, that is an outer-2-planar embedding such that no crossing appears along the outer boundary. We present several structural properties of triconnected outer-2-planar graphs and fully-outer-2-planar graphs, and prove that triconnected fully-outer-2-planar graphs have a constant number of fully-outer-2-planar embeddings. Based on these properties, we present linear-time algorithms for testing the fully-outer-2-planarity of a graph G, whose vertex-connectivity is 1, 2 or at least 3. The algorithm also produces a fully-outer-2-planar embedding of a graph, if it exists. Moreover, we show that every fully-outer-2-planar embedding admits a straight-line drawing.

References

  1. 1.
    Ackerman, E.: On the maximum number of edges in topological graphs with no four pairwise crossing edges. Discrete Comput. Geom. 41(3), 365–375 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs have a linear number of edges. Combinatorica 17(1), 1–9 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Argyriou, E.N., Bekos, M.A., Symvonis, A.: The straight-line RAC drawing problem is NP-hard. J. Graph Algorithms Appl. 16(2), 569–597 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A., Hanauer, K., Neuwirth, D., Reislhuber, J.: Recognizing outer 1-planar graphs in linear time. GD 107–118, 2014 (2013)zbMATHGoogle Scholar
  5. 5.
    Bekos, M.A., Cornelsen, S., Grilli, L., Hong, S.-H., Kaufmann, M.: On the recognition of fan-planar and maximal outer-fan-planar graphs. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 198–209. Springer, Heidelberg (2014)Google Scholar
  6. 6.
    Binucci, C., Di Giacomo, E., Didimo, W., Montecchiani, F., Patrignani, M., Tollis, I.G.: Fan-planar graphs: combinatorial properties and complexity results. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 186–197. Springer, Heidelberg (2014)Google Scholar
  7. 7.
    Cheong, O., Har-Peled, S., Kim, H., Kim, H.-S.: On the number of edges of fan-crossing free graphs. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 163–173. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theor. Comput. Sci. 412(39), 5156–5166 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Eades, P., Hong, S.-H., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear time algorithm for testing maximal 1-planarity of graphs with a rotation system. Theor. Comput. Sci. 513, 65–76 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fox, J., Pach, J., Suk, A.: The number of edges in \(k\)-quasi-planar graphs. SIAM J. Discrete Math. 27(1), 550–561 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fáry, I.: On straight line representations of planar graphs. Acta Sci. Math. Szeged 11, 229–233 (1948)zbMATHGoogle Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  14. 14.
    Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few crossings per edge. Algorithmica 49(1), 1–11 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hong, S., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time algorithm for testing outer-1-planarity. Algorithmica 49(1), 1–11 (2014)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Hong, S.-H., Eades, P., Liotta, G., Poon, S.-H.: Fáry’s theorem for 1-planar graphs. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 335–346. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Hong, S., Nagamochi, H.: Beyond planarity: testing full outer-2-planarity in linear time. Technical report [2014-003], Department of Applied Mathematics and Physics, Kyoto University (2014)Google Scholar
  18. 18.
    Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs, CoRR abs/1403.6184 (2014)Google Scholar
  19. 19.
    Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarity testing. J. Graph Theor. 72(1), 30–71 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Nagamochi, H.: Straight-line drawability of embedded graphs. Technical report [2013-005], Department of Applied Mathematics and Physics, Kyoto University (2013)Google Scholar
  21. 21.
    Pach, J., Toth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Thomassen, C.: Rectilinear drawings of graphs. J. Graph Theor. 12(3), 335–341 (1988)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.University of SydneySydneyAustralia
  2. 2.Kyoto UniversityKyotoJapan

Personalised recommendations