Parity Linkage and the Erdős-Pósa Property of Odd Cycles Through Prescribed Vertices in Highly Connected Graphs

  • Felix JoosEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9224)


We show the following for every sufficiently connected graph G, any vertex subset S of G, and given integer k: there are k disjoint odd cycles in G containing each a vertex of S or there is set X of at most \(3k-3\) vertices such that \(G-X\) does not contain any odd cycle that contains a vertex of S. We prove this via an extension of Kawarabayashi and Reed’s result about parity-k-linked graphs (Combinatorica 29, 215–225). From this result it is easy to deduce several other well known results about the Erdős-Pósa property of odd cycles in highly connected graphs. This strengthens results due to Thomassen (Combinatorica 21, 321–333), and Rautenbach and Reed (Combinatorica 21, 267–278), respectively. Furthermore, we consider algorithmic consequences of our results.


Cycles Packing Covering 


  1. 1.
    Birmelé, E., Bondy, J.A., Reed, B.: The Erdős-Pósa property for long circuits. Combinatorica 27, 135–145 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bondy, J.A., Lovász, L.: Cycles through specified vertices of a graph. Combinatorica 1, 117–140 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bruhn, H., Joos, F., Schaudt, O.: Long cycles through prescribed vertices have the Erdős-Pósa property (2014). arXiv:1412.2894
  4. 4.
    Diestel, R.: Graph Theory. GTM, vol. 173, 4th edn. Springer, Heidelberg (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Dirac, G.A.: In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen. Math. Nachr. 22, 61–85 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Erdős, P., Gallai, T.: On the minimal number of vertices representing the edges of a graph. Magyar Tud. Akad. Mat. Kutató Int. Közl. 6, 181–203 (1961)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Erdős, P., Pósa, L.: On the maximal number of disjoint circuits of a graph. Publ. Math. Debrecen 9, 3–12 (1962)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Geelen, J., Gerards, B., Reed, B., Seymour, P., Vetta, A.: On the odd-minor variant of Hadwiger’s conjecture. J. Comb. Theor. (Series B) 99, 20–29 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kakimura, N., Kawarabayashi, K.: Half-integral packing of odd cycles through prescribed vertices. Combinatorica 33, 549–572 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kakimura, N., Kawarabayashi, K., Marx, D.: Packing cycles through prescribed vertices. J. Comb. Theor. (Series B) 101, 378–381 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kawarabayashi, K., Reed, B.: Highly parity linked graphs. Combinatorica 29, 215–225 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Kawarabayashi, K., Reed, B.: Odd cycle packing [extended abstract]. In: Proceedings of the 2010 ACM International Symposium on Theory of Computing, STOC 2010, pp. 695–704. ACM, New York (2010)Google Scholar
  13. 13.
    Kawarabayashi, K., Wollan, P.: Non-zero disjoint cycles in highly connected group labelled graphs. J. Comb. Theor. (Series B) 96, 296–301 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mader, W.: Existenz \(n\)-fach zusammenhängender Teilgraphen in Graphen genügend grosser Kantendichte. Abh. Math. Sem. Univ. Hamburg 37, 86–97 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Pontecorvi, M., Wollan, P.: Disjoint cycles intersecting a set of vertices. J. Comb. Theor. (Series B) 102, 1134–1141 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rautenbach, D., Reed, B.: The Erdős-Pósa property for odd cycles in highly connected graphs. Combinatorica 21, 267–278 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Reed, B.: Mangoes and blueberries. Combinatorica 19, 267–296 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32, 299–301 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Robertson, N., Seymour, P.: Graph minors. V. Excluding a planar graph. J. Comb. Theor. (Series B) 41, 92–114 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Thomas, R., Wollan, P.: An improved linear edge bound for graph linkages. Eur. J. Comb. 26, 309–324 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Thomassen, C.: The Erdős-Pósa property for odd cycles in graphs of large connectivity. Combinatorica 21, 321–333 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institut für Optimierung und Operations ResearchUniversität UlmUlmGermany

Personalised recommendations