On the Complexity of Probe and Sandwich Problems for Generalized Threshold Graphs

  • Fernanda CoutoEmail author
  • Luerbio Faria
  • Sylvain Gravier
  • Sulamita Klein
  • Vinicius F. dos Santos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9224)


A cograph is a graph without induced \(P_4\). A graph G is \((k,\ell )\) if its vertex set can be partitioned into at most k independent sets and \(\ell \) cliques. Threshold graphs are cographs-(1, 1). We proved recently that cographs-(2, 1) are their generalization and, as threshold graphs, they can be recognized in linear time. graph sandwich problems for property \(\varPi \) (\(\varPi \) -sp) were defined by Golumbic et al. as a natural generalization of recognition problems. partitioned probe problems are particular cases of graph sandwich problems. In this paper we show that, similarly to probe threshold graphs and probe cographs, probe cographs-(2, 1) and probe join of two thresholds are recognizable in polynomial time. In contrast, although cograph-sp and threshold-sp are polynomially solvable problems, we prove that cograph-(2, 1)-sp and join of two thresholds -sp are NP-complete problems.


Graph sandwich problems Cograph-(2, 1) Join of two threshold graphs 


  1. 1.
    Zhang, P.: Probe interval graph and its application to physical mapping of DNA. Manuscript (1994)Google Scholar
  2. 2.
    Zhang, P., Schon, E.A., Fisher, S.G., Cayanis, E., Weiss, J., Kistler, S., Bourne, P.E.: An algorithm based on graph theory for the assembly of contigs in physical mapping of DNA. CABIOS 10, 309–317 (1994)Google Scholar
  3. 3.
    Zhang, P., Ye, X., Liao, L., Russo, J., Fisher, S.G.: Integrated mapping package - a physical mapping software tool kit. Genomics 55, 78–87 (1999)CrossRefGoogle Scholar
  4. 4.
    Chandler, D.B., Chang, M.-S., Kloks, T., Liu, J., Peng, S.-L.: Probe Graph Classes. Online Manuscript (2012)Google Scholar
  5. 5.
    Golumbic, M.C., Kaplan, H., Shamir, R.: Graph sandwich problems. J. Algorithm 19(3), 449–473 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Figueiredo, C.M.F., Faria, L., Klein, S., Sritharan, R.: On the complexity of the sandwich problems for strongly chordal graphs and chordal bipartite graphs. Theor. Comput. Sci. 381, 57–67 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Sritharan, R.: Chordal bipartite completion of colored graphs. Discrete Math. 308, 2581–2588 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Corneil, D.G., Lerchs, H., Burlingham, L.S.: Complement reducible graphs. Discrete App. Math. 3(3), 163–174 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs. SIAM J. Comput. 14(4), 926–934 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bretscher, A., Corneil, D.G., Habib, M., Paul, C.: A simple linear time lexbfs cograph recognition algorithm. In: 29th WG Workshop, pp. 119–130 (2003)Google Scholar
  11. 11.
    Habib, M., Paul, C.: A simple linear time algorithm for cograph recognition. Discrete Appl. Math. 145(2), 183–197 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chvátal, V., Hammer, P.L.: Aggregation of inequalities in integer programming. In: Korte, B.H., Hammer, P.L., Johnson, E.L., Nemhauser, G.L. (eds.) Studies in Integer Programming, vol. 1, Annals of Discrete Mathematics, pp. 145–162. Elsevier (1977)Google Scholar
  13. 13.
    Brandstädt, A.: Partitions of graphs into one or two independent sets and cliques. Discrete Math. 152(1–3), 47–54 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Brandstädt, A.: Corrigendum. Discrete Math. 186, 295 (2005)CrossRefGoogle Scholar
  15. 15.
    Brandstädt, A., Le, V.B., Szymczak, T.: The complexity of some problems related to graph 3-colorability. Discrete Appl. Math. 89(1–3), 59–73 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dantas, S., de Figueiredo, C.M., Faria, L.: On decision and optimization (k, l)-graph sandwich problems. Discrete Appl. Math. 143, 155–165 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bravo, R., Klein, S., Nogueira, L.: Characterizing \((k,\ell )\)-partitionable cographs. ENDM 22, 277–280 (2005)zbMATHGoogle Scholar
  18. 18.
    Couto, F., Faria, L., Gravier, S., Klein, S., dos Santos, V.F.: Structural characterization, decomposition for cographs-\((2,1)\), \((1,2)\): a natural generalization of threshold graphs. Electron. Notes Discrete Math. 50, 133–138 (2015)CrossRefGoogle Scholar
  19. 19.
    de Ridder, H.N.: On probe classes of graphs. Ph.D. thesis, Rostock (2007)Google Scholar
  20. 20.
    Chandler, D.B., Chang, M.-S., Kloks, T., Peng, S.-L.: Probe Graphs. Online Manuscript (2009)Google Scholar
  21. 21.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Fernanda Couto
    • 1
    Email author
  • Luerbio Faria
    • 2
  • Sylvain Gravier
    • 3
  • Sulamita Klein
    • 1
    • 4
  • Vinicius F. dos Santos
    • 5
  1. 1.PESC - COPPEUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.IMUniversidade Estadual do Rio de JaneiroRio de JaneiroBrazil
  3. 3.IFUniversité Joseph FourierSaint Martin d’hèresFrance
  4. 4.IMUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  5. 5.DECOMCEFET-MGBelo HorizonteBrazil

Personalised recommendations