Weak Unit Disk and Interval Representation of Graphs

  • M. J. Alam
  • S. G. Kobourov
  • S. PupyrevEmail author
  • J. Toeniskoetter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9224)


We study a variant of intersection representations with unit balls: unit disks in the plane and unit intervals on the line. Given a planar graph and a bipartition of the edges of the graph into near and far edges, the goal is to represent the vertices of the graph by unit-size balls so that the balls for two adjacent vertices intersect if and only if the corresponding edge is near. We consider the problem in the plane and prove that it is NP-hard to decide whether such a representation exists for a given edge-partition. On the other hand, we show that series-parallel graphs (which include outerplanar graphs) admit such a representation with unit disks for any near/far bipartition of the edges. The unit-interval on the line variant is equivalent to threshold graph coloring, in which context it is known that there exist girth-3 planar graphs (even outerplanar graphs) that do not admit such coloring. We extend this result to girth-4 planar graphs. On the other hand, we show that all triangle-free outerplanar graphs and all planar graphs with maximum average degree less than 26/11 have such a coloring, via unit-interval intersection representation on the line. This gives a simple proof that all planar graphs with girth at least 13 have a unit-interval intersection representation on the line.



We thank Michalis Bekos, Gasper Fijavz, and Michael Kaufmann for productive discussions about several variants of these problems.


  1. 1.
    Alam, M.J., Chaplick, S., Fijavž, G., Kaufmann, M., Kobourov, S.G., Pupyrev, S.: Threshold-coloring and unit-cube contact representation of graphs. In: Brandstädt, A., Jansen, K., Reischuk, R. (eds.) WG 2013. LNCS, vol. 8165, pp. 26–37. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Alam, M.J., Kobourov, S.G., Pupyrev, S., Toeniskoetter, J.: Happy edges: threshold-coloring of regular lattices. In: Ferro, A., Luccio, F., Widmayer, P. (eds.) FUN 2014. LNCS, vol. 8496, pp. 28–39. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  3. 3.
    Albertson, M.O., Chappell, G.G., Kierstead, H.A., Kündgen, A., Ramamurthi, R.: Coloring with no 2-colored P4. Electron. J. Combin. 11(1), R26 (2004)zbMATHGoogle Scholar
  4. 4.
    Borodin, O., Kostochka, A., Nešetřil, J., Raspaud, A., Sopena, E.: On the maximum average degree and the oriented chromatic number of a graph. Dis. Math. 206(1), 77–89 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bremner, D., Evans, W., Frati, F., Heyer, L., Kobourov, S.G., Lenhart, W.J., Liotta, G., Rappaport, D., Whitesides, S.H.: On representing graphs by touching cuboids. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 187–198. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Comput. Geom. 9(1), 3–24 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bu, Y., Cranston, D.W., Montassier, M., Raspaud, A., Wang, W.: Star coloring of sparse graphs. J. Graph. Theory 62(3), 201–219 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Duffin, R.: Topology of series-parallel networks. J. Math. Anal. Appl. 10, 303–318 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Eggleton, R., Erdös, P., Skilton, D.: Colouring the real line. J. Comb. Theory, Ser. B 39(1), 86–100 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Evans, W., Gansner, E.R., Kaufmann, M., Liotta, G., Meijer, H., Spillner, A.: Approximate proximity drawings. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 166–178. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Herrera de Fegueiredo, C.M., Meidanis, J., Picinin de Mello, C.: A linear-time algorithm for proper interval graph recognition. Inf. Process. Lett. 56(3), 179–184 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ferrara, M., Kohayakawa, Y., Rödl, V.: Distance graphs on the integers. Comb. Probab. Comput. 14(1), 107–131 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Syst. Biol. 18(3), 259–278 (1969)Google Scholar
  14. 14.
    Golumbic, M.C., Kaplan, H., Shamir, R.: Graph sandwich problems. J. Algorithms 19(3), 449–473 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hale, W.K.: Frequency assignment: theory and applications. Proc. IEEE 68(12), 1497–1514 (1980)CrossRefGoogle Scholar
  16. 16.
    Hammer, P.L., Peled, U.N., Sun, X.: Difference graphs. Dis. App. Math. 28(1), 35–44 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hliněnỳ, P., Kratochvíl, J.: Representing graphs by disks and balls (a survey of recognition-complexity results). Discrete Math. 229(1), 101–124 (2001)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Kleist, L., Rahman, B.: Unit contact representations of grid subgraphs with regular polytopes in 2D and 3D. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 137–148. Springer, Heidelberg (2014)Google Scholar
  19. 19.
    Kuhn, F., Wattenhofer, R., Zollinger, A.: Ad hoc networks beyond unit disk graphs. Wireless Netw. 14(5), 715–729 (2008)CrossRefGoogle Scholar
  20. 20.
    Liotta, G.: Proximity drawings. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization. Chapman & Hall/CRC, Boca Raton (2007)Google Scholar
  21. 21.
    Mahadev, N.V., Peled, U.N.: Threshold Graphs and Related Topics. North Holland, Amsterdam (1995)zbMATHGoogle Scholar
  22. 22.
    McDiarmid, C., Müller, T.: Integer realizations of disk and segment graphs. J. Comb. Theory, Ser. B 103(1), 114–143 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Thomassen, C.: Decomposing a planar graph into degenerate graphs. J. Comb. Theory, Ser. B 65(2), 305–314 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Timmons, C.: Star coloring high girth planar graphs. Electron. J. Comb. 15(1), R124 (2008)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Wiegers, M.: Recognizing outerplanar graphs in linear time. In: Tinhofer, G., Schmidt, G. (eds.) WG 1986. LNCS, vol. 246, pp. 165–176. Springer, Heidelberg (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. J. Alam
    • 1
  • S. G. Kobourov
    • 1
  • S. Pupyrev
    • 1
    • 2
    Email author
  • J. Toeniskoetter
    • 1
  1. 1.Department of Computer ScienceUniversity of ArizonaTucsonUSA
  2. 2.Institute of Mathematics and Computer ScienceUral Federal UniversityYekaterinburgRussia

Personalised recommendations