Advertisement

Finding Paths in Grids with Forbidden Transitions

  • Mamadou Moustapha Kanté
  • Fatima Zahra Moataz
  • Benjamin Momège
  • Nicolas NisseEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9224)

Abstract

A transition in a graph is a pair of adjacent edges. Given a graph \(G=(V,E)\), a set of forbidden transitions \(\mathcal{F}\subseteq E\times E\) and two vertices \(s,t \in V\), we study the problem of finding a path from s to t which uses none of the forbidden transitions of \(\mathcal F\). This means that it is forbidden for the path to consecutively use two edges forming a pair in \(\mathcal F\). The study of this problem is motivated by routing in road networks in which forbidden transitions are associated to prohibited turns as well as routing in optical networks with asymmetric nodes, which are nodes where a signal on an ingress port can only reach a subset of egress ports. If the path is not required to be elementary, the problem can be solved in polynomial time. On the other side, if the path has to be elementary, the problem is known to be NP-complete in general graphs [Szeider 2003]. In this paper, we study the problem of finding an elementary path avoiding forbidden transitions in planar graphs. We prove that the problem is NP-complete in planar graphs and particularly in grids. In addition, we show that the problem can be solved in polynomial time in graphs with bounded treewidth. More precisely, we show that there is an algorithm which solves the problem in time \(O(k\varDelta ^2(3 k \varDelta )^{2k} n)\) in n-node graphs with treewidth at most k and maximum degree \(\varDelta \).

References

  1. 1.
    Ahmed, M., Lubiw, A.: Shortest paths avoiding forbidden subpaths. Networks 61(4), 322–334 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bernstein, G., Lee, Y., Gavler, A., Martensson, J.: Modeling WDM wavelength switching systems for use in GMPLS and automated path computation. IEEE Opt. Commun. Networking 1(1), 187–195 (2009)CrossRefGoogle Scholar
  3. 3.
    Bodlaender, H.L.: Dynamic programming on graphs with bounded treewidth. In: Lepistö, T., Salomaa, A. (eds.) Automata, Languages and Programming. LNCS, vol. 317, pp. 105–118. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  4. 4.
    Chen, Y., Hua, N., Wan, X., Zhang, H., Zheng, X.: Dynamic lightpath provisioning in optical WDM mesh networks with asymmetric nodes. Photon Netw. Commun. 25(3), 166–177 (2013)CrossRefGoogle Scholar
  5. 5.
    Dorn, F.: Dynamic programming and planarity: improved tree-decomposition based algorithms. Discrete Appl. Math. 158(7), 800–808 (2010). Third Workshop on Graph Classes, Optimization, and Width Parameters Eugene, Oregon, USA, October 2007MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms on planar graphs: exploiting sphere cut branch decompositions. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 95–106. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Gourvès, L., Lyra, A., Martinhon, C.A., Monnot, J.: Complexity of trails, paths and circuits in arc-colored digraphs. Discrete Appl. Math. 161(6), 819–828 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gutiérrez, E., Medaglia, A.L.: Labeling algorithm for the shortest path problem with turn prohibitions with application to large-scale road networks. Ann. Oper. Res. 157(1), 169–182 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hashiguchi, T., Tajima, K., Takita, Y., Naito, T.: Node-disjoint paths search in WDM networks with asymmetric nodes. In: 2011 15th International Conference on Optical Network Design and Modeling (ONDM), pp. 1–6 (2011)Google Scholar
  10. 10.
    Hsu, C.-C., Chen, D.-R., Ding, H.-Y.: An efficient algorithm for the shortest path problem with forbidden paths. In: Hua, A., Chang, S.-L. (eds.) ICA3PP 2009. LNCS, vol. 5574, pp. 638–650. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Jaumard, B., Kien, D.: Optimizing ROADM configuration in WDM networks. In: 2014 16th International Telecommunications Network Strategy and Planning Symposium (Networks), pp. 1–7 (2014)Google Scholar
  12. 12.
    Kanté, M.M., Moataz, F.Z., Momège, B., Nisse, N.: Finding Paths in Grids with Forbidden Transitions. Inria Sophia Antipolis, Univeristé Nice Sophia Antipolis, CNRS, Research report (2015)Google Scholar
  13. 13.
    Pugliese, L.D.P., Guerriero, F.: Shortest path problem with forbidden paths: the elementary version. Eur. J. Oper. Res. 227(2), 254–267 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Robertson, N., Seymour, P.D.: Graph minors. II. algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Szeider, S.: Finding paths in graphs avoiding forbidden transitions. Discrete Appl. Math. 126(2–3), 261–273 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Trans. Comput. 30(2), 135–140 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Villeneuve, D., Desaulniers, G.: The shortest path problem with forbidden paths. Eur. J. Oper. Res. 165(1), 97–107 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mamadou Moustapha Kanté
    • 1
  • Fatima Zahra Moataz
    • 2
    • 3
  • Benjamin Momège
    • 2
    • 3
  • Nicolas Nisse
    • 2
    • 3
    Email author
  1. 1.Clermont-Université, Université Blaise Pascal, LIMOS, CNRSClermont-FerrandFrance
  2. 2.Université Nice Sophia Antipolis, CNRSSophia AntipolisFrance
  3. 3.InriaSophia AntipolisFrance

Personalised recommendations