Skip to main content

Efficient Farthest-Point Queries in Two-terminal Series-parallel Networks

  • Conference paper
  • First Online:
  • 588 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9224))

Abstract

Consider the continuum of points along the edges of a network, i.e., a connected, undirected graph with positive edge weights. We measure the distance between these points in terms of the weighted shortest path distance, called the network distance. Within this metric space, we study farthest points and farthest distances. We introduce a data structure supporting queries for the farthest distance and the farthest points on two-terminal series-parallel networks. This data structure supports farthest-point queries in \(O(k + \log n)\) time after \(O(n \log p)\) construction time, where \(k\) is the number of farthest points, \(n\) is the size of the network, and \(p\) parallel operations are required to generate the network.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Observe that \(p \notin V\) when \(\lambda \in (0,1)\) in which case none of the sub-edges \(up\) and \(pv\) are edges in \(E\). When \(\lambda = 0\) or \(\lambda = 1\), the point \(p\) coincides with \(u\) and \(v\), respectively.

  2. 2.

    The final graph is simple even if intermediate graphs have loops and multiple edges.

  3. 3.

    More precisely, we consider extended shortest path trees [15] which result from splitting each non-tree edge \(st\) of a shortest path tree into two sub-edges \(sx\) and \(xt\), where all points on \(sx\) reach the root through \(s\) and all points on \(xt\) reach the root through \(t\).

  4. 4.

    We consider paths of length \(w_{p-1}\) instead of \(w_p\), because we treat \(P_p\) separately.

  5. 5.

    The priority queue in Dijkstra’s algorithm manages never more than \(p\) entries.

References

  1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Moshe, B., Bhattacharya, B., Shi, Q., Tamir, A.: Efficient algorithms for center problems in cactus networks. Theoret. Comput. Sci. 378(3), 237–252 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bern, M.W., Lawler, E.L., Wong, A.L.: Linear-time computation of optimal subgraphs of decomposable graphs. J. Algorithms 8(2), 216–235 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bose, P., Dannies, K., De Carufel, J.L., Doell, C., Grimm, C., Maheshwari, A., Schirra, S., Smid, M.: Network farthest-point diagrams. J. Comput. Geom. 4(1), 182–211 (2013)

    MathSciNet  Google Scholar 

  5. Bose, P., De Carufel, J.L., Grimm, C., Maheshwari, A., Smid, M.: Optimal data structures for farthest-point queries in cactus networks. J. Graph Algorithms Appl. 19(1), 11–41 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1999)

    Book  MATH  Google Scholar 

  7. Chazelle, B., Guibas, L.J.: Fractional cascading: I. A data structuring technique. Algorithmica 1(2), 133–162 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duffin, R.J.: Topology of series-parallel networks. J. Math. Anal. Appl. 10(2), 303–318 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Erwig, M.: The graph Voronoi diagram with applications. Networks 36(3), 156–163 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grimm, C.: Efficient farthest-point queries in two-terminal series-parallel networks. CoRR abs/1503.01706 (2015). http://arxiv.org/abs/1503.01706

  11. Gurevich, Y., Stockmeyer, L.J., Vishkin, U.: Solving NP-hard problems on graphs that are almost trees and an application to facility location problems. J. ACM 31(3), 459–473 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hakimi, S.L., Labbé, M., Schmeichel, E.: The Voronoi partition of a network and its implications in location theory. ORSA J. Comput. 4(4), 412–417 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hansen, P., Labbé, M., Nicolas, B.: The continuous center set of a network. Discrete Appl. Math. 30(2–3), 181–195 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Korneyenko, N.M.: Combinatorial algorithms on a class of graphs. Discrete Appl. Math. 54(2–3), 215–217 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Okabe, A., Satoh, T., Furuta, T., Suzuki, A., Okano, K.: Generalized network Voronoi diagrams: concepts, computational methods, and applications. Int. J. Geogr. Inf. Sci. 22(9), 965–994 (2008)

    Article  Google Scholar 

  16. Takamizawa, K., Nishizeki, T., Saito, N.: Linear-time computability of combinatorial problems on series-parallel graphs. J. ACM 29(3), 623–641 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Grimm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grimm, C. (2016). Efficient Farthest-Point Queries in Two-terminal Series-parallel Networks. In: Mayr, E. (eds) Graph-Theoretic Concepts in Computer Science. WG 2015. Lecture Notes in Computer Science(), vol 9224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53174-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53174-7_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53173-0

  • Online ISBN: 978-3-662-53174-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics