Efficient Farthest-Point Queries in Two-terminal Series-parallel Networks

  • Carsten GrimmEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9224)


Consider the continuum of points along the edges of a network, i.e., a connected, undirected graph with positive edge weights. We measure the distance between these points in terms of the weighted shortest path distance, called the network distance. Within this metric space, we study farthest points and farthest distances. We introduce a data structure supporting queries for the farthest distance and the farthest points on two-terminal series-parallel networks. This data structure supports farthest-point queries in \(O(k + \log n)\) time after \(O(n \log p)\) construction time, where \(k\) is the number of farthest points, \(n\) is the size of the network, and \(p\) parallel operations are required to generate the network.


  1. 1.
    Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ben-Moshe, B., Bhattacharya, B., Shi, Q., Tamir, A.: Efficient algorithms for center problems in cactus networks. Theoret. Comput. Sci. 378(3), 237–252 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bern, M.W., Lawler, E.L., Wong, A.L.: Linear-time computation of optimal subgraphs of decomposable graphs. J. Algorithms 8(2), 216–235 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bose, P., Dannies, K., De Carufel, J.L., Doell, C., Grimm, C., Maheshwari, A., Schirra, S., Smid, M.: Network farthest-point diagrams. J. Comput. Geom. 4(1), 182–211 (2013)MathSciNetGoogle Scholar
  5. 5.
    Bose, P., De Carufel, J.L., Grimm, C., Maheshwari, A., Smid, M.: Optimal data structures for farthest-point queries in cactus networks. J. Graph Algorithms Appl. 19(1), 11–41 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1999)CrossRefzbMATHGoogle Scholar
  7. 7.
    Chazelle, B., Guibas, L.J.: Fractional cascading: I. A data structuring technique. Algorithmica 1(2), 133–162 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Duffin, R.J.: Topology of series-parallel networks. J. Math. Anal. Appl. 10(2), 303–318 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Erwig, M.: The graph Voronoi diagram with applications. Networks 36(3), 156–163 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Grimm, C.: Efficient farthest-point queries in two-terminal series-parallel networks. CoRR abs/1503.01706 (2015).
  11. 11.
    Gurevich, Y., Stockmeyer, L.J., Vishkin, U.: Solving NP-hard problems on graphs that are almost trees and an application to facility location problems. J. ACM 31(3), 459–473 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hakimi, S.L., Labbé, M., Schmeichel, E.: The Voronoi partition of a network and its implications in location theory. ORSA J. Comput. 4(4), 412–417 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hansen, P., Labbé, M., Nicolas, B.: The continuous center set of a network. Discrete Appl. Math. 30(2–3), 181–195 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Korneyenko, N.M.: Combinatorial algorithms on a class of graphs. Discrete Appl. Math. 54(2–3), 215–217 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Okabe, A., Satoh, T., Furuta, T., Suzuki, A., Okano, K.: Generalized network Voronoi diagrams: concepts, computational methods, and applications. Int. J. Geogr. Inf. Sci. 22(9), 965–994 (2008)CrossRefGoogle Scholar
  16. 16.
    Takamizawa, K., Nishizeki, T., Saito, N.: Linear-time computability of combinatorial problems on series-parallel graphs. J. ACM 29(3), 623–641 (1982)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Fakultät für InformatikOtto-von-Guericke-Universität MagdeburgMagdeburgGermany
  2. 2.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations