Parameterized Algorithmics for Graph Modification Problems: On Interactions with Heuristics

  • Christian Komusiewicz
  • André Nichterlein
  • Rolf NiedermeierEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9224)


In graph modification problems, one is given a graph G and the goal is to apply a minimum number of modification operations (such as edge deletions) to G such that the resulting graph fulfills a certain property. For example, the Cluster Deletion problem asks to delete as few edges as possible such that the resulting graph is a disjoint union of cliques. Graph modification problems appear in numerous applications, including the analysis of biological and social networks. Typically, graph modification problems are NP-hard, making them natural candidates for parameterized complexity studies. We discuss several fruitful interactions between the development of fixed-parameter algorithms and the design of heuristics for graph modification problems, featuring quite different aspects of mutual benefits.


Local Search Vertex Cover Linear Programming Relaxation Edge Deletion Vertex Deletion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Till Fluschnik and Vincent Froese for feedback to our manuscript.


  1. 1.
    Abu-Khzam, F.N., Egan, J., Fellows, M.R., Rosamond, F.A., Shaw, P.: On the parameterized complexity of dynamic problems. Theoret. Comput. Sci. 607, 426–434 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bazgan, C., Bredereck, R., Hartung, S., Nichterlein, A., Woeginger, G.J.: Finding large degree-anonymous subgraphs is hard. Theoret. Comput. Sci. 622, 90–110 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    van Bevern, R., Moser, H., Niedermeier, R.: Approximation and tidying - a problem kernel for \(s\)-plex cluster vertex deletion. Algorithmica 62(3–4), 930–950 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bodlaender, H.L., Fellows, M.R., Heggernes, P., Mancini, F., Papadopoulos, C., Rosamond, F.A.: Clustering with partial information. Theoret. Comput. Sci. 411(7–9), 1202–1211 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bodlaender, H.L., Heggernes, P., Lokshtanov, D.: Graph modification problems (Dagstuhl seminar 14071). Dagstuhl Rep. 4(2), 38–59 (2014)Google Scholar
  6. 6.
    Bredereck, R., Chen, J., Faliszewski, P., Guo, J., Niedermeier, R., Woeginger, G.J.: Parameterized algorithmics for computational social choice: nine research challenges. Tsinghua Sci. Technol. 19(4), 358–373 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bredereck, R., Froese, V., Hartung, S., Nichterlein, A., Niedermeier, R., Talmon, N.: The complexity of degree anonymization by vertex addition. Theoret. Comput. Sci. 607, 16–34 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bulteau, L., Hüffner, F., Komusiewicz, C., Niedermeier, R.: Multivariate algorithmics for NP-hard string problems. Bull. EATCS 114, 31–73 (2014)Google Scholar
  9. 9.
    Chartrand, G.: A graph-theoretic approach to a communications problem. SIAM J. Appl. Math. 14(4), 778–781 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Clarkson, K.L., Liu, K., Terzi, E.: Towards identity anonymization in social networks. In: Yu, P.S., Han, J., Faloutsos, C. (eds.) Link Mining: Models, Algorithms, and Applications, pp. 359–385. Springer, New York (2010)CrossRefGoogle Scholar
  11. 11.
    Damaschke, P., Mogren, O.: Editing simple graphs. J. Graph Algorithms Appl. 18(4), 557–576 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Downey, R.G., Egan, J., Fellows, M.R., Rosamond, F.A., Shaw, P.: Dynamic dominating set and turbo-charging greedy heuristics. Tsinghua Sci. Technol. 19(4), 329–337 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dörnfelder, M., Guo, J., Komusiewicz, C., Weller, M.: On the parameterized complexity of consensus clustering. Theoret. Comput. Sci. 542, 71–82 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fellows, M.R., Fomin, F.V., Lokshtanov, D., Rosamond, F.A., Saurabh, S., Villanger, Y.: Local search: is brute-force avoidable? J. Comput. Syst. Sci. 78(3), 707–719 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fellows, M.R., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-based data clustering with overlaps. Discrete Optim. 8(1), 2–17 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Fast local search algorithm for weighted feedback arc set in tournaments. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, (AAAI 2010), pp. 65–70 (2010)Google Scholar
  17. 17.
    Froese, V., Nichterlein, A., Niedermeier, R.: Win-win kernelization for degree sequence completion problems. J. Comput. Syst. Sci. 82(6), 1100–1111 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: a survey of recent developments. ACM Comput. Surv. 42(4), 14:1–14:53 (2010)CrossRefGoogle Scholar
  19. 19.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: exact algorithms for clique generation. Theor. Comput. Syst. 38(4), 373–392 (2005)CrossRefzbMATHGoogle Scholar
  20. 20.
    Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: A more relaxed model for graph-based data clustering: \(s\)-plex cluster editing. SIAM J. Discrete Math. 24(4), 1662–1683 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hartung, S., Hoffmann, C., Nichterlein, A.: Improved upper and lower bound heuristics for degree anonymization in social networks. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 376–387. Springer, Heidelberg (2014)Google Scholar
  22. 22.
    Hartung, S., Hoos, H.H.: Programming by optimisation meets parameterised algorithmics: a case study for cluster editing. In: Jourdan, L., Dhaenens, C., Marmion, M.-E. (eds.) LION 9 2015. LNCS, vol. 8994, pp. 43–58. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  23. 23.
    Hartung, S., Nichterlein, A., Niedermeier, R., Suchý, O.: A refined complexity analysis of degree anonymization in graphs. Inf. Comput. 243, 249–262 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hartung, S., Niedermeier, R.: Incremental list coloring of graphs, parameterized by conservation. Theoret. Comput. Sci. 494, 86–98 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Hartung, S., Talmon, N.: The complexity of degree anonymization by graph contractions. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 260–271. Springer, Heidelberg (2015)Google Scholar
  26. 26.
    Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. Inf. Process. Lett. 76(4–6), 175–181 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70–80 (2012)CrossRefGoogle Scholar
  28. 28.
    Hüffner, F., Komusiewicz, C., Liebtrau, A., Niedermeier, R.: Partitioning biological networks into highly connected clusters with maximum edge coverage. IEEE/ACM Trans. Comput. Biol. Bioinf. 11(3), 455–467 (2014)CrossRefGoogle Scholar
  29. 29.
    Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. Theor. Comput. Syst. 47(1), 196–217 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Karp, R.M.: Heuristic algorithms in computational molecular biology. J. Comput. Syst. Sci. 77(1), 122–128 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Liu, H., Zhang, P., Zhu, D.: On editing graphs into 2-club clusters. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) AAIM 2012 and FAW 2012. LNCS, vol. 7285, pp. 235–246. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  33. 33.
    Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD 2008), pp. 93–106 (2008)Google Scholar
  34. 34.
    Liu, Y., Wang, J., Guo, J.: An overview of kernelization algorithms for graph modification problems. Tsinghua Sci. Technol. 19(4), 346–357 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.: Faster parameterized algorithms using linear programming. ACM Trans. Algorithms 11(2), 15:1–15:31 (2014)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Lu, X., Song, Y., Bressan, S.: Fast identity anonymization on graphs. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012, Part I. LNCS, vol. 7446, pp. 281–295. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  37. 37.
    Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and MaxCut. J. Algorithms 31(2), 335–354 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Mehlhorn, K., Sanders, P.: Algorithms and Data Structures: The Basic Toolbox. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  39. 39.
    Nemhauser, G.L., Trotter, L.E.: Properties of vertex packing and independence system polyhedra. Math. Program. 6(1), 48–61 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Nichterlein, A.: Degree-Constrained Editing of Small-Degree Graphs. Ph.D. thesis, TU Berlin (2015)Google Scholar
  41. 41.
    Wu, X., Ying, X., Liu, K., Chen, L.: A survey of privacy-preservation of graphs and social networks. In: Aggarwal, C.C., Wang, H. (eds.) Managing and Mining Graph Data. Advances in Database Systems, vol. 40, pp. 421–453. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Christian Komusiewicz
    • 1
  • André Nichterlein
    • 1
  • Rolf Niedermeier
    • 1
    Email author
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinBerlinGermany

Personalised recommendations