Skip to main content

Extended Averaging Method

  • Chapter
  • First Online:
  • 694 Accesses

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

This chapter aims at studying the periodic solutions and the Hopf bifurcations of the SD oscillator using the so-called averaging method. This will be done in the case where the system has a viscous damping and an external harmonic excitation. A four dimensional averaging method is introduced by using the complete Jacobian elliptic integrals, directly to obtain the perturbed primary responses which bifurcate from both the hyperbolic saddle point and the non-hyperbolic centers of the unperturbed system. The stability of these periodic solutions is obtained by examining the four dimensional averaged equation using Lyapunov method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This chapter relies on a common work with Dr. Zhixin Li, Center for Nonlinear Dynamics Research, School of Astronautics, Harbin Institute of Technology, Harbin 150001 Chian, and Professor Ruilan Tian, Center for Nonlinear Dynamics Research, Shijiazhang Tiedao University, Shijiazhuang 050043 China.

References

  1. Jane, C. (1960). An upper bound for the number of periodic solutions of a perturbed system. Journal of Mathematical Analysis and Applications, 1(3–4), 334–341.

    MathSciNet  MATH  Google Scholar 

  2. Mawhin, J. (1971). Periodic solutions of nonlinear functional differential equations. Journal of Differential Equations, 10(10), 240–261.

    Article  MathSciNet  MATH  Google Scholar 

  3. James, R. W. (1979). The existence of periodic solutions for nonlinearly perturbed conservative systems. Nonlinear Analysis: Theory, Methods, Applications, 3(5), 697–705.

    Article  MathSciNet  MATH  Google Scholar 

  4. Holmes, P. (1979). A nonlinear oscillator with a strange attractor. Philosophical Transactions of the Royal Society of London: Mathematics and Physics Sciences A, 292(1394), 419–448.

    Article  MathSciNet  MATH  Google Scholar 

  5. Shao, G. J., & Xu, Z. (1995). Asymptotic method for primary resonance of a strongly nonlinear vibration system with many degrees of freedom. Acta Mechanica Sinica, 11(5), 577–586.

    Google Scholar 

  6. Roy, R. V. (1994). Averaging method for strongly nonlinear oscillators with periodic excitations. International Journal of Non-Linear Mechanics, 29(5), 737–753.

    Article  MATH  Google Scholar 

  7. Mahmoud, G. M. (1993). On the generalized averaging method of a class of strongly nonlinear forced oscillators. Physica A, 199(1), 87–95.

    Article  MATH  Google Scholar 

  8. Cardone, A., Ferro, M., Ixaru, L. G., & Paternoster, B. (2010). A family of exponential fitting direct quadrature methods for volterra integral equations. In Icnaam: International Conference of Numeri (pp. 2204–2207).

    Google Scholar 

  9. Chen, S. H., Yang, X. M., & Cheung, Y. K. (1999). Periodic solutions of strongly quadratic non-linear oscillators by the elliptic lindstedt-poincaré method. Journal of Sound and Vibration, 227(5), 1109–1118.

    Article  MathSciNet  MATH  Google Scholar 

  10. Lakrad, F., & Belhaq, M. (2002). Periodic solutions of strongly nonlinear oscillators by the multiple scales method. Journal of Sound and Vibration, 258(4), 677–700.

    Article  MathSciNet  MATH  Google Scholar 

  11. Mousa, A. A., Sayed, M., Eldesoky, I. M., & Zhang, W. (2014). Nonlinear stability analysis of a composite laminated piezoelectric rectangular plate with multi-parametric and external excitations. International Journal of Dynamics and Control, 2(4), 494–508.

    Article  Google Scholar 

  12. Gamal, M. (1997). Periodic solutions of strongly nonlinear mathieu oscillators. Journal of Non-linear Mechanics, 32(6), 1177–1185.

    Article  MathSciNet  MATH  Google Scholar 

  13. Byrd, P. F. (1954). Handbook of elliptic integrals for engineers and physicists. Berlin: Springer.

    Book  MATH  Google Scholar 

  14. Lavrentiev, M. A., & Shabbat, B. V. (1973). Methods in the theory of functions in a complex variable. Moscow: Nauka.

    Google Scholar 

  15. Han, M. A., & Gu, S. S. (2001). Theory and method of nonlinear system. China: Science Press.

    Google Scholar 

  16. Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillation, dynamical system and bifurcation of vector fields. New York: Springer.

    Book  MATH  Google Scholar 

  17. Holmes, P., & Marsden, J. E. (2014). Bifurcations of dynamical systems and nonlinear oscillations in engineering systems. Dynamics and Design Conference: D & D (pp. 561–582).

    Google Scholar 

  18. Ma, Z. E., & Zhou, Y. C. (2001). Qualitative and stability method of ordinary differential equation. Beijing: Science Press of China.

    Google Scholar 

  19. Hopf, E. (1942). Abzweigung einer periodischen Lösung von einer stationären Lösung. Berich. Sächs. Akad. Wiss., Leipzig, Math. Phys. Kl, 94(19), 15–25.

    MATH  Google Scholar 

  20. Hopf, E. (1943). Abzweigung einer periodischer Lösung von einer stationären Lösung eines Differentialsystems. Ber. Verh. Sächs. Akad. Wiss. Leipzig. Math-Nat. K1, 95, 3–22.

    MathSciNet  MATH  Google Scholar 

  21. Wiggins, S. (1990). Introduction to applied nonlinear dynamical systems and chaos. New York: Springer.

    Book  MATH  Google Scholar 

  22. Liu, W. M. (1994). Criterion of hopf bifurcations without using eigenvalues. Journal of Mathematical Analysis and Applications, 182(1), 250–256.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjie Cao .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cao, Q., Léger, A. (2017). Extended Averaging Method. In: A Smooth and Discontinuous Oscillator. Springer Tracts in Mechanical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53094-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53094-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53092-4

  • Online ISBN: 978-3-662-53094-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics