Skip to main content

Wada Basin Dynamics

  • Chapter
  • First Online:
A Smooth and Discontinuous Oscillator

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

  • 701 Accesses

Abstract

This chapter investigates a specific point of the very intricate asymptotic behaviour of the SD oscillator , which is known as the Wada basin dynamics. The oscillator is subjected to a linear viscous damping and to a sinusoidal forcing. As described and already observed through direct numerical integration, this system may possess more than twenty coexisted low-period periodic attractors for a given set of parameters. The large number of stable orbits yields a complex structure of closely interwoven basins of attraction. We obtain the so-called Wada basins of which the boundaries are rigorously described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This chapter is due to the contribution by Professor Yongxiang Zhang, Shenyang Agricultural University, College of Science, Shenyang, Liaoning, China, Professors Guanwei Luo, Gansu Key Laboratory for System Dynamics and Reliability of Railway Transportation Equipment, Lanzhou Jiaotong University, Lanzhou, China and Doctor Mei Lin, The Engineering Institute, Air Engineering Univesity, Xi’an, Shanxi, China.

References

  1. Holmes, P., & Marsden, J. E. (2014). Bifurcations of dynamical systems and nonlinear oscillations in engineering systems. Dynamics and Design Conference: D & D (pp. 561–582).

    Google Scholar 

  2. Mcdonald, S. W., Grebogi, C., Ott, E., & Yorke, J. A. (1985). Fractal basin boundaries. Physica D-Nonlinear Phenomena, 17(2), 125–153.

    Article  MathSciNet  MATH  Google Scholar 

  3. Moon, F. C., & Li, G. X. (1985). Fractal basin boundaries and homoclinic orbits for periodic motions in a two-well potential. Physics Review Letters, 55(14), 1439–1442.

    Article  MathSciNet  Google Scholar 

  4. Kennedy, J., & Yorke, J. A. (1991). Basin of wada. Physica D-Nonlinear Phenomena, 51(1–3), 213–225.

    Article  MathSciNet  MATH  Google Scholar 

  5. Aguirre, J., Viana, R. L., & Sanjuán, M. A. F. (2009). Fractal structures in nonlinear dynamics. Review of Modern Physics, 81, 333–386.

    Article  Google Scholar 

  6. Aguirre, J., & Sanjuán, M. A. F. (2002). Unpredictable behavior in the duffing oscillator: Wada basins. Physica D-Nonlinear Phenomena, 171(1–2), 41–51.

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhang, Y., & Luo, G. (2012). Unpredictability of the wada property in the parameter plane. Physics Letters A, 376(45), 3060–3066.

    Article  Google Scholar 

  8. Viana, R. L., & Sanjuán, M. A. F. (2011). Fractal structures in nonlinear plasma physics. Philosophical Transactions of the Royal Society A, 369(1935), 371–395.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bellido, F., & Ramirez-Malo, J. B. (2006). Periodic and chaotic dynamics of a sliding driven oscillator with dry friction. International Journal of Non-Linear Mechanics, 41(6), 860–871.

    Article  MATH  Google Scholar 

  10. Vandermeer, J. (2004). Wada basins and qualitative unpredictability in ecological models: A graphical interpretation. Ecological Modelling, 176(1–2), 65–74.

    Article  Google Scholar 

  11. Seoane, J. M., & Sanjuán, M. A. F. (2013). New developments in classical chaotic scattering. Reports on Progress in Physics, 76(1), 016001.

    Article  Google Scholar 

  12. Feudel, U., Grebogi, C., Hunt, B. R., & Yorke, J. A. (1996). Map with more than 100 coexisting low-period periodic attractors. Physics Review E, 54(1), 71–81.

    Article  MathSciNet  Google Scholar 

  13. Breban, R., Nusse, H. E., & Ott, E. (2003). Lack of predictability in dynamical systems with drift: Scaling of indeterminate saddle-node bifurcations. Physics Letters A, 319(1), 79–84.

    Article  MathSciNet  MATH  Google Scholar 

  14. Aguirre, J., Vallejo, J. C., & Sanjuán, M. A. F. (2012). Wada basins and unpredictability in hamiltonian and dissipative systems. International Journal of Modern Physics B, 17(17), 22–24.

    MathSciNet  MATH  Google Scholar 

  15. Feudel, U., Witt, A., & Lai, Y. C. (1998). Basin bifurcation in quasiperiodically forced systems. Physics Review E, 58(58), 3060–3066.

    Article  Google Scholar 

  16. Zhang, Y. (2013). Strange nonchaotic attractors with wada basins. Physica D-Nonlinear Phenomena, 259(3), 26–36.

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, Y. (2013). Wada basins of strange nonchaotic attractors in a quasiperiodically forced system. Physics Letters A, 337(18), 1269–1273.

    Article  MathSciNet  MATH  Google Scholar 

  18. Nusse, H. E., Ott, E., & Yorke, J. A. (1995). Saddle-node bifurcations on fractal basin boundaries. Physical Review Letters, 75(13), 2482–2485.

    Article  Google Scholar 

  19. Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillation, dynamical system and bifurcation of vector fields. New York: Springer.

    Book  MATH  Google Scholar 

  20. Nusse, H. E., & Yorke, J. A. (1989). A procedure for finding numerical trajectories on chaotic saddles. Physica D-Nonlinear Phenomena, 36(1–2), 137–156.

    Article  MathSciNet  MATH  Google Scholar 

  21. You, Z., Kostelich, E., & Yorke, J. A. (1991). Calculating stable and unstable manifolds. Internatioal Journal of Bifurcation and Chaos, 1(3), 605–624.

    Article  MathSciNet  MATH  Google Scholar 

  22. Krauskopf, B., & Osinga, H. (1998). Growing 1d and quasi 2d unstable manifolds of maps. Journal of Computational Physics, 146(1), 404–419.

    Article  MathSciNet  MATH  Google Scholar 

  23. Grebogi, C., McDonald, S. W., Ott, E., & Yorke, J. A. (1983). Final state sensitivity: An obstruction to predictability. Physical Letters A, 99(9), 415–418.

    Article  MathSciNet  Google Scholar 

  24. Pippard, A. B. (1990). The elastic arch and its modes of instability source. European Journal of Physics, 11(6), 359–365.

    Article  Google Scholar 

  25. Mallon, N. J., Feya, R. H. B., Nijmeijera, H., & Zhang, G. Q. (2006). Dynamic buckling of a shallow arch under shock loading considering the effects of the arch shape. International Journal of Nonlinear Mechanics, 41(9), 1065–1075.

    Article  Google Scholar 

  26. Chen, J., & Lin, J. (2004). Dynamic snap-through of a shallow arch under a moving point load. Journal of Vibration and Acoustics ASME, 126(4), 514–519.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjie Cao .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cao, Q., Léger, A. (2017). Wada Basin Dynamics. In: A Smooth and Discontinuous Oscillator. Springer Tracts in Mechanical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53094-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53094-8_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53092-4

  • Online ISBN: 978-3-662-53094-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics