Skip to main content

Secure Communication Scheme

  • Chapter
  • First Online:
A Smooth and Discontinuous Oscillator

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

  • 684 Accesses

Abstract

The last engineering application presented here deals with secure communication, for which only the theoretical foundations are presented based on non-autonomous compound remodulating scheme. In this chapter, we show that the SD oscillator might be used to satisfy the requirements of security of communications using its chaotic characteristics. In the proposed scheme, the driving signal is generated by the combination of multiple state variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This part relies on a common work with Mr. Shengliang Fu, Centre for Nonlinear Dynamics Research, Department of Mathematics and Physics, Shijiazhuang Tiedao University, 050043 China.

References

  1. Lai, Y. C., & Grebogi, C. (1993). Synchronization of chaotic trajectories using control. Physical Review E Statistical Physics Plasmas Fluids and Related Interdisciplinary Topics, 47(4), 2357–2360.

    Google Scholar 

  2. Halle, K. S., Wu, C. W., Itoh, M., & Chua, L. O. (1993). Spread spectrum communication through modulation of chaos in Chua’s circuit. International Journal of Bifurcation and Chaos, 3(2), 469–477.

    Article  MATH  Google Scholar 

  3. Pecora, L. M., & Caroll, T. L. (1990). Synchronization in chaotic system. Physical Review Letters, 64(8), 821–824.

    Article  MathSciNet  MATH  Google Scholar 

  4. Yang, T., & Chua, L. O. (1996). Secure communication via chaotic parameter modulation. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 43(9), 817–819.

    Article  Google Scholar 

  5. Ding, M., & Ott, E. (1994). Enhancing synchronization of chaotic systems. Physical Review E, 49(2), 945–948.

    Article  Google Scholar 

  6. Murali, K., & Lakshmanan, M. (1997). Synchronization through compound chaotic signal in Chua’s circuit and Murall-Lakshmanan-Chua circuit. International Journal of Bifurcation and Chaos, 7(2), 1619–1627.

    Article  MATH  Google Scholar 

  7. Wu, X., Hu, H., & Zhang, B. (2004). Analyzing and improving a chaotic encryption method. Chaos, Soliton and Fractals, 22(4), 367–373.

    Article  MATH  Google Scholar 

  8. Alvarez, G., & Li, S. J. (2006). Some basic cryptographic requirements for chaos-based cryptosystems. Internatioal Journal of Bifurcation and Chaos, 16(8), 2129–2151.

    Article  MathSciNet  MATH  Google Scholar 

  9. Alvarez, G., Montoya, F., Romera, M., & Pastor, G. (2004). Breaking parameter modulated chaotic secure communication system. Chaos Solitons and Fractals, 21(4), 783–787.

    Article  MATH  Google Scholar 

  10. Li, S., Alvarez, G., & Chen, G. (2005). Breaking a chaos-based secure communication scheme designed by a improved modulation method. Chaos, Soliton and Fractals, 25(1), 109–120.

    Article  MATH  Google Scholar 

  11. Senouci, A., Boukabou, A., Busawon, K., Bouridane, A., & Ouslimani, A. (2014). Robust chaotic communication based on indirect coupling synchronization. Circuits Systems and Signal Processing, 34(2), 393–418.

    Article  Google Scholar 

  12. Wang, X. Y., & Zhang, H. (2013). A robust secondary secure communication scheme based on synchronization of spatiotemporal chaotic systems. Zeitschrift Fur Naturforschung A, 68, 573–580.

    Google Scholar 

  13. Chandrasekaran, J., Subramanyan, B., & Selvanayagam, R. (2011). A chaos based approach for improving non linearity in S box design of symmetric key cryptosystems. Berlin: Springer.

    Book  Google Scholar 

  14. Matsumoto, T., Chua, L. O., Kobayashi, K. (1986). Hyperchaos: Laboratory experiment and numerical confirmation. IEEE Transactions on Circuits and Systems, CAS-33(11), 1143–1147.

    Google Scholar 

  15. Murali, K. (2000). Heterogeneous chaotic systems based cryptography. Physics Letters A, 272(3), 184–192.

    Article  MathSciNet  MATH  Google Scholar 

  16. Murali, K. (2001). Digital signal transmission with cascaded heterogeneous chaotic systems. International Journal of Bifurcation and Chaos, 63(10), 2489–2497.

    MATH  Google Scholar 

  17. Freeman, G. A. (2012). Synchronizing chest compression and ventilation in cardiac resuscitation.

    Google Scholar 

  18. Wang, Q. Y., Lu, Q. S., & Chen, G. R. (2008). Synchronization transition induced by synaptic delay in coupled fast-spiking neurons. International Journal of Bifurcation and Chaos, 18(4), 1189–1198.

    Article  MathSciNet  MATH  Google Scholar 

  19. Hsiao, F. H., Hsieh, K. P., Lin, Z. H. (2014). Exponential optimal synchronization of chaotic cryptosystems: Neural-network-based approach. In 2014 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC) (pp. 35–42).

    Google Scholar 

  20. Okura, J. (1999). Time-base corrector circuit capable of adding color burst signal to output signal based on kind of input video signal.

    Google Scholar 

  21. Zhang, R., Hu, M., & Xu, Z. Y. (2007). Impulsive synchronization of rø”sler systems with parameter driven by an external signal. Physics Letters A, 364(3–4), 239–243.

    Google Scholar 

  22. Li, S. J., Chen, G. R., & Alvarez, G. (2005). Return-map cryptanalysis revisited. International Journal of Bifurcation and Chaos, 16(5), 1557–1568.

    Article  MathSciNet  MATH  Google Scholar 

  23. Perez, G., & Cerdeira, H. A. (1995). Extracting messages masked by chaos. Physical Review Letters, 74(11), 1970–1973.

    Article  Google Scholar 

  24. Guedes de Oliveira, A., & Jones, A. J. (2011). Synchronization of chaotic maps by feedback control and application to secure communications using chaotic neural networks. International Journal of Bifurcation and Chaos, 8(11), 2225–2237.

    Article  MATH  Google Scholar 

  25. Yang, T., Yang, L. B., & Yang, C. M. (1998). Breaking chaotic secure communications using a spectogram. Physics Letters A, 247(1), 105–111.

    Article  Google Scholar 

  26. Alvarez, G., & Li, S. J. (2004). Estimating short-time period to break different types of chaotic modulation based secure communications. Annales de L’Institut Henri Poincaré, 22(5), 597–608.

    Google Scholar 

  27. Jovic, B. (2011). Application of chaotic synchronization to secure communications. Berlin: Springer.

    Book  MATH  Google Scholar 

  28. Dedieu, H., Kennedy, M. P., & Hasler, M. (1993). Chaos shift keying: Modulation and demodulation of a chaotic carrier using self-synchronizing. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 40(10), 634–641.

    Article  Google Scholar 

  29. Skufca, J. D., & Bollt, E. M. (2004). Communication and synchronization in disconnected networks with dynamic topology: Moving neighborhood networks. Mathematical Biosciences and Engineering MBE, 1(2), 347–359.

    Article  MathSciNet  MATH  Google Scholar 

  30. Paul, R. S., Rajasekar, S., & Murali, K. (1999). Coexisting chaotic attractors, their basin of attractions and synchronization of chaos in two coupled duffing ocsilattors. Physics Letters A, 264(4), 283–288.

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen, J. Y., Wong, K. W., Cheng, L. M., & Shuai, J. W. (2003). A secure communication scheme based on the phase synchronization of chaotic systems. Chaos, 13(2), 508–514.

    Article  Google Scholar 

  32. Fallahi, K., Raoufi, R., & Khoshbin, H. (2008). An application of Chen system for secure chaotic communication based on extended Kalman filter and multi-shift cipher algorithm. Communications in Nonlinear Science and Numerical Simulation, 13(4), 763–781.

    Article  MathSciNet  MATH  Google Scholar 

  33. Grzybowski, J. M. V., Rafikov, M., & Balthazar, J. M. (2009). Synchronization of the unified chaotic system and application in secure communication. Communications in Nonlinear Science and Numerical Simulation, 14(6), 2793–2806.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjie Cao .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cao, Q., Léger, A. (2017). Secure Communication Scheme. In: A Smooth and Discontinuous Oscillator. Springer Tracts in Mechanical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53094-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53094-8_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53092-4

  • Online ISBN: 978-3-662-53094-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics