Skip to main content

Lignocellulosic Biomass

  • Chapter
  • First Online:
Biokerosene

Abstract

This paper gives an overview of some important annual and perennial crops for the provision of lignocellulosic biomass. It describes their cultivation practices as well as their requirements concerning site characteristics and typical logistic chains. Information on physical and chemical properties of these different lignocellulosic biomass plants determining their capability for biokerosene production is presented. Additionally, data on the potential yields and the areas currently under cultivation are given for each of the described crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    cubic meters underbark (i.e. excluding bark) – see FAO [35]

References

  1. Maniatis, K., Weitz, M.and Zschocke, A. (2013): 2 million tons per year: A performing biofuels supply chain for EU aviation. August 2013 Update. Revision of the version initially published June 2011. Brussels.

    Google Scholar 

  2. Andersson B, Lindvall E (1997) Use of biomass from reed canary grass (Phalaris arundinacea) as raw material for production of paper pulp and fuel. In: Christie BR (ed) Proceedings of the XVIII International Grassland Congress, Canada. XVIII International Grassland Congress. Calgary.

    Google Scholar 

  3. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresource Technol 83(1):37–46

    Article  Google Scholar 

  4. Phyllis2 (2012) Database for biomass and waste. Energy Research Centre of the Netherlands. https://www.ecn.nl/phyllis2

  5. Mohammed IY, Abakr YA, Kazi FK, Yusup S, Alshareef I, Chin SA (2015) Comprehensive characterization of napier grass as a feedstock for thermochemical conversion. Energies 8(5):3403–3417

    Article  Google Scholar 

  6. Rengsirikul K, Ishii Y, Kangvansaichol K, Sripichitt P, Punsuvon V, Vaithanomsat P, Nakamanee G and Tudsri S (2013) Biomass Yield, Chemical Composition and potential Ethanol Yields of 8 Cultivars of Napiergrass (Pennisetum purpureum) Harvested 3-monthly in central Thailand [online]. J Sustain Bioenergy Syst 3: 107–112

    Article  Google Scholar 

  7. Rabemanolontsoa H, Saka S (2013) Comparative study on chemical composition of various biomass species. RSC Adv 3(12):3946–3956

    Article  Google Scholar 

  8. Cotana F, Cavalaglio G, Pisello AL, Gelosia M, Ingles D, Pompili E (2015) Sustainable ethanol production from common reed (Phragmites australis) through simultaneuos saccharification and fermentation. Sustainability 7(9):12149–12163

    Article  Google Scholar 

  9. Vaičekonytė R, Kiviat E, Nsenga F, Ostfeld A (2014) An exploration of common reed (Phragmites australis) bioenergy potential in North America. Mires Peat 13(12):1–9

    Google Scholar 

  10. Bassam N.El (1998) Energy plant species. Their use and impact on environment and development. James & James, London

    Google Scholar 

  11. Lemons e Silva CF, Schirmer MA, Maeda RN, Barcelos CA, Pereira Jr, N (2015) Potential of giant reed (Arundo donax L.) for second generation ethanol production. Electron J Biotechnol 18(1):10–15

    Google Scholar 

  12. Komolwanich T, Tatijarern P, Prasertwasu S, Khumsupan D, Chaisuwan T, Luengnaruemitchai A, Wongkasemjit S (2014) Comparative potentiality of Kans grass (Saccharum spontaneum) and Giant reed (Arundo donax) as lignocellulosic feedstocks for the release of monomeric sugars by microwave/chemical pretreatment. Cellulose 21(3):1327–1340

    Article  Google Scholar 

  13. Lopez F, Garcia JC, Perez A, Feria JM, Zamudio MA, Garrote G (2010) Chemical and energetic characterization of species with a high-biomass production: Fractionation of their components. Environ Prog Sustain Energy 29(4):499–509

    Article  Google Scholar 

  14. Nultsch W (2001) Allgemeine Botanik. 11.völlig neubearb. und erweiterte Auflage; Thieme, Stuttgart, New York.

    Google Scholar 

  15. FAO (2015a) FAO statistical pocketbook. FAO, Rome

    Google Scholar 

  16. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca, Gustavo AB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858

    Article  Google Scholar 

  17. Gifford E M (2016) Gingkophyte. Encyclopaedia Britannica, Chicago. https://www.britannica.com/plant/ginkgophyte accesed on: 20.07.2016

  18. Roloff A (2016) Baum des Jahrtausends – Ginkgo Biloba. Stiftung Baum des JahresMarktredwitz. http://baum-des-jahres.de/index.php?id=6 accesed on: 20.07.2016.

  19. Roloff A, Bärtels A (1996) Gehölze: Bestimmung, Herkunft und Lebensbereiche, Eigenschaften und Verwendung. Gartenflora, vol. 1, Ulmer, Stuttgart.

    Google Scholar 

  20. Hooge H (2016) Die Waldkiefer. Schutzgemeinschaft Deutscher Wald (SDW). Baum Infos Faltblätter, Bonn

    Google Scholar 

  21. Aas G (2007) Systematik, Verbreitung und Morphologie der Waldkiefer (Pinus sylvestris). In: Wauer A, Schmidt S (eds) Beiträge zur Waldkiefer, LWF Wissen Vol. 57, Bayrische Landesanstalt für Wald und Forstwirtschaft (LWF), Freising. pp 7–11

    Google Scholar 

  22. Polley H, Hennig P, Krother F, Marks A, Riedel T, Schmidt U, Schwitzgebel F, Stauber T (2016) Der Wald in Deutschland. Ausgewählte Ergebnisse der dritten Bundeswaldinventur. 2. korrigierte Auflage. BMEL, Berlin

    Google Scholar 

  23. Grosser D (2007) Das Holz der Kiefer – Eigenschaften und Verwendung. In: Wauer A, Schmidt O (eds) Beiträge zur Waldkiefer, LWF Wissen Vol. 57, Bayrische Landesanstalt für Wald und Forstwirtschaft (LWF), Freising. pp 67–71

    Google Scholar 

  24. Griesche C (2016) Die Fichte. Schutzgemeinschaft Deutscher Wald (SDW). Baum Infos Faltblätter, Bonn.

    Google Scholar 

  25. Gössinger L. (2016) Die Eiche. Schutzgemeinschaft Deutscher Wald (SDW), Wald. Deine Natur. Baum Infos Faltblätter, Bonn

    Google Scholar 

  26. Schmidt O. (2016) Die Buche. Schutzgemeinschaft Deutscher Wald (SDW), Wald. Deine Natur. Baum Infos Faltblätter, Bonn

    Google Scholar 

  27. Cheers G (2003) Botanica – Das ABC der Pflanzen 10.000 Arten in Text und Bild. 4.aktualisierte deutsche Ausgabe. Könemann Verlagsgesellschaft, Köln.

    Google Scholar 

  28. Indufor (2012) Forest Stewardship Council (FSC). Strategic review on the future of foresat plantations. Indufor, forest intelligence, Helsinki

    Google Scholar 

  29. Serra R, Stefania B, Meira T (2015) Eucalyptus monoculture and common lands, Portugal. Joan Martinez Alier, Environmental Justice Atlas, Barcelona. https://ejatlas.org/conflict/eucalyptus-monoculture-and-common-lands-portugal accessed on: 15.07.2016

  30. FAO (2012a) FRA 2015. Terms and definitions, forest resources assessment working paper (180). FAO – Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  31. Keenan RJ, Reams GA, Achard F, Freitas JV de, Grainger A, Linquist E (2015) Dynamics of global forest area: results from the FAO global forest resources assessment 2015. Forest Ecol. Manag 352:9–20

    Article  Google Scholar 

  32. EEA (2007) European forest types. Categories and types for sustainable forest management reporting and policy, 2nd edn. EEA Technical report (No 9/2006). EEA European Environment Agency, Copenhagen

    Google Scholar 

  33. FAO (2016b) FAOSTAT. Food and Agriculture Organization of the United Nations (FAO), Rome. http://faostat3.fao.org/browse/Q/QC/E. Accessed 27 July 2016

  34. Köhl M, Plugge D (2016) Forstwirtschaftlich produzierte Biomasse. In: Martin K, Hartmann H, Hofbauer H (eds) Energie aus Biomasse. Grundlagen, Techniken und Verfahren. Springer, Berlin, pp 125–166

    Google Scholar 

  35. FAO (2016c) Yearbook of forest products 2014. FAO – Food and Agriculture Organization of the United Nations, FAO Forestry Series (49), Rome

    Google Scholar 

  36. FAO (2012b) Improving lives with poplars and willows. Synthesis of country reports. 24th session of the International Poplar Commission, Dehradun, India. FAO – Food and Agriculture Organization of the United Nations, Working Paper (IPC/12), Forest Assessment, Management and Conservation Division, Rome

    Google Scholar 

  37. Hinge J, Christou M., (2012) Optimum harvest-storage options – handling requirements. SP2 – studies on biomass feedstock and optimisation for the selected value chain. WP2.2 – biomass supply chains. EUROBIOREF European multilevel integrated Biorefinery design for sustainable biomass processing, (D2.2.2 and D2.2.3), FP7 – Energy. 2009. 3.3.1, Paris

    Google Scholar 

  38. Ball J, Carle J, Del Lungo A (2005) Contribution of poplars and willows to sustainable forestry and rural development. Unasylva 56(221):3–9

    Google Scholar 

  39. Facciotto G, Minotta G, Paris P, Pelleri F (2015) Tree farming, agroforestry and the new green revolution. A necessary alliance. In: Ciancio O, Ciuti A, Chiara L, Morosi C, Piemontese FP, Puccioni G (eds) Proceedings of the Second International Congress of Sylviculture, Vol. 2 Accademia Italiana di Sienze Forestali Florence, pp 1–13

    Google Scholar 

  40. Caslin B, Finnan J, Johnston C, McCracken A, Walsh L, (2015) Short rotation coppice willow. Best practice guidelines. Agri-Food and Biosciences Institute (AFBI), Belfast

    Google Scholar 

  41. Eppler U, Petersen J-E (2007) Short rotation forestry, short rotation coppice and energy grassess in he European Uninion: agro-environmental aspects, present use and perspectives, Background Paper. Fachhochschule Eberswalde, Eberswalde

    Google Scholar 

  42. FAO (2016a) 2014 Global forest products facts and figures. FAO – Food and Agriculture Organization of the United Nations, Rome. Forest products statistics. http://www.fao.org/forestry/statistics/80938/en/. Accessed 09 May 2016

  43. Pepke E (2010) Global wood markets: cosumption, production and trade. International Forestry and Global Issue, UNECE/FAO Timber Section, Nancy

    Google Scholar 

  44. FAO (2015b) Resurgence in global wood production. FAO – Food and Agriculture Organization of the United Nations, Rome. News Article. http://www.fao.org/news/story/en/item/359583/icode/. Accessed 07 Oct 2016

  45. Pude R (2012) Miscanthus-Anbautelegramm. Universität Bonn, Bonn. http://www.miscanthus.de/index.htm. Accessed 10 Aug 2016

  46. Lewandowski I (2016) Landwirtschaftlich produzierte Biomasse. In: Kaltschmitt M, Hartmann H, Hofbauer H (eds) Energie aus Biomasse. Grundlagen, Techniken und Verfahren. Springer, Berlin pp 167–247

    Google Scholar 

  47. Cook BG, Pengelly BC, Brown SD, Donnelly JL, Eagles D, Franco A, Hanson J, Mullen B, Patridge I, Peters M, et al, Schultze-Kraft R (2005) Tropical forages: an interactive selection tool. CSIRO, DPI&F (Qld), CIAT and ILRI, Brisbane. http://www.tropicalforages.info. Accessed 10 Aug 2016

  48. Köbbing JF, Thevs N, Zerbe S (2013a) The utilisation of reed (Phragmites australis): a review. Mires and Peat 13(1):1–14.

    Google Scholar 

  49. Komulainen M, Simi P, Hagelberg E, Ikonen I, Lyytinen S (2008) Reed energy. Possibilities of using the common reed for energy generation in Southern Finland, Reports (67). Turku University of Applied Sciences, Turku

    Google Scholar 

  50. Laurent A, Pelzer E, Loyce C, Makowski D (2015) Ranking yields of energy crops: a meta-analysis using direct and indirect comparisons. RENEW SUST ENERG REV 46:41–50

    Article  Google Scholar 

  51. Mitchell RB, Schmer MR (2012) Switchgrass harvest and storage. University of Nebraska, Agronomy & Horticulture – Faculty Publication (Paper 548), Nebraska

    Book  Google Scholar 

  52. Venturi P, Monti A, Piani I, Venturi G (2004) Evaluation of harvesting and post-harvesting techniques for energy destination of switchgrass. In: ETA. Florence (ed) 2nd World Conf. and Tech. Exhibit. on biomass for energy, industry and climate protection. ETA-Florence, WIP-Munich, Florence, Munich, pp 234–236

    Google Scholar 

  53. Grebe, S.; Hartmann, S.; Belau, T.; Döhler, H.; Eckel, H.; Frisch, J.; Fröba, N.; Funk, M.; Grube, J.; Horlacher, D.; Horn, C.; Kloepfer, F.; Lorbacher, R.; Sauer, N.; Schroers, J. O.; Wirth, B.and Witzel, E. (2012): Energiepflanzen. Daten für die Planung des Energiepflanzenanbaus, 2. Auflage. KTBL-Kuratorium für Technik und Bauwesen in der Landwirtschaft: Damstadt.

    Google Scholar 

  54. OPTIMISC (2016) Information Platform FP7 OPTIMISC – Optimizing Miscanthus biomass production, Agentur für Nachhaltige Nutzung von Agrarlandschaften, Freiburg. http://miscanthus.anna-consult.de/. Accessed 01 Aug 2016

  55. Larsen S, Jaiswal D, Bentsen N S, Wang D and Long S P (2016) Comparing predicted yield and yield stability of willow and Miscanthus across Denmark. GCB Bioenerg 8 (6):1061-1070.

    Article  Google Scholar 

  56. Fritz M, Formowitz B (2009) Miscanthus: Anbau und Nutzung. Informationen für die Praxis, Berichte aus dem TFZ (19), TFZ-Technologie- und Förderzentrum im Kompetenzzentrum für Nachwachsende Rohstoffe, Straubing

    Google Scholar 

  57. Andersson M, Cameron DG, Dear BS, Halling M, Hoare D, Frame J, Houérou H. Le, Izaquirre P, Koivisto J, Ladner J, et al, Victor J (2005) Grassland species profiles, FAO – Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/ag/agp/agpc/doc/gbase/Default.htm. Accessed 10 Aug 2016

  58. Köbbing JF, Thevs N, Zerbe S (2013b) The utilization of common reed (Phagmites australis) – a review. Reed as a resource. Institut für Botanik und Landschaftsökologie Universität Greifswald

    Google Scholar 

  59. Odero D, Gilbert R, Ferrell J, Helsel Z (2011) Production of giant reed for biofuel, SS-AGR (318). University of Florida, IFAS Extension, Gainsville

    Google Scholar 

  60. Pankratius M (2010) Rohrglanzgras – phalaris arundinacea L. – reed canary grass – Havelmielitz, Nachwachsende Rohstoffe – Die Zukunft vom Acker. http://www.nachwachsende-rohstoffe.biz/glossar/rohrglanzgras-%E2%80%93-phalaris-arundinacea-l-%E2%80%93-reed-canary-grass-%E2%80%93-havelmielitz/. Accessed 10 Aug 2016

  61. Schröder C, Schulze P, Luthardt V, Zeitz J (2015) Extensiv genutzte Rohrglanzgras Feuchtwiesen (Phalaris arundinacea L.) für Futter- und energetische Verwertung, Steckbrief für Niedermoorbewirtschaftung bei unterschiedlichen Wasserverhältnissen (Nr. 07). HNE Eberswalde, Humbold-Universität Berlin, Berlin

    Google Scholar 

  62. Wichtmann W, Wichtmann S (2010) Paludikultur – Alternativen für Moorstandorte durch nasse Bewirtschaftung. Energetische Verwertung von Niedermoorbiomasse. Acker + plus, 05 Oct, pp 86–89

    Google Scholar 

  63. Christou M (2011) The terrestrial biomass: formation and properties (crops and residual biomass). EUROBIOREF – summer school, CRES, Lecce

    Google Scholar 

  64. Jochem D, Weimar H, Bösch M, Mantau U, Dieter M (2015) Estimation of wood removals and fellings in Germany: a calculation approach based on the amount of used roundwood. Eur. J. For. Res. 134(5):869–888

    Article  Google Scholar 

  65. Kupferschmid A (2001) Rindenkunde und Rindenverwertung, (Teil 4). ETH Zürich, Professur Holzwissenschaften, Zürich

    Google Scholar 

  66. Lang A (2002) Altholzverwertung, Altholzverordnung. 9. Quedlinburger Holzbautagung, Quedlinburg

    Google Scholar 

  67. Verheye W (2010) Growth and production of sugarcane. In: Verheye WH, Bayles MB (eds) Soils, plant growth and crop production, vol. II. UNESCO-EOLSS, Paris pp 1–10

    Google Scholar 

  68. Abd-El Mawla HA, Hemeida BE (2015) Sugarcane mechanical harvesting-evaluation of local applications. J Soil Sci Agric Eng Mansoura University 6(1):129–141

    Google Scholar 

  69. Andreoli C, Pimentel D, Pereira de Souza S (2012) Net energy balance and carbon footprint of biofuel from corn and sugarcane. In: Pimentel D (ed) Global economic and environmental aspects of biofuels. Taylor & Francis Group, Boca Raton, pp 221–248

    Chapter  Google Scholar 

  70. Hunsigi G (1993) Production of sugarcane: theory and practice. Advanced series in agricultural science, 21. Springer, Berlin

    Book  Google Scholar 

  71. Weijde T, Alvim Kamei CL, Torres AF, Vermerris W, Dolstra O, Visser RG, Trindade LM (2013) The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci 4 (Article 107):1–18

    Google Scholar 

  72. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26(4):361–375

    Article  Google Scholar 

  73. Clean Energy Council (2014) Using bagasse for bioenergy, Clean Energy Council Australia, Melbourne, bioenergy bulletin. https://www.cleanenergycouncil.org.au/technologies/bioenergy.html. Accessed 10 Aug 2016

  74. Reinhold G (2001) Betriebswirtschaftliche Bewertung derBereitstellung von Stroh und Energiegetreide. In: FNR (ed) Energetische Nutzung von Stroh, Ganzpflanzengetreide und weiterer halmgutartiger Biomasse. Gülzower Fachgespräche vol. 17, FNR, Gülzow, Gülzow. pp 50–61

    Google Scholar 

  75. Vetter A (2001) Qualitätsanforderungen an halmgutartige Bioenergieträger hinsichtlich der energetischen Verwertung. In: FNR (ed) Energetische Nutzung von Stroh, Ganzpflanzengetreide und weiterer halmgutartiger Biomasse. Gülzower Fachgespräche vol. 17, FNR, Gülzow. vol. 17. Gülzow, pp 36–49

    Google Scholar 

  76. Leible L Kälber S, Kappler G (2011) Systemanalyse zur gaserzeugung aus Biomasse. Untersuchung ausgewählter Aspekte: KIT Scientific Reports, 7580. KIT Scientific, Karlsruhe

    Google Scholar 

  77. Lange S (2008) Untersuchung ausgewählter Aspekte: Biomasseaufkommen und -bereitstellung Biomasseeinspeisung in einen DruckvergaserSystemanalytische Untersuchung zur Schnellpyrolyse als Prozessschritt bei der Produktion von Synthesekraftstoffen aus Stroh und Waldrestholz. Dissertation, Universität Karlsruhe, Karlsruhe. Fakultät für Chemieingenieurswesen und Verfahrenstechnik

    Google Scholar 

  78. Oechsner H (2009) Thermische Verwertung halmgutartiger Biomasse. In: Fachtagung Bioenergie “EEG und Gülleverwertung – Thermische Verwertung von Energiepflanzen Herbertingen-Marbach

    Google Scholar 

  79. Santiaguel AF (2013) A second life for rice husk. Rice Today (April–June), pp 12–13

    Google Scholar 

  80. Thompson J. L, Tyner W. E (2014) Corn stover for bioenergy production: cost estimates and farmer supply response. Biomass and Bioenergy 62:166–173

    Article  Google Scholar 

  81. DMK (2016b) Erntemengen Körner- und Silomais, DKM-Deutsches Maiskomitee e.V., Bonn. http://www.maiskomitee.de/web/public/Fakten.aspx/Statistik/Europ%C3%A4ische_Union/Erntemengen_K%C3%B6rner-_und_Silomais. Accessed 11 Aug 2016

  82. DMK (2016a) Die wichtigsten Körnermais-Anbauländer in der Welt, DKM-Deutsches Maiskomitee e.V., Bonn. http://www.maiskomitee.de/web/public/Fakten.aspx/Statistik/Welt/K%C3%B6rnermais-Anbaul%C3%A4nder. Accessed 11 Aug 2016

  83. DMK (2016c) Flächenproduktivität des Maisanbaus weltweit, DKM-Deutsches Maiskomitee e.V., Bonn. http://www.maiskomitee.de/web/public/Fakten.aspx/Statistik/Welt/Fl%C3%A4chenproduktivit%C3%A4t. Accessed 11 Aug 2016

  84. Kolbe H (2013) Standortangepasste Humusversorgung im Maisanbau. Mais 40(2):56–62

    Google Scholar 

  85. Kadam KL, McMillan JD (2003) Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresource Technol 88(1):17–25

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Rödl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Rödl, A. (2018). Lignocellulosic Biomass. In: Kaltschmitt, M., Neuling, U. (eds) Biokerosene. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53065-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53065-8_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53063-4

  • Online ISBN: 978-3-662-53065-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics