Skip to main content
Book cover

Biokerosene pp 543–574Cite as

Alcohol-to-Jet (AtJ)

  • Chapter
  • First Online:

Abstract

The conversion routes for kerosene produced from biogenic alcohols are referred typically to as “Alcohol-to-Jet”-processes (AtJ). The required alcohols can be obtained via different bio-chemical and/or thermo-chemical routes from organic matter. Since both sugary and starchy biomass (with established technology) as well as lignocellulosic biomass and organic waste (with future technology) may be converted into a sugar or alcohol dilution, Alcohol-to-Jet-processes (AtJ) potentially access a broad feedstock base for future aviation biofuel supply1. Thus within this contribution firstly the various methods of alcohol production are described in detail. Then further processing of the alcohol to liquid hydrocarbon fuels is explained. Besides the “classical” bioethanol production which is globally established at industrial scale also “innovative” processes (e.g. bio-chemical production of butanol, thermo-chemical synthesis of methanol) are discussed. Thereafter, the status of the technical implementation of these various processes is presented. Finally, the main findings are summarized.

1 Although biogenic fats and proteins may be converted to biogas and then serve as feedstock for alcohol production, they are neglected in this consideration.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    This is basically possible for all types of alcohols.

  2. 2.

    Yet, also proteins and fats may be fermented to biomethane.

  3. 3.

    Biogas is a mixture of biomethane and CO2.

  4. 4.

    For coal-based technology waste heat recovery was not included. Thus, efficiency could potentially be increased.

  5. 5.

    Ethanol can be synthesized from ethene and water when adding sulfuric acid. So far, this conversion route is of little importance only and therefore not discussed in detail here.

  6. 6.

    These three components are the main groups of macromolecules solid organic material consists of.

  7. 7.

    In fixed-bed reactors, progressive catalyst coking lead to a changing product distribution [18].

  8. 8.

    Still the use of ethene is possible [40].

  9. 9.

    Technical details about the process are not available. However, also for methanol-based processes oligomerization and aromatization occur concurrently.

  10. 10.

    According to ASTM D1655 conventional hydrocarbons – and thus also conventional kerosene – are derived from as crude oil, natural gas liquid condensates, heavy oil, shale oil and oil sands.

References

  1. Chevron (ed) (2006) Alternative jet fuels: a supplement to Chevron's Aviation Fuels Technical Review. Chevron Corporation, Houston

    Google Scholar 

  2. Froment GF, Dehertog WJH, Marchi AJ (1992) Zeolite catalysis in the conversion of methanol into olefins, Bd. 9. In: Spivey JJ (ed) Catalysis. Royal Society of Chemistry, The Ingram Publisher Services, pp 1–64

    Google Scholar 

  3. Deutsche Gesetzliche Unfallversicherung e.V (2014) GESTIS-Stoffdatenbank. http://gestis.itrust.de/nxt/gateway.dll/gestis_de/000000.xml?f=templates$fn=default.htm$vid=gestisdeu:sdbdeu$3.0. Accessed 27 Nov 2014

  4. Höhlein B, Grube T, Biedermann P, Bielawa H Erdmann G, Schlecht L Isenberg, G Edinger R (2003) Methanol als Energieträger. Forschungszentrum Jülich GmbH, Jülich (Energietechnik 28)

    Google Scholar 

  5. Kaltschmitt M, Hartmann H, Hofbauer H (2009) Energie aus Biomasse. Springer, Berlin

    Book  Google Scholar 

  6. Reimert R, Marschner F, Renner HJ, Boll, W, Supp E, Brejc M, Liebner W, Schaub G Gas production, 2. Processes. In: Ullmann’s encyclopedia of industrial chemistry, vol 16. John Wiley and Sons, Inc, pp 424–482

    Google Scholar 

  7. Ceccarelli C (2014) bioliq – Der bioliq®-Prozess. http://www.bioliq.de/55.php. Accessed 27 Nov 2014

  8. Lindblom M, Landälv I (2007) Chemrec's atmospheric & pressurized BLG (Black Liquor Gasification) technology – status and future plans. In: Proceeding of international chemical recovery conference, 29 May–1 June 2007, Quebec, Canada

    Google Scholar 

  9. Janiak C (2006) Metallocene and related catalysts for olefin, alkyne and silane dimerization and oligomerization. Coordin Chem Rev 250 (1–2):66–94. Elsevier B.V

    Article  Google Scholar 

  10. Statista (2014) Weltweite Produktion von Ethanol für Kraftstoffe in den Jahren 2000 bis 2013, Statista GmbH. https://de.statista.com/statistik/daten/studie/198606/umfrage/produktion-von-ethanol-weltweit-seit-2000/. Accessed 02 Jun 2015

  11. Harvey BG, Meylemans HA (2011) The role of butanol in the development of sustainable fuel technologies. J Chem Technol Biotechnol 86(1):2–9

    Article  Google Scholar 

  12. Kosaric N, Duvnjak Z, Farkas A, Sahm H, Bringer-Meyer S, Goebel O, Mayer D Ethanol. In: Ullmann's encyclopedia of industrial chemistry, vol 13John Wiley and Sons, Inc., pp 333–403

    Google Scholar 

  13. Dohn N, (2013) Technische, ökonomische und ökologische Bewertung der Einsetzbarkeit von biogenem n-Butanol im Raumwärmemarkt

    Google Scholar 

  14. Wright ME, Harvey BG, Quintana RL (2008) Highly efficient zirconium-catalyzed batch conversion of 1-butene: a new route to jet fuels. Energ Fuel22(5):3299–3302. American Chemical Society

    Article  Google Scholar 

  15. Berteau P, Delmon B, Dallons JL, van Gysel A (1991) Acid-base properties of silica-aluminas: use of 1-butanol dehydration as a test reaction. Appl Catal 70:307–323

    Article  Google Scholar 

  16. Bautista FM, Delmon B(1995) 1-Butanol dehydration on AlPO4 and modified AlPO4: catalytic behaviour and deactivation. Appl Catal A-Gen 130:47–65

    Article  Google Scholar 

  17. Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MMY, Arnold FH (2011) Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 13:345–352. Elsevier B.V

    Article  Google Scholar 

  18. Keil FJ (1999) Methanol-to-hydrocarbons: process technology. Micropor Mesopor Mat 29 (1–2): 49–66. Elsevier B.V

    Article  Google Scholar 

  19. Pham V, Holtzapple M, El-Halwagi M (2010) Techno-economic analysis of biomass to fuel conversion via the MixAlco process. J Ind Microbiol Biot 37(11):1157–1168

    Article  Google Scholar 

  20. Ezeji TC, Qureshi N, Blaschek HP (2004) Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biot 63(6): 653–658

    Article  Google Scholar 

  21. Beiermann D (2008) Verfahren zur Herstellung von Butanol. Volkswagen AG, Wolfsburg. Veröffentlichungsnr. DE102006060610A1

    Google Scholar 

  22. Min F, Kopke M, Dennis S (2013) Gas fermentation for commercial biofuels production. In: Fang Z (ed) Liquid, gaseous and solid biofuels – conversion techniques. InTech, West Palm Beach

    Google Scholar 

  23. Chevron (ed) (2004) Aviation fuels technical review. Chevron Corporation, West Conshohocken

    Google Scholar 

  24. Rachner M (1998) Die Stoffeigenschaften von Kerosin Jet A-1. Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR), Köln

    Google Scholar 

  25. Wollrab A. Organische Chemie (2009) Eine Einführung für Lehramts- und Nebenfachstudenten, 2009. Aufl. Springer, Berlin

    Google Scholar 

  26. Spivey JJ (1991) Dehydration catalysts for the methanol/dimethyl ether reaction. Chem Eng Commun 110(1):123–142.

    Article  Google Scholar 

  27. Chang CD, Silvestri AJ (1977) The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. J Catal 47:249–259

    Article  Google Scholar 

  28. Takahara I, Saito M, Inaba M, Murata K (2005) Dehydration of ethanol into ethylene over solid acid catalysts. Catal Lett 105:(3–4)249–252. Springer US

    Article  Google Scholar 

  29. Zhang X, Wang R, Yang X, Zhang F (2008) Comparison of four catalysts in the catalytic dehydration of ethanol to ethylene. Micropor Mesopor Mat116:210–215

    Article  Google Scholar 

  30. Knözinger H (1968) Dehydration of alcohols on aluminum oxide. Angew Chem Internat Edit 7(10):791–805. Ethanol-based process/Dehydration of alcohols on aluminium oxide.pdf. Accessed 03 Nov 2014

    Article  Google Scholar 

  31. Baliban RC, Elia JA, Floudas CA, Xiao X, Zhang Z, Li J, Cao H, Ma J, Qiao Y, Hu X, (2013) Thermochemical conversion of duckweed biomass to gasoline, diesel, and jet fuel: process synthesis and global optimization. Ind Eng Chem Res 52(33):11436–11450

    Google Scholar 

  32. Martens JA, Ravishankar R, Mishin IE, Jacobs PA (2000) Maßgeschneiderte Alken-Oligomerisierung mit Zeolith H-ZSM-57. Angew Chem 112(23):4547–4550

    Article  Google Scholar 

  33. Griesbaum K, Behr A, Biedenkapp D, Voges H-W, Garbe D, Paetz C, Collin G, Mayer D, Höke H, Schmidt R (2013) Hydrocarbons. Ullmann's encyclopedia of industrial chemistry, pp 1–61

    Google Scholar 

  34. Baerns M (2006) Technische Chemie. Wiley-VCH-Verl, Weinheim

    Google Scholar 

  35. Zschocke A, Scheuermann S, Ortner J (2017) High Biofuel Blends in Aviation (HBBA). final report published at HBBA.eu

    Google Scholar 

  36. Breitmaier E, Jung G (2005) Organische Chemie: Grundlagen, Stoffklassen, Reaktionen, Konzepte, Molekülstruktur; zahlreiche Formeln, Tabellen. 5. überarb. Aufl. Stuttgart, Thieme

    Google Scholar 

  37. Fahim MA, Alsahhaf TA, Elkilani A (2010) Fundamentals of Petroleum refining. Elsevier, Amsterdam

    Google Scholar 

  38. Cheremisinoff NP (2000) Handbook of chemical processing equipment. Butterworth-Heinemann, Boston

    Google Scholar 

  39. Parkash S (2003) Refining processes handbook. Elsevier [u.a.], Amsterdam

    Google Scholar 

  40. Tabak SA, Avidan AA, Krambeck FJ (1986) Production of synthetic gasoline and diesel fuel from non-petroleum resources. Paulsboro

    Google Scholar 

  41. Funk GA, Myers D, Vora B (2013) A different game plan: a different game plan. Hydrocarbon Engineering. Palladian Publications Ltd

    Google Scholar 

  42. Avidan AA (1988) Gasoline and distillate fuels from methanol. In: Avidan AA (ed) Methane conversion, proceedings of a symposium on the production of fuels and chemicals from natural gas: gasoline and distillate fuels from methanol, vol 36. Elsevier, Amsterdam (Studies in Surface Science and Catalysis), pp 307–323

    Chapter  Google Scholar 

  43. Byogy Renewables Inc (2016) Technology. http://www.byogy.com/technology/index.html. Accessed 24 Mar 2016

  44. Byogy Renewables (2013) Commercialization of a renewable aviation fuel industry in Brasil Presentation Ethanol Summit http://edicao2013.ethanolsummit.com.br/arquivos/apresentacoes-dia-28/14h-tecnologia-e-mobilidade/kevin-r-weiss.pdf

  45. Brown N (2013) FAA alternative jet fuel acitivites. http://www.faa.gov/about/office_org/headquarters_offices/apl/research/aircraft_technology/cleen/2013_consortium/media/faa_alternative_fuels_activities_nov_2013.pdf. Accessed 20 Nov 2013

  46. Johnston G (2013) Alcohol to Jet (AtJ). Presentation Paris Air Show. http://www.alternativefuelsworldwide.com/presentations/Gevo%20Paris%20Airshow%202013.pdf. Accessed June 2013

  47. Wright M (2012) Biomass to alcohol to jet/diesel. Navel Air Systems Command (NAVAIR) Presentation. https://community.apan.org/cfs-file/__key/telligent-evolution-components-attachments/13-8175-00-00-00-11-35-37/AUS_5F00_BRIEF_5F00_2012_5F00_final.pdf

  48. Holmgren J (2013) Innovative use of industrial waste gases to produce sustainable fuels & chemicals. Geelong. Presentation Paris Air Show LazaTech. http://www.alternativefuelsworldwide.com/presentations/LanzaTech_JH_Presentation_Paris_16x9final.pdf. Accessed 27 Feb 2013

  49. Hull A(2012) Technology for the production of fully synthetic aviation fuels, diesel and gasoline. Sept 2012. http://docslide.us/download/link/technology-for-the-production-of-fully-synthetic-aviation-fuels-diesel-and

  50. (ASTM D7566-14a) (2014) American Society for Testing and Materials: Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons. ASTM International, West Conshohocken, PA

    Google Scholar 

  51. Petroleum HPV Testing Group (2010) Kerosene/jet fuel category assessment document. The American Petroleum Institute, Washington, D.C.

    Google Scholar 

  52. Graham J, Rahmes T, Kay M, Belieres J-P, Kinder J, Millett S, Ray J, Vannice W, Trela J(2013) Impact of alternative jet fuel and fuel blends on non-metallic materials used in impact of alternative jet fuel and fuel blends on non-metallic materials used in commercial aircraft fuel systems, Federal Aviation Administration (FAA)

    Google Scholar 

  53. Zschocke A(2014) Fuel properties and blending issues (World Biofuels Market). Presentation held at the World Biofuels Market conference in Amsterdam 2014, Amsterdam.

    Google Scholar 

  54. Rickard G (2009) The Quality of Aviation Fuel Available in the United Kingdom Annual Survey 2008, First Issue, 3rd December 2009, Report for Energy Institute conducted by QinetiQ

    Google Scholar 

  55. Schlichting H, Liebner W (2005) B, C, G, XtL – what else? Lurgi's routes to transportation fuels. http://tu-freiberg.de/sites/default/files/media/professur-fuer-energieverfahrenstechnik-und-thermische-rueckstandsbehandlung-16460/publikationen/2005_liebner.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Pechstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Pechstein, J., Neuling, U., Gebauer, J., Kaltschmitt, M. (2018). Alcohol-to-Jet (AtJ). In: Kaltschmitt, M., Neuling, U. (eds) Biokerosene. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53065-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53065-8_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53063-4

  • Online ISBN: 978-3-662-53065-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics