Skip to main content

Biokerosene Production from Bio-Chemical and Thermo-Chemical Biomass Conversion and Subsequent Fischer-Tropsch Synthesis

  • Chapter
  • First Online:
Biokerosene

Abstract

Synthetic fuels derived from synthesis gas provided from gasification of solid fuels using the Fischer-Tropsch Synthesis are well-known and used since the 1920’s. The initial process used coal as feedstock to produce mainly diesel like fuels when crude oil was not at hand. Nowadays and especially in the context of alternative and climate friendly fuels new process chains are taken into consideration based on this overall principle. This includes the production of “green” syngas by biomass gasification or reforming of bio-methane from e.g. biogas plants based on a biochemical biomass conversion. Against this background the overall goal of this paper is to give an overview of the current state of these two syngas provision pathways and the subsequent synthesis options, mainly focusing on the Fischer-Tropsch Synthesis. The overall process chains can be categorized into the Biomass-to-Liquids (BtL) and the Biogas-to-Liquids (Bio-GtL) pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Shell Global: The world’s largest gas-to-liquids plant is now fully online

    Google Scholar 

  2. U.S. Energy Information Administration (2016) International Energy Outlook 2016. With Projections to 2040, U.S. Department of Energy. DOE/EIA-0484(2016)

    Google Scholar 

  3. Rauch R, Hrbek J, Hofbauer H, (2013) Biomass gasification for synthesis gas production and applications of the syngas. WIREs Energy Environ. https://doi.org/10.1002/wene.97

    Article  Google Scholar 

  4. Whitty K (2015) Status report thermal gasification in the united states IEA Bioenergy Task 33, Meeting, Berlin, 29 November 2015

    Google Scholar 

  5. Kopetz H (2015), The future role of bioenergy in the global energy system. In: van Swaaij W, Kersten S, Palz W (ed) Biomass power for the world: transformation to effective use. ISBN 978-981-4669-24-5, p 147

    Google Scholar 

  6. http://task33.ieabioenergy.com. Accessed Dec 2012.

  7. Pfeifer C, Puchner B, Hofbauer H (2009) Comparison of dual fluidized bed steam gasification of biomass with and without selective transport of CO2. Chem Eng Sc 64:5073–5083

    Article  Google Scholar 

  8. Tijmensen MJA, Faaij APC, Hamelinck CN, van Hardeveld MRM (2002) Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification Biomass Bioenerg 23:129–152

    Article  Google Scholar 

  9. https://waste-management-world.com/a/airproducts-to-ditch-plasma-gasification-waste-to-energy-plants-in-teesside. Accessed 6 Apr 2016.

  10. Gros S, Valin S (2013) Experimental and techno-economic assessments of CO2 recycling in a steam gasifier for SNG or FT diesel production (ReCO2 project). In: SGC seminar, Sweden, Okt. 2013

    Google Scholar 

  11. Göransson Kr, Söderlind U, He J, Zhang W (2011) Review of syngas production via biomass DFBGs Ren and Sust En Rev 15:482–492

    Article  Google Scholar 

  12. Knoef H (2005) Handbook biomass gasification. ISBN: 90-810068-1-9

    Google Scholar 

  13. Rauch R, Kiennemann A, Sauciu (2013) Fischer Tropsch Synthesis to Biofuels (BtL Process). In: The role of catalysis for the sustainable production of bio-fuels and bio-chemicals. ISBN 978-0-444-56330-9

    Chapter  Google Scholar 

  14. Boll W, Hochgesand G, Higman C, Supp E, Kalteier P, Müller W-D, Kriebel M, Schlichting H, Tanz H (2011) Gas production, 3. Gas treating. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  15. Dalai BH (2008) Fischer-Tropsch synthesis: a review of water effects on the performances of unsuppoerted and supported Co catalysts. Davis, Appl. Catal. A Gen. 348:1–15.

    Article  Google Scholar 

  16. Stevens DJ (2001) Hot gas conditioning: recent progress with larger-scale biomass gasification systems. Report by IEA Biomass Task 33 Thermal Gasification of Biomass. NREL/SR-510-29952.

    Google Scholar 

  17. Knoef H (2012) Handbook of biomass gasification, 2nd edn. ISBN: 978-90-819385-0-1

    Google Scholar 

  18. Knight R Green gasoline from wood using carbona gasification and Topsoe TIGAS Processes DOE Project DE-EE0002874

    Google Scholar 

  19. Hofbauer H, Rauch R, Bosch K, Koch R, Aichernig C (2002) Biomass CHP plant Güssing – a success story. Expert Meeting on Pyrolysis and Gasification of Biomass and Waste. October, Strasbourg. https://www.ecn.nl/fileadmin/ecn/units/bio/Leaflets/b-08-022_OLGA_principles.pdf, Accessed Jan 2016.

    Google Scholar 

  20. Zwart RWR, Bos A, Kuipers J (2010) Principle of OLGA tar removal system, in (ECN) ErCotN (ed) Online, p 2

    Google Scholar 

  21. Rauch R, Developments in biofuels of biomass steam gasification. In: Gasification Summit 2015, 25 and 26 Mar 2015, Prag Czech Republic

    Google Scholar 

  22. Pröll T, Schöny G, Sprachmann G, Hofbauer H (2016) Introduction and evaluation of a double loop staged fluidized bed system for post-combustion CO2 capture using solid sorbents in a continuous temperature swing adsorption process. Chem Eng Sci 141:166–174

    Article  Google Scholar 

  23. Speight JG (2013) Gas Cleaning, in coal-fired power generation handbook. Wiley, Hoboken. https://doi.org/10.1002/9781118739457.ch12

    Book  Google Scholar 

  24. Kraussler M, Binder M, Fail S, Bosch K, Hackel M, Hofbauer H (2015) Performance of a water gas shift pilot plant processing product gas from an industrial scale biomass steam gasification plant. Biomass Bioenerg. ISSN 0961-9534. http://dx.doi.org/10.1016/j.biombioe.2015.12.001. Accessed 23 Dec 2015

  25. Häussinger P, Lohmüller R, Watson AM (2000) Hydrogen, 3. Purification. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim

    Google Scholar 

  26. Kaltschmitt M, Hartmann H, Hofbauer H (2009) Energie aus biomasse. Springer, Berlin

    Book  Google Scholar 

  27. Wellinger A, Murphy J, Baxter D (2013) The biogas handbook. Science, production and applications. Woodhead publishing series in energy, no. 52. Woodhead, Oxford

    Book  Google Scholar 

  28. Kaltschmitt M (2015/16) Lessons “energy from biomass”, Hamburg University of Technology, Hamburg, Germany.

    Google Scholar 

  29. European Biogas Association EBA (2014) EBA biogas report 2014 is published! European Biogas Association, Brussels

    Google Scholar 

  30. Aasberg-Petersen K, Christensen TS, Dybkjaer I, Sehested J, Østberg M, Coertzen RM, Keyser MJ, Steynberg AP (2004) Synthesis gas production for FT synthesis. Stud NREL/SR-510-29952. Surf Sci Catal 152:258–405

    Article  Google Scholar 

  31. Fischer F, Tropsch H (1923) The preparation of synthetic oil mixtures (synthol) from carbon monoxide and hydrogen. Brennstoff-Chem 4:276–285

    Google Scholar 

  32. Fischer F, Tropsch H (1926) Die Erdölsynthese bei gewöhnlichem Druck aus den Vergasungsprodukten der Kohlen. Brennstoff-Chemie 7:97–116

    Google Scholar 

  33. Dry ME (2002) The Fischer–Tropsch process. 1950–2000. Catal Today 71 (3–4):227–241. https://doi.org/10.1016/S0920-5861(01)00453-9

    Article  Google Scholar 

  34. Adesina AA (1996). Hydrocarbon synthesis via Fischer-Tropsch reaction. Travails and triumphs. Appl Catal A-Gen 138(2):345–367. https://doi.org/10.1016/0926-860X(95)00307-X

    Article  Google Scholar 

  35. Steynberg A, Dry M (2004) Fischer-Tropsch technology. Stud Surf Sci Catal 152. ISBN:9780080472799

    Google Scholar 

  36. Sie ST, Krishna R (1999) Fundamentals and selection of advanced Fischer-Tropsch reactors. Appl Catal A-Gen 186(1):55–70

    Article  Google Scholar 

  37. Dry ME (2004) Present and future applications of the Fischer-Tropsch process. Appl. Catal. A-Gen 276(1):1–3

    Article  Google Scholar 

  38. de Deugd RM, Kapteijn F, Moulijn JA (2003) Trends in Fischer–Tropsch reactor technology. Opportunities for structured reactors. Top Catal 26(1–4):29–39. https://doi.org/10.1023/B:TOCA.0000012985.60691.67

    Article  Google Scholar 

  39. LeViness S Opportunities for Modular GTL in North America. Energy Frontiers International, 22 Oct 2012. https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CCkQFjABahUKEwjB_qDmt43JAhUGKg8KHYm4DKA&url=http%3A%2F%2Fwww.velocys.com%2Farcv%2Fpress%2Fppt%2FEFI%25202012%20Presentation%20121019_1_rev2.pdf&usg=AFQjCNE14xP9V15_klmEHguexYG443cJPA&cad=rja. Accessed 13 Nov 2015

  40. Atkinson D, McDAniel J (2010) Microchannel reactors in fuel production. Pet. Technol. Q. (2):95–98

    Google Scholar 

  41. Velocys: Velocys. http://velocys.com (Accessed 13 Nov 2015)

  42. Flory PJ (1936) Molecular size distribution in linear condensation polymers 1. J Am Chem Soc 58(10):1877–1885. https://doi.org/10.1021/ja01301a016

    Article  Google Scholar 

  43. Schulz GV (1935) Über die Beziehung zwischen Reaktionsgeswindlichkeit und zusammensetzung des Reaktionsproduktes bei Makropolymerisationsvorgängen. Physikalische Chemie 30:379–398

    Article  Google Scholar 

  44. Spath PL, Dayton DC (2003) Preliminary screening – technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. National Renewable Energy Laboratory [NREL], Golden

    Google Scholar 

  45. Schulz H (1999) Short history and present trends of Fischer–Tropsch synthesis. Appl Catal A-Gen 186(1–2):3–12. https://doi.org/10.1016/S0926-860X(99)00160-X

    Article  Google Scholar 

  46. Jager B, Espinoza R (1995) Advances in low temperature Fischer-Tropsch synthesis. Catal Today 23(1):17–28. https://doi.org/10.1016/0920-5861(94)00136-P

    Article  Google Scholar 

  47. Kasza T, Hancsók J (2011) Isomerization of paraffin mixtures produced from sunflower oil. Hung J Ind Chem 39(3):363–368

    Google Scholar 

  48. Ekbom T, Berglin N, Lögdberg S (2005) Black Liquor Gasification with Motor Fuel Production – BLGMF II. A techno-economic feasibility study on catalytic Fischer-Tropsch synthesis for synthetic diesel production in comparison with methanol and DME as transport fuels. Accessed 10 Apr 2014

    Google Scholar 

  49. Petersen P (1995) Untersuchung der Deaktivierung von Katalysatoren für die Methanolsynthese aus Kohlendioxid und Wasserstoff, 3057. Institut für Energieverfahrenstechnik, Jülich

    Google Scholar 

  50. Fang K, Li D, Lin M, Xiang M, Wei W, Sun Y (2009) A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas. Catal Today 147(2):133–138. https://doi.org/10.1016/j.cattod.2009.01.038

    Article  Google Scholar 

  51. de Klerk A (2011) Fischer-tropsch refining, 1st edn. Wiley, Weinheim

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Rauch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Rauch, R., Hofbauer, H., Neuling, U., Kaltschmitt, M. (2018). Biokerosene Production from Bio-Chemical and Thermo-Chemical Biomass Conversion and Subsequent Fischer-Tropsch Synthesis. In: Kaltschmitt, M., Neuling, U. (eds) Biokerosene. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53065-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53065-8_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53063-4

  • Online ISBN: 978-3-662-53065-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics