Advertisement

Wahrnehmung

  • Christian Becker-Carus
  • Mike Wendt
Chapter

Zusammenfassung

Kapitel 3 führt zunächst in die Funktionsweisen der Sinnessysteme und die subjektive Beurteilung der Reizwahrnehmungen ein. Sodann werden die wohl am ausführlichsten untersuchten Gesetzmäßigkeiten, Funktionsweisen und Täuschungen der menschlichen visuellen Wahrnehmung besprochen. Dabei werden auch die neueren Erkenntnisse zur Neuronalen Codierung und Mustererkennung sowie weitere neuronale Funktionen unseres Zentralnervensystems erläutert und so ein weitergehendes Verständnis des Wahrnehmungsprozesses und seiner Abhängigkeit auch von Lernprozessen und Eigenbewegungen ermöglicht. Dazu gehören Farb und Tiefenwahrnehmung, das Objekterkennen, Bewegungswahrnehmung und Wahrnehmungslernen.

Literatur

  1. Anderson, J. R. (1996). Kognitive Psychologie. Heidelberg: Spektrum.Google Scholar
  2. Anderson, J. R. (2013). Kognitive Psychologie (7. Aufl.). Berlin: Springer.CrossRefGoogle Scholar
  3. Anstis, S. M., & Gregory, R. L. (1964). The afteraffect of the seen motion: The role of retinal stimulation and eye movements. Quarterly Journal of Experimental Psychology, 17, 173–174.CrossRefGoogle Scholar
  4. Aslin, R. N., & Banks, M. S. (1978). Early visual experience in humans: Evidence for a critical period in the development of binocular vision. In S. Schneider, H. Liebowitz, H. Pick & H. Stevenson (Hrsg.), Psychology: From basic research to practise Bd. 5 New York: Plenum.Google Scholar
  5. Baird, J. C., Wagner, M., & Fuld, K. (1990). A simple but powerful theory of the moon illusion. Journal of Experimental Psychology: Human Perception and Performance, 16, 675–677.PubMedGoogle Scholar
  6. Barlow, H. B. (1975). Visual experiences and cortical development. Nature, 258, 199–204.PubMedCrossRefGoogle Scholar
  7. Barlow, H. B., & Hill, R. M. (1963). Evidence for a physiological explanation of the waterfall illusion and figural after-affect. Nature, 200, 1345–1347.PubMedCrossRefGoogle Scholar
  8. Barlow, H. B., & Mollon, J. D. (Hrsg.). (1982). The senses. Cambridge: Cambridge University Press.Google Scholar
  9. Becker-Carus, C. (1968). Visomotorische Adaptation bei gestörter visueller Rückkopplung eigener Körperbewegungen. Psychologische Forschung, 32, 219–243.PubMedCrossRefGoogle Scholar
  10. Becker-Carus, C. (1969). Verändertes Greifen nach visueller und nach taktiler Adaptation. Psychologische Forschung, 33, 21–26.PubMedCrossRefGoogle Scholar
  11. Becker-Carus, C. (1981). Grundriß der Physiologischen Psychologie. Heidelberg: Quelle und Meyer.Google Scholar
  12. Biederman, I. (1981). On the semantics of a glance at a scene. In M. Kubovy & J. Pomerantz (Hrsg.), Perceptual organization. Hilsdale: Erlbaum.Google Scholar
  13. Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94, 115–147. Binns, K. E. & Salt, T. E. (1997). Post eye-opening maturation of visual receptive field diameters in the superior colliculus of normal- and dark-reared rats. Brain Research: Developmental Brain Research, 99, 263–266.PubMedCrossRefGoogle Scholar
  14. Blakemore, C., & Cooper, G. F. (1970). Development of the brain depends on the visual environment. Nature, 228, 477–478.PubMedCrossRefGoogle Scholar
  15. Brown & Gilhouse, College Psychology; Copyright 1949, 1950 by Prentice-Hall, Inc., Englewood CliffsGoogle Scholar
  16. Bruner, J. S., & Goodman, C. C. (1947). Value and need as organizing factors in perception. Journal of Abnormal and social Psychology, 42, 33–44.CrossRefGoogle Scholar
  17. Brunswik, E. (1943). Organismic achievement and environmental probability. Psychological Review, 50, 255–272.CrossRefGoogle Scholar
  18. Buchholtz, C. (1982). Grundlagen der Verhaltensphysiologie. Braunschweig: Vieweg.CrossRefGoogle Scholar
  19. Coren, S., Ward, L. M., & Enns, J. T. (1999). Sensation and perception. Fort Worth: Harcourt Brace.Google Scholar
  20. Courage, M. L., & Adams, R. J. (1990). Visual acuity assessment from birth to three years using the acuity card procedures: Cross-sectional and longitudinal samples. Optometry and vision Science, 67, 713–718.PubMedCrossRefGoogle Scholar
  21. Cyander, M., Timney, B. N., & Mitchel, D. E. (1980). Period of susceptibility of kitten visual cortex to the effects of monocular deprivation extends beyond 6 month of age. Brain research, 191, 545–550.CrossRefGoogle Scholar
  22. Dartnall, H. J. A., Bowmaker, J. K., & Mollon, J. D. (1983). Human visual pigments: Microspectrophometric results: from the eyes of seven persons. Proceedings of the Royal Society of London, 220 B, 115–130.CrossRefGoogle Scholar
  23. Doolittle, B. (1985). The Forest has Eyes. Trumbull, CT.: The Greenwich Workshop.Google Scholar
  24. Dowling, J. E., & Boycott, B. B. (1966). Organization of the primate retina. Proceedings of the Royal Society of London, 166(1002), 80–111.PubMedCrossRefGoogle Scholar
  25. Duncker, D. K. (1929). Über induzierte Bewegung (Ein Beitrag zur Theorie optisch wahrgenommener Bewegung). Psychologische Forschung, 12, 180–259.CrossRefGoogle Scholar
  26. Eibl-Eibesfeldt, I. (1951). Nahrungserwerb und Beuteschema der Erdkröte (Bufo bufo L.). Behaviour, 4, 1–35.CrossRefGoogle Scholar
  27. Eibl-Eibesfeldt, I. (1967). Grundriß der vergleichenden Verhaltensforschung., München: Piper.Google Scholar
  28. Gelb, A. (1929). Die „Farbenkonstanz“ der Sehdinge. Handbook norm. path. Phys., 12, 594–678.Google Scholar
  29. de Gelder, B., Tamietto, M., van Boxtel, G., Goebel, R., Sahraie, A., van den Stock, J., Stienen, B. M. C., Weiskrantz, L., & Pegna, A. (2008). Intact navigation skills after bilateral loss of striate cortex. Current Biology, 18, R1128–R1129.PubMedCrossRefGoogle Scholar
  30. Gibson, J. J. (1950). The perception of the visual world. Boston, New York: Houghton Mifflin. deutsch 1973, Die Wahrnehmung der visuellen Welt. Weinheim: BeltzGoogle Scholar
  31. Gibson, J. J. (1979/1986). The Ecological Approach to Visual Perception. Hillsdale, NJ: Lawrence ErlbaumGoogle Scholar
  32. Gibson, J. J. (1982). Wahrnehmung und Umwelt. München: Urban & Schwarzenberg. Orig. 1979, Ecological approach to visual perception. Boston: Houghton MifflinGoogle Scholar
  33. Gibson, E. J., & Walk, R. D. (1960). The visual cliff. Scientific American, 202, 64–71.PubMedCrossRefGoogle Scholar
  34. Goldstein, E. B. (1996). Sensation and perception. Pacific Grove: Brooks/Cole Publishing Company. deutsch 1997, Wahrnehmungspsychologie. Heidelberg: Spektrum Akademischer VerlagGoogle Scholar
  35. Goldstein, E. B. (1997, 2008). Wahrnehmungspsychologie – eine Einführung. Heidelberg:.SpektrumGoogle Scholar
  36. Goldstein, E. B. (2014). Sensation and perception. Pacific Grove: Brooks/Cole Publishing Company, Wadsworth Cengage Learning Verlag.Google Scholar
  37. Graziano, M. S. A., Andersen, R. A., & Snowden, R. J. (1994). Tuning of MST neurons to spiral motions. Journal of Neuroscience, 14, 54–76.PubMedGoogle Scholar
  38. Gregory, R. L. (1966). Eye and brain. New York: McGraw Hill. deutsch 1966, Auge und Gehirn. München: KindlerGoogle Scholar
  39. Hankins, M. W., Peirson, S. N., & Foster, R. G. (2008). Melanopsin: an exciting photopigment. Trends Neurosci., 31, 27–36.PubMedCrossRefGoogle Scholar
  40. Hansen, T., Olkkonen, M., Walter, S., & Gegenfurtner, K. R. (2006). Memory modultaes color appearance. Nature Neuroscience, 9, 1367–1368.PubMedCrossRefGoogle Scholar
  41. Hartline, H. K., & Ratliff, F. (1957). Inhibitory interaction of receptor units in the eye of Limulus. Journal of General Physiology, 40, 357–376.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hein, A., & Held, R. (1967). Dissociation of the visual placing response into elicited and guided components. Science, 158, 390–391.PubMedCrossRefGoogle Scholar
  43. Held, R. (1965). Placticity in sensory motor systems. Scientific American, 11, 200.Google Scholar
  44. Held, R., & Freedman, S. J. (1963). Plasticity in human sensorimotor control. Science, 142, 455–462.PubMedCrossRefGoogle Scholar
  45. Held, R., & Hein, A. (1963). Movement-produced stimulation in the development of visually guided behavior. Journal of Comparative and Physiological Psychology, 56, 872–876.PubMedCrossRefGoogle Scholar
  46. von Helmholtz, H. (1852).Über die Theorie der zusammengesetzten Farben. Habilitationsschrift, BerlinGoogle Scholar
  47. Helson, H. (1933). The fundamental propositions of gestaltpsychology. Psychological Review, 40, 13–32.CrossRefGoogle Scholar
  48. Helson, H. (1947). Adaptation level as frame of reference for prediction of psychophysical data. American Journal of Psychology, 60, 1–29.PubMedCrossRefGoogle Scholar
  49. Helson, H. (1964). Adaptation-level theory. New York: Harper & Row.Google Scholar
  50. Hershenson, M. (1989). The moon illusion. Hillsdale, NJ: Erlbaum.Google Scholar
  51. Hilgard, E. R., Atkinson, R. L., & Atkinson, R. C. (1979). Introduction to Psychology. New York: Harcourt Brace Jovanovich.Google Scholar
  52. Hochberg, J. E. (1971). Perception. In J. W. Kling & L. A. Riggs (Hrsg.), Experimental Psycholog (3. Aufl. S. 396–550). New York: Holt, Rinehart & Winston. Hilgard, E. R., Atkinson, R. L., Atkinson, R. C. (2003). Introduction to Psychology. 14th ed. USA, CA: Wadsworth/Thomson Learning.Google Scholar
  53. von Holst, E., & Mittelstaedt, H. (1950). Das Reafferenzprinzip. Naturwissenschaften, 37, 464–476.CrossRefGoogle Scholar
  54. Holway, A. A., & Boring, E. G. (1941). Determinants of apparent visual size with distance variant. American Journal of Psychology, 54, 21–37.CrossRefGoogle Scholar
  55. Hubel, D. H. (1982). Exploration of the primary visual cortex, 1955–1978. Nature, 299, 515–524.PubMedCrossRefGoogle Scholar
  56. Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurons in the cat’s striate cortex. Journal of Physiology, 148, 574–591.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hubel, D. H., & Wiesel, T. N. (1961). Integrative action in the cat’s lateral geniculate body. J Physiol, 155, 385–398.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. Journal of Physiology, 160, 106–154.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hubel, D. H., & Wiesel, T. N. (1965). Receptive fields and functional architecture in the non-triate visual areas (18 and 19) of the cat. Journal of Neurophysiology, 28, 229–289.PubMedGoogle Scholar
  60. Hubel, D. H., & Wiesel, T. N. (1970). Cells sensitive to binocular depth in area 18 of the macaque monkey cortex. Nature, 225, 41–42.PubMedCrossRefGoogle Scholar
  61. Hubel, D. H., & Wiesel, T. N. (1979). Brain mechanisms of vision. Scientific American, 241, 150–162.PubMedCrossRefGoogle Scholar
  62. Hückstedt, B. (1965). Experimentelle Untersuchungen zum „Kindchenschema“. Zeitung für angewandte Psychologie, 12, 421–450.Google Scholar
  63. Hummel, M. E., & Biederman, I. (1992). Dynamic binding in a neutral network for shape recognition. Psychological Review, 99, 480–517.PubMedCrossRefGoogle Scholar
  64. Jameson, D. (1985). Opponent-colors theory in the light of physiological findings. In D. Ottoson & S. Zeki (Hrsg.), Central and Peripheral mechanisms of color vision. New York: Mac Millan.Google Scholar
  65. Johanson, G. (1975). Visual motion perception. Scientific American, 232, 67–89.CrossRefGoogle Scholar
  66. Johanson, G. (1986). Visuelle Bewegungswahrnehmung. In Wahrnehmung und visuelles System. Heidelberg: Spektrum.Google Scholar
  67. Julesz, B. (1971). Foundations of cyclopean perception. Chicago: University of Chicago Press.Google Scholar
  68. Kanizsa, G. (1979). Organization in vision: Essays on Gestalt Perception. New York: Praeger Publishers, Greenwoog Publishing Group.Google Scholar
  69. Kant, I. (1781, 1998). Kritik der reinen Vernunft. Hamburg: Meiner Verlag.Google Scholar
  70. Kaplan, G. (1969). Kinetic disruption of optical texture. The perception of depth at an edge. Perception and Psychophysics, 6, 193–198.CrossRefGoogle Scholar
  71. Kaufman, L., & Rock, I. (1962). The moon illusion. Science, 136, 953–961.PubMedCrossRefGoogle Scholar
  72. Korte, A. (1915). Kinematroskopische Untersuchungen. Zeitschrift Psychologie, 72, 194–296.Google Scholar
  73. Krech, D., Crutchfield, R. S., & Livson, N. (1969). Elements of psychology. New York: Knopf.Google Scholar
  74. Kunz, D., & Mahlberg, R. (2004). Melatonin: A Chronobiotic that not only Shifts Rhythms. In S. R. Pandi-Perumal & D. P. Cardinali (Hrsg.), Melatonin: Biological Basis of its Function in Health and Dieases (S. 1–11). Austin: Landes Biosciences. Krech, D., Crutchfield, R. S., & Livson, N. (1969). Elements of psychology. New York: Knopf.Google Scholar
  75. Land, E. H. (1983). Recent advances in retinex theory in some implications for cortical computations: Color vision in the natural image. Proceedings of the National Academy of Sciences, USA, 80, 5163–5169.CrossRefGoogle Scholar
  76. Land, E. H. (1986). Recent advances in retinex theory. Vision Research, 26, 7–21.PubMedCrossRefGoogle Scholar
  77. Lee, D. N. (1976). A theory of visual control of braking based on information about time to collision. Perception, 5, 437–459.PubMedCrossRefGoogle Scholar
  78. Leibowitz, H. W., Shina, K., & Hennesey, H. R. (1972). Oculomotor adjudgements and size constancy. Perception and Psychophysics, 12, 497–500.CrossRefGoogle Scholar
  79. Locke, J. (1690/1970). An essay concerning human understanding. Menston, Yorkshire: Solar Press.Google Scholar
  80. Marr, D. (1982). Vision. San Francisco: Freeman.Google Scholar
  81. Massaro, D. W. (1979). Letter information and orthographic context in word perception. Journal of Experimental Psychology: human perception and performance, 5, 595–609.PubMedGoogle Scholar
  82. Maturana, H. R., Lettwin, J. Y., McCulloch, W. S., & Pittis, W. H. (1960). Anatomy and physiology of vision in the frog (Rana pipiens). Journal of General Physiology, 43(Suppl. 6), 129–175.PubMedPubMedCentralCrossRefGoogle Scholar
  83. McBurney, D. H., & Collings, V. B. (1984). Introduction to sensation and perception. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  84. McClelland, J. L., & Rumelhart, D. E. (1981). An interactive model of context effects in letter perception: an account of basic findings. Psychophysiological Review, 88, 375–407.CrossRefGoogle Scholar
  85. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophysiol., 5, 115–133.CrossRefGoogle Scholar
  86. McLeod, R. W., & Ross, H. E. (1983). Optic-flow and cognitive factors in time-to-collision estimates. Perception, 12, 417–423.PubMedCrossRefGoogle Scholar
  87. Metzger, W. (1934). Tiefenerscheinungen in optischen Bewegungsfeldern. Psychologische Forschung, 20, 195–260.CrossRefGoogle Scholar
  88. Metzger, W. (1953/1975). Gesetze des Sehens. Frankfurt, Mainz: Kramer.Google Scholar
  89. Metzger, W. (1966). Wahrnehmung und Bewusstsein. In. Handbuch der Psychologie (1. Halbband): Allgemeine Psychologie. Göttingen: Hogrefe.Google Scholar
  90. Michotte, A. (1963). The perception of causality. New York: Basic Books. Orig. 1954, La perception de la causalité Google Scholar
  91. Movshon, J. A., & Van Sluyters, R. C. (1981). Visual neural development. Annual Review of psychology, 32, 477–522.PubMedCrossRefGoogle Scholar
  92. Nakayama, K. (1985). Biological image motion-processing. Vision Research, 25, 625–660.PubMedCrossRefGoogle Scholar
  93. Nakayama, K. (1994). J. Gibson – An appreciation. Psychology Review, 101, 329–335.CrossRefGoogle Scholar
  94. Newsome, W. T., Britten, K. H., & Movshon, J. A. (1989). Neuronal correlates of a perceptual decision. Nature, 341, 52–54.PubMedCrossRefGoogle Scholar
  95. Newton (1931). Optics or a treatise of the reflections, refractions, inflections and colours of light. Oxford: England Whittlesey Houde, McGraw-Hill.Google Scholar
  96. Ohzawa, I., DeAngelis, G. C., & Freeman, R. D. (1990). Stereoscopic depth discrimination in the visual cortex: Neurons idally suited as disparity detectors. Science, 249, 1037–1040.PubMedCrossRefGoogle Scholar
  97. Palmer, S. E. (1982). Symmetry transformations, and the structure of perceptual systems. In F. Beck (Hrsg.), Organization and representation in perception. Hillsdale, NJ: Erlbaum.Google Scholar
  98. Peterson, M. A., & Hochberg, J. (1983). Opposed-set measurement procedure: A quantitative analysis of the role of local cues and intention in form perception. Journal of Experimental Psychology: Human perception and performance, 9, 183–193.Google Scholar
  99. Pinel, P. J. (1997). Biopsychologie – eine Einführung. Heidelberg: Spektrum Akademischer Verlag. Plug, C. & Ross, H. E. (1994). The natural moon illusion: A multifactor angular account. Perception 23, 321–333Google Scholar
  100. Plug, C., & Ross, H. E. (1994). The natural moon illusion: A multifactor angular account. Perception, 23, 321–333.PubMedCrossRefGoogle Scholar
  101. Postman, L., & Crutchfield, R. S. (1952). The interaction of need set, and stimulus structure in a cognitive task. American Journal of Psychology, 65, 196–217.PubMedCrossRefGoogle Scholar
  102. Ramachandran, V. S. (1992). Kompensation des blinden Flecks. Spektrum der Wissenschaft, Juli 1992, 52–58.Google Scholar
  103. Ramachandran, V. S., & Gregory, R. L. (1991). Perceptual filling in of artificially induced scotomas in human vision. Nature, 350, 699–702.PubMedCrossRefGoogle Scholar
  104. Ranganathan, R., Harris, W. A., & Zucker, C. S. (1991). The molocular genetics of invertebrate phototransduction. Trends in Neuroscience, 14, 486–493.CrossRefGoogle Scholar
  105. Regan, D., & Cynader, M. (1979). Neurons in area 18 of cat visual cortex selectively sensitive to changing size: Nonlinear interactions between responses to two edges. Vision Research, 19, 699–711.PubMedCrossRefGoogle Scholar
  106. Reichardt, W. (1961). Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In W. A. Rosenblith (Hrsg.), Sensory communication (S. 303–318). New York: Wiley.Google Scholar
  107. Reicher, E. (1969). Perceptual recognition as a function of meaningfullness of stimulus material. Journal of Experimental Psychology, 81, 275–280.PubMedCrossRefGoogle Scholar
  108. Riesen, A. H. (1960). Effects of Stimulus Deprivation on the Development and Atrophy of the Visual Sensory System. J. Orthopsychiatr., 30, 23–26. Riesen, 1965.CrossRefGoogle Scholar
  109. Rumelhart, D. E., & Siple, P. (1974). Process of Recognizing Tachistoscopically Presented Words. Psychological Review, 81, 88–118.CrossRefGoogle Scholar
  110. Runeson, S., & Frykholm, G. (1981). Visual perception of liftet wights. Journal of Experimental Psychology: Human Perception and Performance, 7, 733–740.PubMedGoogle Scholar
  111. Sarris, V. (1971). Wahrnehmung und Urteil, Bezugssystemeffekte in der Psychophysik. Göttingen: Hogrefe.Google Scholar
  112. Schleidt, W. M. (1961). Über die Auslösung der Flucht von Raubvögeln bei Truthühnern. Die Naturwissenschaften, 48, 141–142.CrossRefGoogle Scholar
  113. Schmidt, R. F., Thews, G. (Hrsg.). (199727/200028). Physiologie des Menschen. Berlin, Heidelberg: Springer.Google Scholar
  114. Schutz, F. (1970). Objektfixierung geschlechtlicher Reaktionen bei Anatiden und Hühnern. Die Naturwissenschaften, 50, 624–625.CrossRefGoogle Scholar
  115. Segall, M. H., Dasen, P. R., Berry, J. W., & Poortinga, Y. H. (1990). Human behavior in global perspective: an introduction to cross-cultural psychology. New York: Pergamon.Google Scholar
  116. Senden, M. V. (1960). Space and sight. New York: Free Press.Google Scholar
  117. Shapley, R., & Lennie, P. (1985). Spartial frequency analysis in the visual system. Annual review of Neurosciences, 8, 547–583.CrossRefGoogle Scholar
  118. Sherif, M. (1935). A study of some social factors in perception. Archives of Psychology, 27, 187.Google Scholar
  119. Shiffrar, M. (1994). When what meets where. Current Directions in Psychological Science, 3, 96–100.CrossRefGoogle Scholar
  120. Shiffrar, M., & Freyd, J. J. (1990). Apparent motion of the human body. Psychological science, 1, 257–264.CrossRefGoogle Scholar
  121. Shiffrar, M., & Freyd, J. J. (1993). Timing and apparent motion path choice with human body photographs. Psychological Science, 4, 379–384.CrossRefGoogle Scholar
  122. Singer, W. (1994). Putative functions of temporal correlations in neocortical processing. In C. Koch & J. L. Davis (Hrsg.), Large-scale neuronal theories of the brain. Cambridge, MA: MIT Press Cambridge.Google Scholar
  123. Sperling, G. (1960). Afterimage without prior image. Science, 131, 1613–1614.PubMedCrossRefGoogle Scholar
  124. Steinman, R. M., Pizlo, Z. & Pizlo, F. (2000). Phi is not Beta, and why Wertheimer´s dicovery launched the Gestalt revolution. Vision Research, 40, 2257–2264Google Scholar
  125. Stevens, S. S. (1975). Psychophysics. Introduction to its perceptual, neural, and social prospects. New York: Wiley.Google Scholar
  126. Stevens, S. S., & Galanter, E. H. (1957). Ratio scales and category scales for a dozen perceptual continua. Journal of Experimental Psychology, 54, 377–411.PubMedCrossRefGoogle Scholar
  127. Thimbleby, H. W., Inglis, S., & Witten, I. H. (1994). Displaying 3DImages: Algorithms for Single-Image Random-Dot Stereograms. In Computer: Innovative technology for computer professionals (S. 38–48). New York: IEEE Computer Society.Google Scholar
  128. Tinbergen, N. (1942). An objective study of the innate behaviour of animals. Biblioth. Biotheor., 1, 39–98.Google Scholar
  129. Tinbergen, N. (1956). Instiktlehre. Berlin, Hamburg: Parey.Google Scholar
  130. Tinbergen, N. (1966). Tiere und ihr Verhalten. Life, Wunder der Natur. Time-Life International (Nederland) N. V.Google Scholar
  131. Treisman, A. (1987). Properties, parts, and objects. In K. R. Boff, L. Kaufman & F. P. Thomas (Hrsg.), Handbook of Perception and human Performance (Kap. 35). New York: Wiley.Google Scholar
  132. Treisman, A. (1993). The perception of features and objects. In A. Beaddley & L. Weiskrantz (Hrsg.), Attention: selection awareness and controlling (S. 5–34). Oxford: Clarendon.Google Scholar
  133. Turnbull, C. (1961). The forest people. New York: Simon & Schuster.Google Scholar
  134. Tyler, C. W. (1983). Sensory processing of binocular disparity. In C. M. Schor & K. J. Cinffreda (Hrsg.), Vergence eye movements: Basic and clinical aspects. London: Butterworths.Google Scholar
  135. Tyler, C. W., & Clarke, M. B. (1990). The autostereogram. In J. O. Merrit & S. S. Fischer (Hrsg.), Stereoscopic displays and applications (S. 182–197). Bellingham: International society for optical engineering.CrossRefGoogle Scholar
  136. Wahnschaffe, A., Haedel, S., Rodenbeck, A., Stoll, C., Rudolph, H., Kozakov, R., Schoepp, H., & Kunz, D. (2013). Out of the Lab and into the Bathroom: Evening Short-Term Exposure to Conventional Light Suppresses Melatonin and Increases Alertness Perception. International Journal of Molecular Sciences, 14, 2573–2589. www.mdpi.com/journal/ijms.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Weiskrantz, L. (1986). Blindsight: A case study and implications. Oxford: Oxford University Press.Google Scholar
  138. Weiskrantz, L., Sanders, M. D., & Marshall, J. (1974). Visual capacity in the hemianopic field following a restricted cortical ablation. Brain, 97, 709–728.PubMedCrossRefGoogle Scholar
  139. Velden, M. (1982). Die Signalentdeckungstheorie in der Psychologie. Stuttgart: Kohlhammer.Google Scholar
  140. v. Weizsäcker, V. (1947). Der Gestaltkreis. Stuttgart: Thieme.Google Scholar
  141. Wertheimer, M. (1912). Experimentelle Studien über das Sehen von Bewegung. Zeitschrift für Psychologie, 61, 161–256.Google Scholar
  142. Wheeler, D. D. (1970). Processes in word recognition. Cognitive Psychology, 1, 59–85.CrossRefGoogle Scholar
  143. Witte, W. (1960). Experimentelle Untersuchungen von Bezugssystemen. I. Struktur, Dynamik & Genese von Bezugssystemen. Psychologische Beiträge, 4, 218–252.Google Scholar
  144. Wohlschläger, A., & Prinz, W. (2006). Wahrnehmung. In H. Spada (Hrsg.), Lehrbuch Allgemeine Psychologie. Bern: Hans Huber.Google Scholar
  145. Wundt, W. (1874/1893). Grundzüge einer physiologischen Psychologie. Leipzig: Engelmann.Google Scholar
  146. Young, T. (1802). On the theory of Light and colours. Transactions of the Royal Society of London, 92, 12–48.Google Scholar
  147. Zeki, S. (1983). Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelength and colours. Neuroscience, 9, 741–765.PubMedCrossRefGoogle Scholar
  148. Zeki, S. (1984). The construction of colours by the cerebral cortex. Proceedings of the Royal Institute of Great Britain, 56, 231–257.Google Scholar
  149. Ziegler, H. P., & Leibowitz, H. (1957). Apparent visual size as a function of distance for children and adults. American Journal of Psychology, 70, 106–109.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  1. 1.Allgemeine Psychologie I und IIUniversität MünsterMünsterDeutschland
  2. 2.Fakultät für HumanwissenschaftenMedical School HamburgHamburgDeutschland

Personalised recommendations