Skip to main content

Structural Development of the Kidney

  • Chapter
  • First Online:
Pediatric Kidney Disease
  • 2717 Accesses

Abstract

The function of the mammalian kidney is critically dependent on its structure. This chapter will describe the developmental processes involved in defining the complex three-dimensional architecture of the nephron in the context of the kidney, and how this relates to the acquisition of renal function during development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Osathanondh V, Potter EL. Development of human kidney as shown by microdissection. Arch Pathol. 1966;82:391–402.

    CAS  PubMed  Google Scholar 

  2. Potter EL. Normal and abnormal development of the kidney. Chicago: Year Book Medical Publishers; 1972.

    Google Scholar 

  3. Hinchliffe SA, Sargent PH, Howard CV, Chan YF, van Velzen D. Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the disector method and Cavalieri principle. Lab Invest. 1991;64(6):777–84.

    CAS  PubMed  Google Scholar 

  4. Hughson M, Farris 3rd AB, Douglas-Denton R, Hoy WE, Bertram JF. Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int. 2003;63(6):2113–22.

    Article  PubMed  Google Scholar 

  5. Rodriguez MM, Gomez AH, Abitbol CL, Chandar JJ, Duara S, Zilleruelo GE. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol. 2004;7(1):17–25.

    Article  PubMed  Google Scholar 

  6. Brenner BM, Chertow GM. Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury. Am J Kidney Dis. 1994;23(2):171–5.

    Article  CAS  PubMed  Google Scholar 

  7. Brenner BM, Mackenzie HS. Nephron mass as a risk factor for progression of renal disease. Kidney Int. 1997;63:S124–7.

    CAS  Google Scholar 

  8. Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension. N Engl J Med. 2003;348(2):101–8.

    Article  PubMed  Google Scholar 

  9. Hoy WE, Hughson MD, Singh GR, Douglas-Denton R, Bertram JF. Reduced nephron number and glomerulomegaly in Australian Aborigines: a group at high risk for renal disease and hypertension. Kidney Int. 2006;70(1):104–10.

    Article  CAS  PubMed  Google Scholar 

  10. Manalich R, Reyes L, Herrera M, Melendi C, Fundora I. Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int. 2000;58(2):770–3.

    Article  CAS  PubMed  Google Scholar 

  11. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ. 1989;298(6673):564–7. Clinical research ed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barker DJ, Eriksson JG, Forsen T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002;31(6):1235–9.

    Article  CAS  PubMed  Google Scholar 

  13. Osathanondh V, Potter EL. Development of human kidney as shown by microdissection. II. Renal pelvis, calyces, and papillae. Arch Pathol. 1963;76:277–89.

    CAS  PubMed  Google Scholar 

  14. Osathanondh V, Potter EL. Development of human kidney as shown by microdissection. III. Formation and interrelationship of collecting tubules and nephrons. Arch Pathol. 1963;76:66–78.

    Google Scholar 

  15. Saxen L. Organogenesis of the kidney. Cambridge: Cambridge University Press; 1987.

    Book  Google Scholar 

  16. Piscione TD, Rosenblum ND. The molecular control of renal branching morphogenesis: current knowledge and emerging insights. Differentiation. 2002;70(6):227–46.

    Article  CAS  PubMed  Google Scholar 

  17. Dressler GR. The cellular basis of kidney development. Annu Rev Cell Dev Biol. 2006;22:509–29.

    Article  CAS  PubMed  Google Scholar 

  18. Costantini F. Renal branching morphogenesis: concepts, questions, and recent advances. Differentiation. 2006;74(7):402–21.

    Article  CAS  PubMed  Google Scholar 

  19. Shah MM, Sampogna RV, Sakurai H, Bush KT, Nigam SK. Branching morphogenesis and kidney disease. Development. 2004;131(7):1449–62.

    Article  CAS  PubMed  Google Scholar 

  20. Yu J, McMahon AP, Valerius MT. Recent genetic studies of mouse kidney development. Curr Opin Genet Dev. 2004;14(5):550–7.

    Article  CAS  PubMed  Google Scholar 

  21. Little MH, McMahon AP. Mammalian kidney development: principles, progress, and projections. Cold Spring Harb Perspect Biol. 2012;4:5. Research Support, N.I.H., Extramural Review.

    Article  CAS  Google Scholar 

  22. Costantini F, Kopan R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell. 2010;18(5):698–712. Research Support, N.I.H., Extramural Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moritz K. Factors influencing mammalian kidney development: implications for health in adult life, morphological development of the kidney. Adv Anat Cell Biol. 2008;196:9–16.

    Google Scholar 

  24. Drummond IA, Majumdar A, Hentschel H, Elger M, Solnica-Krezel L, Schier AF, et al. Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development. 1998;125:4655–67.

    CAS  PubMed  Google Scholar 

  25. Vize PD, Seufert DW, Carroll TJ, Wallingford JB. Model systems for the study of kidney development: use of the pronephros in the analysis of organ induction and patterning. Dev Biol. 1997;188:189–204.

    Article  CAS  PubMed  Google Scholar 

  26. Staack A, Donjacour AA, Brody J, Cunha GR, Carroll P. Mouse urogenital development: a practical approach. Differentiation. 2003;71(7):402–13.

    Article  PubMed  Google Scholar 

  27. James RG, Kamei CN, Wang Q, Jiang R, Schultheiss TM. Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development. 2006;133(15):2995–3004.

    Article  CAS  PubMed  Google Scholar 

  28. Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P. Pax-2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development. 1990;109:787–95.

    CAS  PubMed  Google Scholar 

  29. Bouchard M, Souabni A, Mandler M, Neubuser A, Busslinger M. Nephric lineage specification by Pax2 and Pax8. Genes Dev. 2002;16(22):2958–70. Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fujii T, Pichel JG, Taira M, Toyama R, Dawid IB, Westphal H. Expression patterns of the murine LIM class homeobox gene lim1 in the developing brain and excretory system. Dev Dyn. 1994;1:73–83.

    Article  Google Scholar 

  31. Grote D, Souabni A, Busslinger M, Bouchard M. Pax 2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development. 2006;133(1):53–61.

    Article  CAS  PubMed  Google Scholar 

  32. Pachnis V, Mankoo B, Costantini F. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development. 1993;119:1005–17.

    CAS  PubMed  Google Scholar 

  33. Mugford JW, Sipila P, McMahon JA, McMahon AP. Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol. 2008;324(1):88–98. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Erickson RA. Inductive interactions in the develoment of the mouse metanephros. J Exp Zool. 1968;169(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  35. Grobstein C. Morphogenetic interaction between embryonic mouse tissues separated by a membrane filter. Nature. 1953;172:869–71.

    Article  CAS  PubMed  Google Scholar 

  36. Grobstein C. Inductive interaction in the development of the mouse metanephros. J Exp Zool. 1955;130:319–40.

    Article  Google Scholar 

  37. Hatini V, Huh SO, Herzlinger D, Soares VC, Lai E. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev. 1996;10:1467–78.

    Article  CAS  PubMed  Google Scholar 

  38. Mendelsohn C, Batourina E, Fung S, Gilbert T, Dodd J. Stromal cells mediate retinoid-dependent functions essential for renal development. Development. 1999;126:1139–48.

    CAS  PubMed  Google Scholar 

  39. Batourina E, Gim S, Bello N, Shy M, Clagett-Dame M, Srinivas S, et al. Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Nat Genet. 2001;27:74–8.

    CAS  PubMed  Google Scholar 

  40. Levinson RS, Batourina E, Choi C, Vorontchikhina M, Kitajewski J, Mendelsohn CL. Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development. Development. 2005;132(3):529–39.

    Article  CAS  PubMed  Google Scholar 

  41. Qiao J, Uzzo R, Obara-Ishihara T, Degenstein L, Fuchs E, Herzlinger D. FGF-7 modulates ureteric bud growth and nephron number in the developing kidney. Development. 1999;126:547–54.

    CAS  PubMed  Google Scholar 

  42. Gao X, Chen X, Taglienti M, Rumballe B, Little MH, Kreidberg JA. Angioblast-mesenchyme induction of early kidney development is mediated by Wt1 and Vegfa. Development. 2005;132(24):5437–49.

    Article  CAS  PubMed  Google Scholar 

  43. Tufro-McReddie A, Norwood VF, Aylor KW, Botkin SJ, Carey RM, Gomez RA. Oxygen regulates vascular endothelial growth factor-mediated vasculogenesis and tubulogenesis. Dev Biol. 1997;183(2):139–49.

    Article  CAS  PubMed  Google Scholar 

  44. Meyer TN, Schwesinger C, Bush KT, Stuart RO, Rose DW, Shah MM, et al. Spatiotemporal regulation of morphogenetic molecules during in vitro branching of the isolated ureteric bud: toward a model of branching through budding in the developing kidney. Dev Biol. 2004;275(1):44–67.

    Article  CAS  PubMed  Google Scholar 

  45. Barasch J, Qiao J, McWilliams G, Chen D, Oliver JA, Herzlinger D. Ureteric bud cells secrete multiple factors, including bFGF, which rescue renal progenitors from apoptosis. Am J Physiol. 1997;273:F757–67.

    CAS  PubMed  Google Scholar 

  46. Barasch J, Yang J, Ware CB, Taga T, Yoshida K, Erdjument-Bromage H, et al. Mesenchymal to epithelial conversion in rat metanephros is induced by LIF. Cell. 1999;99(4):377–86.

    Article  CAS  PubMed  Google Scholar 

  47. Das A, Tanigawa S, Karner CM, Xin M, Lum L, Chen C, et al. Stromal-epithelial crosstalk regulates kidney progenitor cell differentiation. Nat Cell Biol. 2013;15(9):1035–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang J, Blum A, Novak T, Levinson R, Lai E, Barasch J. An epithelial precursor is regulated by the ureteric bud and by the renal stroma. Dev Biol. 2002;246(2):296–310.

    Article  CAS  PubMed  Google Scholar 

  49. Cui S, Schwartz L, Quaggin SE. Pod1 is required in stromal cells for glomerulogenesis. Dev Dyn. 2003;226(3):512–22.

    Article  CAS  PubMed  Google Scholar 

  50. Little MH, et al. A high-resolution anatomical ontology of the developing murine genitourinary tract. Gene Expr Patterns. 2007;7(6):688.

    Article  CAS  Google Scholar 

  51. Boyle S, Misfeldt A, Chandler KJ, Deal KK, Southard-Smith EM, Mortlock DP, et al. Fate mapping using Cited1-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia. Dev Biol. 2008;313(1):234–45.

    Article  CAS  PubMed  Google Scholar 

  52. Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell. 2008;3(2):169–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bard JB. Growth and death in the developing mammalian kidney: signals, receptors and conversations. Bioessays. 2002;24(1):72–82.

    Article  CAS  PubMed  Google Scholar 

  54. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, et al. WT-1 is required for early kidney development. Cell. 1993;74:679–91.

    Article  CAS  PubMed  Google Scholar 

  55. Nishinakamura R, Matsumoto Y, Nakao K, Nakamura K, Sato A, Copeland NG, et al. Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development. 2001;128:3105–15.

    CAS  PubMed  Google Scholar 

  56. Boyle S, Shioda T, Perantoni AO, de Caestecker M. Cited1 and Cited2 are differentially expressed in the developing kidney but are not required for nephrogenesis. Dev Dyn Off Publ Am Assoc Anatomists. 2007;236(8):2321–30. Research Support, N.I.H., Extramural.

    CAS  Google Scholar 

  57. Self M, Lagutin OV, Bowling B, Hendrix J, Cai Y, Dressler GR, et al. Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. Embo J. 2006;25(21):5214–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cho EA, Patterson LT, Brookhiser WT, Mah S, Kintner C, Dressler GR. Differential expression and function of cadherin-6 during renal epithelium development. Development. 1998;125(5):803–12.

    CAS  PubMed  Google Scholar 

  59. Vainio S, Lin Y. Coordinating early kidney development: lessons from gene targeting. Nat Rev Genet. 2002;4(7):535.

    Google Scholar 

  60. Kreidberg JA, et al. WT-1 is required for early kidney development. Cell. 1993;74(4):682.

    Article  Google Scholar 

  61. Stark K, et al. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature. 1994;372(6507):682.

    Article  Google Scholar 

  62. Müller U, Wang D, Denda S, Meneses JJ, Pedersen RA, Reichardt LF. Integrin a8b1 is critically important for epithelial-mesenchymal interactions during kidney morphogenesis. Cell. 1997;88:603–13.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D. Six1 is required for the early organogenesis of mammalian kidney. Development. 2003;130(14):3085–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kalatzis V, Sahly I, El-Amraoui A, Petit C. Eya1 expression in the developing ear and kidney: towards the understanding of the pathogenesis of Branchio-Oto-Renal (BOR) syndrome. Dev Dyn. 1998;213:486–99.

    Article  CAS  PubMed  Google Scholar 

  65. Xu P-X, Adams J, Peters H, Brown MC, Heaney S, Maas R. Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet. 1999;23:113–7.

    Article  CAS  PubMed  Google Scholar 

  66. Hellmich HL, Kos L, Cho ES, Mahon KA, Zimmer A. Embryonic expression of glial cell-line derived neurotrophic factor (GDNF) suggests multiple developmental roles in neural differentiation and epithelial-mesenchymal interactions. Mech Dev. 1996;54:95–105.

    Article  CAS  PubMed  Google Scholar 

  67. Brophy PD, Ostrom L, Lang KM, Dressler GR. Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development. 2001;128:4747–56.

    CAS  PubMed  Google Scholar 

  68. Kobayashi A, Kwan KM, Carroll TJ, McMahon AP, Mendelsohn CL, Behringer RR. Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. Development. 2005;132(12):2809–23. Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, P.H.S.

    Article  CAS  PubMed  Google Scholar 

  69. Rothenpieler UW, Dressler GR. Pax-2 is required for mesenchyme-to-epithelium conversion during kidney development. Development. 1993;119:711–20.

    CAS  PubMed  Google Scholar 

  70. Torres M, Gomez-Pardo E, Dressler GR, Gruss P. Pax-2 controls multiple steps of urogenital development. Development. 1995;121:4057–65.

    CAS  PubMed  Google Scholar 

  71. Tsang TE, Shawlot W, Kinder SJ, Kobayashi A, Kwan KM, Schughart K, et al. Lim1 activity is required for intermediate mesoderm differentiation in the mouse embryo. Dev Biol. 2000;223(1):77–90.

    Article  CAS  PubMed  Google Scholar 

  72. Shawlot W, Behringer RR. Requirement for Lim1 in head-organizer function. Nature. 1995;374:425–30.

    Article  CAS  PubMed  Google Scholar 

  73. Donovan MJ, Natoli TA, Sainio K, Amstutz A, Jaenisch R, Sariola H, et al. Initial differentiation of the metanephric mesenchyme is independent of WT1 and the ureteric bud. Dev Genet. 1999;24:252–62.

    Article  CAS  PubMed  Google Scholar 

  74. Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell. 2005;9(2):283–92.

    Article  CAS  PubMed  Google Scholar 

  75. Karner CM, Das A, Ma Z, Self M, Chen C, Lum L, et al. Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development. 2011;138(7):1247–57. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Qiao J, Bush KT, Steer DL, Stuart RO, Sakurai H, Wachsman W, et al. Multiple fibroblast growth factors support growth of the ureteric bud but have different effects on branching morphogenesis. Mech Dev. 2001;109(2):123–35.

    Article  CAS  PubMed  Google Scholar 

  77. Cancilla B, Davies A, Cauchi JA, Risbridger GP, Bertram JF. Fibroblast growth factor receptors and their ligands in the adult rat kidney. Kidney Int. 2001;60(1):147–55.

    Article  CAS  PubMed  Google Scholar 

  78. Barak H, Huh SH, Chen S, Jeanpierre C, Martinovic J, Parisot M, et al. FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev Cell. 2012;22(6):1191–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brown AC, Adams D, de Caestecker M, Yang X, Friesel R, Oxburgh L. FGF/EGF signaling regulates the renewal of early nephron progenitors during embryonic development. Development. 2011;138(23):5099–112. Research Support, American Recovery and Reinvestment Act Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hains D, Sims-Lucas S, Kish K, Saha M, McHugh K, Bates CM. Role of fibroblast growth factor receptor 2 in kidney mesenchyme. Pediatr Res. 2008;64(6):592–8. Research Support, N.I.H., Extramural.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Poladia DP, Kish K, Kutay B, Hains D, Kegg H, Zhao H, et al. Role of fibroblast growth factor receptors 1 and 2 in the metanephric mesenchyme. Dev Biol. 2006;291(2):325–39. Research Support, N.I.H., Extramural.

    Article  CAS  PubMed  Google Scholar 

  82. Sims-Lucas S, Cusack B, Baust J, Eswarakumar VP, Masatoshi H, Takeuchi A, et al. Fgfr1 and the IIIc isoform of Fgfr2 play critical roles in the metanephric mesenchyme mediating early inductive events in kidney development. Dev Dyn Off Publ Am Assoc Anatomists. 2011;240(1):240–9. Research Support, N.I.H., Extramural.

    Google Scholar 

  83. Dudley AT, Godin RE, Robertson EJ. Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev. 1999;13:1601–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dudley AT, Lyons KM, Robertson EJ. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev. 1995;9:2795–807.

    Article  CAS  PubMed  Google Scholar 

  85. Luo G, Hofmann C, Bronckers ALJJ, Sohocki M, Bradley A, Karsenty G. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev. 1995;9:2808–20.

    Article  CAS  PubMed  Google Scholar 

  86. Koseki C, Herzlinger D, Al-Awqati Q. Apoptosis in metanephric development. J Cell Biol. 1992;119(5):1327–33.

    Article  CAS  PubMed  Google Scholar 

  87. Araki T, Saruta T, Okano H, Miura M. Caspase activity is required for nephrogenesis in the developing mouse metanephros. Exp Cell Res. 1999;248(2):423–9.

    Article  CAS  PubMed  Google Scholar 

  88. Nishimura H, Yerkes E, Hohenfellner K, Miyazaki Y, Ma J, Hunley TE, et al. Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell. 1999;3:1–10.

    Article  CAS  PubMed  Google Scholar 

  89. Coles HSR, Burne JF, Raff MC. Large-scale normal cell death in the developing rat kidney and its reduction by epidermal growth factor. Development. 1993;117:777–84.

    Google Scholar 

  90. Winyard PJD, Nauta J, Lirenman DS, Hardman P, Sams VR, Risdon RA, et al. Deregulation of cell survival in cystic and dysplastic renal development. Kidney Int. 1996;49:135–46.

    Article  CAS  PubMed  Google Scholar 

  91. Karavanov AA, Karavanova I, Perantoni A, Dawid IB. Expression pattern of the rat Lim-1 homeobox gene suggests a dual role during kidney development. Int J Dev Biol. 1998;42:61–6.

    CAS  PubMed  Google Scholar 

  92. Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I, Kontgen F, et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature. 1992;359(6390):76–9.

    Article  CAS  PubMed  Google Scholar 

  93. Plisov SY, Yoshino K, Dove LF, Higinbotham KG, Rubin JS, Perantoni AO. TGF beta 2, LIF and FGF2 cooperate to induce nephrogenesis. Development. 2001;128(7):1045–57.

    CAS  PubMed  Google Scholar 

  94. Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, et al. TGFb2 knockout mice have multiple developmental defects that are non-overlapping with other TGFb knockout phenotypes. Development. 1997;124:2659–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. McPherron AC, Lawler AM, Lee SJ. Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat Genet. 1999;22(3):260–4.

    Article  CAS  PubMed  Google Scholar 

  96. Herzlinger D, Qiao J, Cohen D, Ramakrishna N, Brown AMC. Induction of kidney epithelial morphogenesis by cells expressing wnt-1. Dev Biol. 1994;166:815–8.

    Article  CAS  PubMed  Google Scholar 

  97. Kispert A, Vainio S, McMahon AP. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development. 1998;125:4225–34.

    CAS  PubMed  Google Scholar 

  98. Yoshino K, Rubin JS, Higinbotham KG, Uren A, Anest V, Plisov SY, et al. Secreted Frizzled-related proteins can regulate metanephric development. Mech Dev. 2001;102(1–2):45–55.

    Article  CAS  PubMed  Google Scholar 

  99. Grieshammer U, Cebrian C, Ilagan R, Meyers E, Herzlinger D, Martin GR. FGF8 is required for cell survival at distinct stages of nephrogenesis and for regulation of gene expression in nascent nephrons. Development. 2005;132(17):3847–57. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.

    Article  CAS  PubMed  Google Scholar 

  100. Perantoni AO, Timofeeva O, Naillat F, Richman C, Pajni-Underwood S, Wilson C, et al. Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development. Development. 2005;132(17):3859–71.

    Article  CAS  PubMed  Google Scholar 

  101. Bridgewater D, Rosenblum ND. Stimulatory and inhibitory signaling molecules that regulate renal branching morphogenesis. Pediatr Nephrol. 2009;24(9):1616.

    Article  Google Scholar 

  102. Schuchardt A, et al. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994;367(6461):382.

    Article  Google Scholar 

  103. Pichel JG, et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature. 1996;382(6586):74.

    Article  Google Scholar 

  104. Hu MC, Rosenblum ND. Genetic regulation of branching morphogenesis: lessons learned from loss-of-function phenotypes. Pediatr Res. 2003;54(4):433–8.

    Article  PubMed  Google Scholar 

  105. Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M, et al. Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development. 1997;124:4077–87.

    CAS  PubMed  Google Scholar 

  106. Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994;367:380–3.

    Article  CAS  PubMed  Google Scholar 

  107. Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EMJ, et al. GFRa 1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron. 1998;21:317–24.

    Article  CAS  PubMed  Google Scholar 

  108. Pichel JG, Shen L, Sheng HZ, Granholm A-C, Drago J, Grinberg A, et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature. 1996;382:73–6.

    Article  CAS  PubMed  Google Scholar 

  109. Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature. 1996;382:70–3.

    Article  CAS  PubMed  Google Scholar 

  110. Schuchardt A, D’Agati V, Pachnis V, Costantini F. Renal agenesis and hypodysplasia in ret-k - mutant mice result from defects in ureteric bud development. Development. 1996;122:1919–29.

    CAS  PubMed  Google Scholar 

  111. Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, et al. GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron. 1998;21:53–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jain S, Encinas M, Johnson Jr EM, Milbrandt J. Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev. 2006;20(3):321–33. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jain S, Knoten A, Hoshi M, Wang H, Vohra B, Heuckeroth RO, et al. Organotypic specificity of key RET adaptor-docking sites in the pathogenesis of neurocristopathies and renal malformations in mice. J Clin Invest. 2010;120(3):778–90. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bullock SL, Fletcher JM, Beddington RSP, Wilson VA. Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev. 1998;12:1894–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lu BC, Cebrian C, Chi X, Kuure S, Kuo R, Bates CM, et al. Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat Genet. 2009;41(12):1295–302. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pepicelli CV, Kispert A, Rowitch D, McMahon AP. GDNF induces branching and increased cell proliferation in the ureter of the mouse. Dev Biol. 1997;192:193–8.

    Article  CAS  PubMed  Google Scholar 

  117. Kispert A, Vainio S, Shen L, Rowitch DH, McMahon AP. Proteoglycans are required for maintenance of Wnt-11 expression in the ureter tips. Development. 1996;122:3627–37.

    CAS  PubMed  Google Scholar 

  118. Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP. Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development. 2003;130(14):3175–85.

    Article  CAS  PubMed  Google Scholar 

  119. Towers PR, Woolf AS, Hardman P. Glial cell line-derived neurotrophic factor stimulates ureteric bud outgrowth and enhances survival of ureteric bud cells in vitro. Exp Nephrol. 1998;6:337–51.

    Article  CAS  PubMed  Google Scholar 

  120. Michael L, Davies JA. Pattern and regulation of cell proliferation during murine ureteric bud development. J Anat. 2004;204(4):241–55.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Piscione TD, Rosenblum ND. The malformed kidney: disruption of glomerular and tubular development. Clin Genet. 1999;56(5):343–58.

    Article  Google Scholar 

  122. Woolf AS, Winyard PJ. Molecular mechanisms of human embryogenesis: developmental pathogenesis of renal tract malformations. Pediatr Dev Pathol. 2002;5(2):108–29.

    Article  CAS  PubMed  Google Scholar 

  123. Mackie GG, Stephens FD. Duplex kidneys: a correlation of renal dysplasia with position of the ureteral orifice. J Urol. 1975;114:274–80.

    CAS  PubMed  Google Scholar 

  124. Miyazaki Y, Oshima Y, Fogo A, Hogan BLM, Ichikawa I. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest. 2000;105:863–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Grieshammer U, Le M, Plump AS, Wang F, Tessier-Lavigne M, Martin GR. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell. 2004;6(5):709–17.

    Article  CAS  PubMed  Google Scholar 

  126. Tsuchida S, Matsusaka T, Chen X, Okubo S, Niimura F, Nishimura H, et al. Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J Clin Invest. 1998;101:755–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hains DS, Sims-Lucas S, Carpenter A, Saha M, Murawski I, Kish K, et al. High incidence of vesicoureteral reflux in mice with Fgfr2 deletion in kidney mesenchyma. J Urol. 2010;183(5):2077–84. Research Support, N.I.H., Extramural.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Walker KA, Sims-Lucas S, Di Giovanni VE, Schaefer C, Sunseri WM, Novitskaya T, et al. Deletion of fibroblast growth factor receptor 2 from the peri-wolffian duct stroma leads to ureteric induction abnormalities and vesicoureteral reflux. PLoS One. 2013;8(2):e56062. Research Support, N.I.H., Extramural.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Srinivas S, Wu Z, Chen C-M, D’Agati V, Costantini F. Dominant effects of RET receptor misexpression and ligand-independent RET signaling on ureteric bud development. Development. 1999;126:1375–86.

    CAS  PubMed  Google Scholar 

  130. Shakya R, Jho EH, Kotka P, Wu Z, Kholodilov N, Burke R, et al. The role of GDNF in patterning the excretory system. Dev Biol. 2005;283(1):70–84.

    Article  CAS  PubMed  Google Scholar 

  131. Brodbeck S, Englert C. Genetic determination of nephrogenesis: the Pax/Eya/Six gene network. Pediatr Nephrol. 2004;19(3):249–55.

    Article  PubMed  Google Scholar 

  132. Wellik DM, Hawkes PJ, Capecchi MR. Hox11 paralogous genes are essential for metanephric kidney induction. Genes Dev. 2002;16(11):1423–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Miyamoto N, Yoshida M, Kuratani S, Matuso I, Aizawa S. Defects of urogenital development in mice lacking Emx2. Development. 1997;124:1653–64.

    CAS  PubMed  Google Scholar 

  134. Kume T, Deng K, Hogan BL. Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development. 2000;127:1387–95.

    CAS  PubMed  Google Scholar 

  135. Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science. 1996;274:1123–33.

    Article  CAS  PubMed  Google Scholar 

  136. Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell. 1999;96:795–806.

    Article  CAS  PubMed  Google Scholar 

  137. Piper M, Georgas K, Yamada T, Little M. Expression of the vertebrate Slit gene family and their putative receptors, the Robo genes, in the developing murine kidney. Mech Dev. 2000;94:213–7.

    Article  CAS  PubMed  Google Scholar 

  138. Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, et al. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell. 2005;8(2):229–39.

    Article  CAS  PubMed  Google Scholar 

  139. Basson MA, Watson-Johnson J, Shakya R, Akbulut S, Hyink D, Costantini FD, et al. Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Dev Biol. 2006;299(2):466–77.

    Article  CAS  PubMed  Google Scholar 

  140. Chi L, Zhang S, Lin Y, Prunskaite-Hyyrylainen R, Vuolteenaho R, Itaranta P, et al. Sprouty proteins regulate ureteric branching by coordinating reciprocal epithelial Wnt11, mesenchymal Gdnf and stromal Fgf7 signalling during kidney development. Development. 2004;131(14):3345–56.

    Article  CAS  PubMed  Google Scholar 

  141. Dudley AT, Robertson EJ. Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev Dyn. 1997;208:349–62.

    Article  CAS  PubMed  Google Scholar 

  142. Godin RE, Robertson EJ, Dudley AT. Role of BMP family members during kidney development. Int J Dev Biol. 1999;43:405–11.

    CAS  PubMed  Google Scholar 

  143. Dewulf N, Verschueren K, Lonnoy O, Morén A, Grimsby S, Vande Spiegle K, et al. Distinct spatial and temporal expression patterns of two type 1 receptors for bone morphogenetic proteins during mouse embryogenesis. Endocrinology. 1995;136:2652–63.

    CAS  PubMed  Google Scholar 

  144. Verschueren K, Dewulf N, Goumans MJ, Lonnoy O, Feijen A, Grimsby S, et al. Expression of type I and type IB receptors for activin in midgestation mouse embryos suggests distinct functions in organogenesis. Mech Dev. 1995;52:109–23.

    Article  CAS  PubMed  Google Scholar 

  145. Raatikainen-Ahokas A, Hytonen M, Tenhunen A, Sainio K, Sariola H. Bmp-4 affects the differentiation of metanephric mesenchyme and reveals an early anterior-posterior axis of the embryonic kidney. Dev Dyn. 2000;217:146–58.

    Article  CAS  PubMed  Google Scholar 

  146. Cain JE, Nion T, Jeulin D, Bertram JF. Exogenous BMP-4 amplifies asymmetric ureteric branching in the developing mouse kidney in vitro. Kidney Int. 2005;67(2):420–31.

    Article  CAS  PubMed  Google Scholar 

  147. Piscione TD, Yager TD, Gupta IR, Grinfeld B, Pei Y, Attisano L, et al. BMP-2 and OP-1 exert direct and opposite effects on renal branching morphogenesis. Am J Physiol. 1997;273:F961–75.

    CAS  PubMed  Google Scholar 

  148. Piscione TD, Phan T, Rosenblum ND. BMP7 controls collecting tubule cell proliferation and apoptosis via Smad1-dependent and -independent pathways. Am J Physiol. 2001;280:F19–33.

    CAS  Google Scholar 

  149. Pope IV JC, Brock III JW, Adams MC, Stephens FD, Ichikawa I. How they begin and how they end: classis and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT. J Am Soc Nephrol. 1999;10:2018–28.

    PubMed  Google Scholar 

  150. Ichikawa I, Kuwayama F, Pope JC, Stephens FD, Miyazaki Y. Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT. Kidney Int. 2002;61(3):889–98.

    Article  PubMed  Google Scholar 

  151. Bush KT, Sakurai H, Steer DL, Leonard MO, Sampogna RV, Meyer TN, et al. TGF-beta superfamily members modulate growth, branching, shaping, and patterning of the ureteric bud. Dev Biol. 2004;266(2):285–98.

    Article  CAS  PubMed  Google Scholar 

  152. Watanabe T, Costantini F. Real-time analysis of ureteric bud branching morphogenesis in vitro. Dev Biol. 2004;271(1):98–108.

    Article  CAS  PubMed  Google Scholar 

  153. Lin Y, Zhang S, Tuukkanen J, Peltoketo H, Pihlajaniemi T, Vainio S. Patterning parameters associated with the branching of the ureteric bud regulated by epithelial-mesenchymal interactions. Int J Dev Biol. 2003;47(1):3–13.

    PubMed  Google Scholar 

  154. Fisher CE, Michael L, Barnett MW, Davies JA. Erk MAP kinase regulates branching morphogenesis in the developing mouse kidney. Development. 2001;128(21):4329–38.

    CAS  PubMed  Google Scholar 

  155. Perantoni AO, Williams CL, Lewellyn AL. Growth and branching morphogenesis of rat collecting duct anlagen in the absence of metanephrogenic mesenchyme. Differentiation. 1991;48:107–13.

    Article  CAS  PubMed  Google Scholar 

  156. Cano-Gauci DF, Song H, Yang H, McKerlie C, Choo B, Shi W, et al. Glypican-3-deficient mice exhibit developmental overgrowth and some of the renal abnormalities typical of Simpson-Golabi-Behmel syndrome. J Cell Biol. 1999;146:255–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Grisaru S, Cano-Gauci D, Tee J, Filmus J, Rosenblum ND. Glypican-3 modulates BMP- and FGF-mediated effects during renal branching morphogenesis. Dev Biol. 2001;231:31–46.

    Article  CAS  PubMed  Google Scholar 

  158. Sorenson CM, Rogers SA, Korsmeyer SJ, Hammerman MR. Fulminant metanephric apoptosis and abnormal kidney development in bcl-2-deficient mice. Am J Physiol. 1995;268:F73–81.

    CAS  PubMed  Google Scholar 

  159. Moser M, Pscherer A, Roth C, Becker J, Mücher G, Zerres K, et al. Enhanced apoptotic cell death of renal epithelial cells in mice lacking transcription factor AP-2ß. Genes Dev. 1997;11:1938–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Chevalier RL. Growth factors and apoptosis in neonatal ureteral obstruction. J Am Soc Nephrol. 1996;7:1098–105.

    CAS  PubMed  Google Scholar 

  161. Tarantal AF, Han VK, Cochrum KC, Mok A, daSilva M, Matsell DG. Fetal rhesus monkey model of obstructive renal dysplasia. Kidney Int. 2001;59:446–56.

    Article  CAS  PubMed  Google Scholar 

  162. Qiao J, Sakurai H, Nigam SK. Branching morphogenesis independent of mesenchymal-epithelial contact in the developing kidney. Proc Natl Acad Sci U S A. 1999;96:7330–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Bridgewater D, Cox B, Cain J, Lau A, Athaide V, Gill PS, et al. Canonical WNT/beta-catenin signaling is required for ureteric branching. Dev Biol. 2008;317(1):83–94.

    Article  CAS  PubMed  Google Scholar 

  164. Marose TD, Merkel CE, McMahon AP, Carroll TJ. Beta-catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Dev Biol. 2008;314(1):112–26.

    Article  CAS  PubMed  Google Scholar 

  165. Sims-Lucas S, Cusack B, Eswarakumar VP, Zhang J, Wang F, Bates CM. Independent roles of Fgfr2 and Frs2alpha in ureteric epithelium. Development. 2011;138(7):1275–80. Research Support, N.I.H., Extramural.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhao H, Kegg H, Grady S, Truong HT, Robinson ML, Baum M, et al. Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Dev Biol. 2004;276(2):403–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Barros EJG, Santos OFP, Matsumoto K, Nakamura T, Nigam SK. Differential tubulogenic and branching morphogenetic activities of growth factors: implications for epithelial tissue development. Proc Natl Acad Sci U S A. 1995;92:4412–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Cantley LG, Barros EJG, Gandhi M, Rauchman M, Nigam SK. Regulation of mitogenesis, motogenesis, and tubulogenesis by hepatocyte growth factor in renal collecting duct cells. Am J Physiol. 1994;267:F271–80.

    CAS  PubMed  Google Scholar 

  169. Montesano R, Soriano JV, Pepper MS, Orci L. Induction of epithelial branching tubulogenesis in vitro. J Cell Physiol. 1997;173:152–61.

    Article  CAS  PubMed  Google Scholar 

  170. Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature. 1995;376:768–71.

    Article  CAS  PubMed  Google Scholar 

  171. Threadgill DW, Dlugosz AA, Hansen LA, Tennenbaum T, Lichti U, Yee D, et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science. 1995;269:230–4.

    Article  CAS  PubMed  Google Scholar 

  172. Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T, et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature. 1995;373(6516):702–5.

    Article  CAS  PubMed  Google Scholar 

  173. Barasch J, Yang J, Qiao JY, Tempst P, Erdjument-Bromage H, Leung W, et al. Tissue inhibitor of metalloproteinase-2 stimulates mesenchymal growth and regulates epithelial branching during morphogenesis of the rat metanephros. J Clin Invest. 1999;103:1299–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sakurai H, Nigam SK. In vitro branching tubulogenesis: implications for developmental and cystic disorders, nephron number, renal repair, and nephron engineering. Kidney Int. 1998;54:14–26.

    Article  CAS  PubMed  Google Scholar 

  175. Pohl M, Sakurai H, Bush KT, Nigam SK. Matrix metalloproteinases and their inhibitors regulate in vitro ureteric bud branching morphogenesis. Am J Physiol. 2000;279:F891–900.

    CAS  Google Scholar 

  176. Naylor RW, Davidson AJ. Hnf1beta and nephron segmentation. Pediatr Nephrol. 2014;29(4):659–64.

    Article  PubMed  Google Scholar 

  177. Georgas K, et al. Use of dual section mRNA in situ hybridisation/ immunohistochemistry to clarify gene expression patterns during the early stages of nephron development in the embryo and in the mature nephron of the adult mouse kidney. Histochem Cell Biol. 2008;130:937.

    Article  CAS  Google Scholar 

  178. Cheng HT, et al. Notch2, but not Notch1, is required for proximal cell fate acquisition in the mammalian nephron. Development. 2007;134(4):803.

    Article  CAS  Google Scholar 

  179. Evan AP, Gattone 2nd VH, Schwartz GJ. Development of solute transport in rabbit proximal tubule. II. Morphologic segmentation. Am J Physiol. 1983;245(3):F391–407.

    CAS  PubMed  Google Scholar 

  180. Fetterman GH, Shuplock NA, Philipp FJ, Gregg HS. The growth and maturation of human glomeruli and proximal convolutions from term to adulthood: studies by microdissection. Pediatrics. 1965;35:601–19.

    CAS  PubMed  Google Scholar 

  181. Neiss WF. Histogenesis of the loop of Henle in the rat kidney. Anat Embryol. 1982;164(3):315–30.

    Article  CAS  PubMed  Google Scholar 

  182. Nakai S, Sugitani Y, Sato H, Ito S, Miura Y, Ogawa M, et al. Crucial roles of Brn1 in distal tubule formation and function in mouse kidney. Development. 2003;130(19):4751–9.

    Article  CAS  PubMed  Google Scholar 

  183. Neiss WF, Klehn KL. The postnatal development of the rat kidney, with special reference to the chemodifferentiation of the proximal tubule. Histochemistry. 1981;73(2):251–68.

    Article  CAS  PubMed  Google Scholar 

  184. Majumdar A, Lun K, Brand M, Drummond IA. Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia. Development. 2000;127(10):2089–98.

    CAS  PubMed  Google Scholar 

  185. Wallingford JB, Carroll TJ, Vize PD. Precocious expression of the Wilms’ tumor gene xWT1 inhibits embryonic kidney development in Xenopus laevis. Dev Biol. 1998;202(1):103–12.

    Article  CAS  PubMed  Google Scholar 

  186. Ryan G, Steele-Perkins V, Morris JF, Rauscher 3rd FJ, Dressler GR. Repression of Pax-2 by WT1 during normal kidney development. Development. 1995;121(3):867–75.

    CAS  PubMed  Google Scholar 

  187. Pelletier J, Schalling M, Buckler AJ, Rogers A, Haber DA, Housman D. Expression of the Wilms’ tumor gene WT1 in the murine urogenital system. Genes Dev. 1991;5:1345–56.

    Article  CAS  PubMed  Google Scholar 

  188. Dressler GR, Douglass EC. Pax-2 is a DNA-binding protein expressed in embryonic kidney and Wilms tumor. Proc Natl Acad Sci U S A. 1992;89:1179–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Dressler GR, Wilkinson JE, Rothenpieler UW, Patterson LT, Silliams-Simons L, Westphal H. Deregulation of Pax-2 expression in transgenic mice generates severe kidney abnormalities. Nature. 1993;362:65–7.

    Article  CAS  PubMed  Google Scholar 

  190. Cheng HT, Miner JH, Lin M, Tansey MG, Roth K, Kopan R. Gamma-secretase activity is dispensable for mesenchyme-to-epithelium transition but required for podocyte and proximal tubule formation in developing mouse kidney. Development. 2003;130(20):5031–42.

    Article  CAS  PubMed  Google Scholar 

  191. Cheng HT, Kim M, Valerius MT, Surendran K, Schuster-Gossler K, Gossler A, et al. Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development. 2007;134(4):801–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Wang P, Pereira FA, Beasley D, Zheng H. Presenilins are required for the formation of comma- and S-shaped bodies during nephrogenesis. Development. 2003;130(20):5019–29.

    Article  CAS  PubMed  Google Scholar 

  193. Boyle SC, Kim M, Valerius MT, McMahon AP, Kopan R. Notch pathway activation can replace the requirement for Wnt4 and Wnt9b in mesenchymal-to-epithelial transition of nephron stem cells. Development. 2011;138(19):4245–54. Research Support, N.I.H., Extramural.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kreidberg JA. Podocyte differentiation and glomerulogenesis. J Am Soc Nephrol. 2003;14(3):806–14.

    Article  PubMed  Google Scholar 

  195. Georgas K. Use of dual section mRNA in situ hybridisation/ immunohistochemistry to clarify gene expression patterns during the early stages of nephron development in the embryo and in the mature nephron of the adult mouse kidney. Histochem Cell Biol. 2008;130:932–7.

    Article  CAS  Google Scholar 

  196. Eremina V, et al. Glomerular-specific alterations of VEGF-A lead to distinct congenital and acquired renal diseases. J Clin Invest. 2003;111(5):712.

    Article  Google Scholar 

  197. Robert B, St John PL, Hyink DP, Abrahamson DR. Evidence that embryonic kidney cells expressing flk-1 are intrinsic, vasculogenic angioblasts. Am J Physiol. 1996;271(3 Pt 2):F744–53.

    CAS  PubMed  Google Scholar 

  198. Hyink DP, Tucker DC, St John PL, Leardkamolkarn V, Accavitti MA, Abrass CK, et al. Endogenous origin of glomerular endothelial and mesangial cells in grafts of embryonic kidneys. Am J Physiol. 1996;270(5 Pt 2):F886–99.

    CAS  PubMed  Google Scholar 

  199. Ricono JM, Xu YC, Arar M, Jin DC, Barnes JL, Abboud HE. Morphological insights into the origin of glomerular endothelial and mesangial cells and their precursors. J Histochem Cytochem. 2003;51(2):141–50.

    Article  CAS  PubMed  Google Scholar 

  200. Sariola H, Ekblom P, Lehtonen E, Saxen L. Differentiation and vascularization of the metanephric kidney grafted on the chorioallantoic membrane. Dev Biol. 1983;96(2):427–35.

    Article  CAS  PubMed  Google Scholar 

  201. Nagata M, Nakayama K, Terada Y, Hoshi S, Watanabe T. Cell cycle regulation and differentiation in the human podocyte lineage. Am J Pathol. 1998;153(5):1511–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Garrod DR, Fleming S. Early expression of desmosomal components during kidney tubule morphogenesis in human and murine embryos. Development. 1990;108(2):313–21.

    CAS  PubMed  Google Scholar 

  203. Pavenstadt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev. 2003;83(1):253–307.

    Article  CAS  PubMed  Google Scholar 

  204. Ekblom P. Formation of basement membranes in embryonic kidney: an immunohistological study. J Cell Biol. 1981;91:1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Sariola H, Timpl R, von der Mark K, Mayne R, Fitch JM, Linsenmayer TF, et al. Dual origin of glomerular basement membrane. Dev Biol. 1984;101:86–96.

    Article  CAS  PubMed  Google Scholar 

  206. McCright B, Gao X, Shen L, Lozier J, Lan Y, Maguire M, et al. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development. 2001;128:491–502.

    CAS  PubMed  Google Scholar 

  207. Sadl V, Jin F, Yu J, Cui S, Holmyard D, Quaggin S, et al. The mouse Kreisler (Krml1/MafB) segmentation gene is required for differentiation of glomerular visceral epithelial cells. Dev Biol. 2002;249(1):16–29.

    Article  CAS  PubMed  Google Scholar 

  208. Miner JH, Morello R, Andrews KL, Li C, Antignac C, Shaw AS, et al. Transcriptional induction of slit diaphragm genes by Lmx1b is required in podocyte differentiation. J Clin Invest. 2002;109(8):1065–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Quaggin SE, Schwartz L, Cui S, Igarashi P, Deimling J, Post M, et al. The basic-helix-loop-helix protein pod1 is critically important for kidney and lung organogenesis. Development. 1999;126:5771–83.

    CAS  PubMed  Google Scholar 

  210. Dreyer SD, Zhou G, Baldini A, Winterpacht A, Zabel B, Cole W, et al. Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat Genet. 1998;19:47–50.

    Article  CAS  PubMed  Google Scholar 

  211. Barbaux S, Niaudet P, Gubler M-C, Grünfeld J-P, Jaubert F, Kuttenn F, et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet. 1997;17:467–70.

    Article  CAS  PubMed  Google Scholar 

  212. Klamt B, Koziell A, Poulat F, Wieacker P, Scambler P, Berta P, et al. Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1+/−KTS splice isoforms. Hum Mol Genet. 1998;7:709–14.

    Article  CAS  PubMed  Google Scholar 

  213. Coppes MJ, Liefers GJ, Higuchi M, Zinn AB, Balfe JW, Williams BR. Inherited WT1 mutation in Denys-Drash syndrome. Cancer Res. 1992;52(21):6125–8.

    CAS  PubMed  Google Scholar 

  214. Yang Y, Jeanpierre C, Dressler GR, Lacoste M, Niaudet P, Gubler MC. WT1 and PAX-2 podocyte expression in Denys-Drash syndrome and isolated diffuse mesangial sclerosis. Am J Pathol. 1999;154(1):181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Gao F, Maiti S, Sun G, Ordonez NG, Udtha M, Deng JM, et al. The Wt1+/R394W mouse displays glomerulosclerosis and early-onset renal failure characteristic of human Denys-Drash syndrome. Mol Cell Biol. 2004;24(22):9899–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Patek CE, Little MH, Fleming S, Miles C, Charlieu JP, Clarke AR, et al. A zinc finger truncation of murine WT1 results in the characteristic urogenital abnormalities of Denys-Drash syndrome. Proc Natl Acad Sci U S A. 1999;96(6):2931–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Hammes A, Guo JK, Lutsch G, Leheste JR, Landrock D, Ziegler U, et al. Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell. 2001;106(3):319–29.

    Article  CAS  PubMed  Google Scholar 

  218. Guo JK, Menke AL, Gubler MC, Clarke AR, Harrison D, Hammes A, et al. WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis. Hum Mol Genet. 2002;11(6):651–9.

    Article  CAS  PubMed  Google Scholar 

  219. Barisoni L, Kriz W, Mundel P, D’Agati V. The dysregulated podocyte phenotype: a novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol. 1999;10(1):51–61.

    CAS  PubMed  Google Scholar 

  220. Kitamoto Y, Tokunaga H, Tomita K. Vascular endothelial growth factor is an essential molecule for mouse kidney development: glomerulogenesis and nephrogenesis. J Clin Invest. 1997;99(10):2351–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Tufro A, Norwood VF, Carey RM, Gomez RA. Vascular endothelial growth factor induces nephrogenesis and vasculogenesis. J Am Soc Nephrol. 1999;10(10):2125–34.

    CAS  PubMed  Google Scholar 

  222. Eremina V, Cui S, Gerber H, Ferrara N, Haigh J, Nagy A, et al. Vascular endothelial growth factor a signaling in the podocyte-endothelial compartment is required for mesangial cell migration and survival. J Am Soc Nephrol. 2006;17(3):724–35.

    Article  CAS  PubMed  Google Scholar 

  223. Eremina V, Sood M, Haigh J, Nagy A, Lajoie G, Ferrara N, et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest. 2003;111(5):707–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Woolf AS, Yuan HT. Angiopoietin growth factors and Tie receptor tyrosine kinases in renal vascular development. Pediatr Nephrol. 2001;16(2):177–84.

    Article  CAS  PubMed  Google Scholar 

  225. Lindahl P, Hellström M, Kalén M, Karlsson L, Pekny M, Pekna M, et al. Paracrine PDGF-B/PDGF-Rß signaling controls mesangial cell development in kidney glomeruli. Development. 1998;125:3313–22.

    CAS  PubMed  Google Scholar 

  226. Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 1994;8:1875–87.

    Article  CAS  PubMed  Google Scholar 

  227. Soriano P. Abnormal kidney development and hematological disorders in PDGF ß-receptor mutant mice. Genes Dev. 1994;8:1888–96.

    Article  CAS  PubMed  Google Scholar 

  228. Miner JH, Sanes JR. Collagen IV alpha 3, alpha 4, and alpha 5 chains in rodent basal laminae: sequence, distribution, association with laminins, and developmental switches. J Cell Biol. 1994;127(3):879–91.

    Article  CAS  PubMed  Google Scholar 

  229. Miner JH, Li C. Defective glomerulogenesis in the absence of laminin alpha5 demonstrates a developmental role for the kidney glomerular basement membrane. Dev Biol. 2000;217(2):278–89.

    Article  CAS  PubMed  Google Scholar 

  230. Miner JH, Sanes JR. Molecular and functional defects in kidneys of mice lacking collagen alpha 3(IV): implications for Alport syndrome. J Cell Biol. 1996;135(5):1403–13.

    Article  CAS  PubMed  Google Scholar 

  231. Noakes PG, Miner JH, Gautam M, Cunningham JM, Sanes JR, Merlie JP. The renal glomerulus of mice lacking s-laminin/laminin ß2: nephrosis despite molecular compensation by laminin ß1. Nat Genet. 1995;10:400–6.

    Article  CAS  PubMed  Google Scholar 

  232. Cebrian C, Borodo K, Charles N, Herzlinger DA. Morphometric index of the developing murine kidney. Dev Dyn. 2004;231(3):601–8.

    Article  PubMed  Google Scholar 

  233. Al-Awqati Q, Goldberg MR. Architectural patterns in branching morphogenesis in the kidney. Kidney Int. 1998;54:1832–42.

    Article  CAS  PubMed  Google Scholar 

  234. Bard J. A new role for the stromal cells in kidney development. Bioessays. 1996;18(9):705–7.

    Article  CAS  PubMed  Google Scholar 

  235. Loughna S, Landels E, Woolf AS. Growth factor control of developing kidney endothelial cells. Exp Nephrol. 1996;4(2):112–8.

    CAS  PubMed  Google Scholar 

  236. Ohuchi H, Hori Y, Yamasaki M, Harada H, Sekine K, Kato S, et al. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun. 2000;277:643–9.

    Article  CAS  PubMed  Google Scholar 

  237. Bonneh-Barkay D, Shlissel M, Berman B, Shaoul E, Admon A, Vlodavsky I, et al. Identification of glypican as a dual modulator of the biological activity of fibroblast growth factors. J Biol Chem. 1997;272:12415–21.

    Article  CAS  PubMed  Google Scholar 

  238. Bernfield M, Hinkes MT, Gallo RL. Developmental expression of the syndecans: possible function and regulation. Development. 1993;Suppl.:205–12.

    Google Scholar 

  239. Davies J, Lyon M, Gallagher J, Garrod D. Sulphated proteoglycan is required for collecting duct growth and branching but not nephron formation during kidney development. Development. 1995;121:1507–17.

    CAS  PubMed  Google Scholar 

  240. Jackson SM, Nakato H, Sugiura M, Jannuzi A, Oakes R, Kaluza V, et al. dally, a drosophila glypican, controls cellular responses to the TGF-ß-related morphogen, Dpp. Development. 1997;124:4113–20.

    CAS  PubMed  Google Scholar 

  241. Tsuda M, Kamimura K, Nakato H, Archer M, Staatz W, Fox B, et al. The cell-surface proteoglycan dally regulates wingless signalling in Drosophila. Nature. 1999;400:276–80.

    Article  CAS  PubMed  Google Scholar 

  242. Zhang P, Liégeois NJ, Wong C, Finegold M, Thompson JC, Silverman A, et al. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature. 1997;387:151–8.

    Article  CAS  PubMed  Google Scholar 

  243. Hatada I, Ohashi H, Fukushima Y, Kaneko Y, Inoue M, Komoto Y, et al. An imprinted gene p57KIP2 is mutated in Beckwith-Wiedemann syndrome. Nat Genet. 1996;14:171–3.

    Article  CAS  PubMed  Google Scholar 

  244. Leighton PA, Ingram RS, Eggenschwiler J, Efstratiadis A, Tilghman SM. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature. 1995;375:34–9.

    Article  CAS  PubMed  Google Scholar 

  245. Caspary T, Cleary MA, Perlman EJ, Zhang P, Elledge SJ, Tilghman SM. Oppositely imprinted genes p57(Kip2) and Igf2 interact in a mouse model for Beckwith-Wiedemann syndrome. Genes Dev. 1999;13(23):3115–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Yu J, Carroll TJ, Rajagopal J, Kobayashi A, Ren Q, McMahon AP. A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney. Development. 2009;136(1):161–71. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed  Google Scholar 

  247. Liu Y, Chattopadhyay N, Qin S, Szekeres C, Vasylyeva T, Mahoney ZX, et al. Coordinate integrin and c-Met signaling regulate Wnt gene expression during epithelial morphogenesis. Development. 2009;136(5):843–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Green MC. Mechanism of the pleiotropic effects of the short-ear mutant gene in the mouse. J Exp Zool. 1968;176:129–50.

    Article  Google Scholar 

  249. Yu J, Carroll TJ, McMahon AP. Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development. 2002;129(22):5301–12. Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.

    CAS  PubMed  Google Scholar 

  250. Caubit X, Lye CM, Martin E, Core N, Long DA, Vola C, et al. Teashirt 3 is necessary for ureteral smooth muscle differentiation downstream of SHH and BMP4. Development. 2008;135(19):3301–10. Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed  Google Scholar 

  251. Cain JE, Islam E, Haxho F, Blake J, Rosenblum ND. GLI3 repressor controls functional development of the mouse ureter. J Clin Invest. 2011;121(3):1199–206. Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Bose J, Grotewold L, Ruther U. Pallister-Hall syndrome phenotype in mice mutant for Gli3. Hum Mol Genet. 2002;11(9):1129–35. Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed  Google Scholar 

  253. Niimura F, Labostky PA, Kakuchi J, Okubo S, Yoshida H, Oikawa T, et al. Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest. 1995;96:2947–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Miyazaki Y, Tsuchida S, Nishimura H, Pope IV JC, Harris RC, McKanna JM, et al. Angiotensin induces the urinary peristaltic machinery during the perinatal period. J Clin Invest. 1998;102:1489–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol. 2010;176(1):85–97. Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Cullen-McEwen LA, Caruana G, Bertram JF. The where, what and why of the developing renal stroma. Nephron Exp Nephrol. 2005;99(1):e1–8.

    Article  PubMed  Google Scholar 

  257. Lemley KV, Kriz W. Anatomy of the renal interstitium. Kidney Int. 1991;39(3):370–81.

    Article  CAS  PubMed  Google Scholar 

  258. Rosselot C, Spraggon L, Chia I, Batourina E, Riccio P, Lu B, et al. Non-cell-autonomous retinoid signaling is crucial for renal development. Development. 2010;137(2):283–92. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Quaggin SE, Vanden Heuvel GB, Igarashi P. Pod-1, a mesoderm-specific basic-helix-loop-helix protein expressed in mesenchymal and glomerular epithelial cells in the developing kidney. Mech Dev. 1998;71:37–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to express their gratitude to Tino Piscione for his contributions to the second edition of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Ho .

Editor information

Editors and Affiliations

Glossary

Agt

Angiotensinogen

Agtr1

Angiotensinogen receptor 1

Agtr2

Angiotensinogen receptor 2

Alk3

Bone morphogenetic protein receptor, type 1A

Alk6

Bone morphogenetic protein receptor, type 1B

Ap-2

Transcription factor AP-2

Bcl2

B-cell lymphoma 2

Bmp4

Bone morphogenetic protein 4

Bmp5

Bone morphogenetic protein 5

Bmp7

Bone morphogenetic protein 7

Brn1

Brain specific homeobox 1

Cited1

Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 1

Cxcr4

Chemokine (C-X-C motif) receptor 4

Egf

Epidermal growth factor

Emx2

Empty spiracles homolog 2

Eya1

Eyes absent homolog 1

Etv4

ETS transcription factor 4

Etv5

ETS transcription factor 5

Fgf8

Fibroblast growth factor 8

Fgf9

Fibroblast growth factor 9

Fgf20

Fibroblast growth factor 20

Fgfr1

Fibroblast growth factor receptor 1

Fgfr2

Fibroblast growth factor receptor 2

Foxc1

Forkhead box C1

Foxd1

Forkhead box D1

Gata3

Gata binding protein 3

Gdnf

Glial-derived neurotrophic factor

Gdf11

Growth/differentiation factor-11

Gfrα-1

Glial-derived neurotrophic factor receptor alpha-1

Gpc3

Glypican 3

Gli3

Gli family zinc finger 3

Hgf

Hepatocyte growth factor

Hoxa11

Homeobox A11

Hoxc11

Homeobox C11

Hoxd11

Homeobox D11

Hs2st

Heparan sulfate 2-sulfotransferase

Igf2

Insulin-like growth factor 2

Lhx1

Lim homeobox 1

Lmx1b

Lim homeobox 1b

Met

Met proto-oncogene

Mmp14

Matrix metallopeptidase 14

Myb

Myb proto-oncogene

Osr1

Odd-skipped related1

Pax2

Paired box gene 2

Pax8

Paired box gene 8

Pdgfβ

Platelet derived growth factor beta

Pod1

Podocyte expressed 1

Psen1

Presenilin 1

Psen2

Presenilin 2

Ptch1

Patched1

Raldh2

Aldehyde dehydrogenase 1 family, member A2

Rarα

Retinoic acid receptor α

Rarβ2

Retinoic acid receptor β2

Rbpsuh

Recombining binding protein suppressor of hairless

Ret

Ret proto-oncogene

Robo2

Roundabout, axon guidance receptor, homolog 2

Sall1

Sal-like 1

sFrp

Secreted Frizzled-related protein

Shh

Sonic hedgehog

Six1

Sine oculis homeobox homolog 1

Six2

Sine oculis homeobox homolog 2

Slit2

Slit homolog 2

Spry1

Sprouty1

Timp

Tissue inhibitors of metalloproteinases

TGFα

Transforming growth factor alpha

TGFβ2

Transforming growth factor beta2

Tshz3

Teashirt zinc finger homeobox 3

Vegf

Vascular endothelial growth factor

Wnt4

Wingless-type MMTV integration site family 4

Wnt7b

Wingless-type MMTV integration site family 7b

Wnt9b

Wingless-type MMTV integration site family 9b

Wnt11

Wingless-type MMTV integration site family 11

Wt1

Wilms tumour 1

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ho, J. (2016). Structural Development of the Kidney. In: Geary, D., Schaefer, F. (eds) Pediatric Kidney Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52972-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52972-0_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52970-6

  • Online ISBN: 978-3-662-52972-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics