Skip to main content

Tools for Renal Tissue Analysis

  • Chapter
  • First Online:
Book cover Pediatric Kidney Disease
  • 2625 Accesses

Abstract

The renal biopsy is still the gold standard for renal tissue analysis and allows histological diagnoses of renal diseases and determination of the extent of damage in native and allograft kidneys. The chapter discusses the methods and measurements that are available to analyze renal tissue using a biopsy sample. It also highlights the possibilities for indirect and non-invasive methods to assess the status of a kidney in order to minimize the need for renal biopsies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morales P, Hamilton K, Brown J, Hotchkiss RS. Open renal biopsy. J Urol. 1961;86:501–3.

    CAS  PubMed  Google Scholar 

  2. White RH. Observations on percutaneous renal biopsy in children. Arch Dis Child. 1963;38:260–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Metcoff J. Needles for percutaneous renal biopsy in infants and children. Pediatrics. 1970;46:788–9.

    CAS  PubMed  Google Scholar 

  4. Tondel C, Vikse BE, Bostad L, Svarstad E. Safety and complications of percutaneous kidney biopsies in 715 children and 8573 adults in Norway 1988–2010. Clin J Am Soc Nephrol. 2012;7:1591–7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sweeney C, Geary DF, Hebert D, Robinson L, Langlois V. Outpatient pediatric renal transplant biopsy – is it safe? Pediatr Transplant. 2006;10:159–61.

    Article  PubMed  Google Scholar 

  6. Feneberg R, Schaefer F, Zieger B, et al. Percutaneous renal biopsy in children: a 27-year experience. Nephron. 1998;79:438–46.

    Article  CAS  PubMed  Google Scholar 

  7. Amann K, Haas CS. What you should know about the work-up of a renal biopsy. Nephrol Dial Transplant. 2006;21:1157–61.

    Article  PubMed  Google Scholar 

  8. Fogo AB. Approach to renal biopsy. Am J Kidney Dis. 2003;42:826–36.

    Article  PubMed  Google Scholar 

  9. Walker PD, Cavallo T, Bonsib SM. Practice guidelines for the renal biopsy. Mod Pathol. 2004;17:1555–63.

    Article  PubMed  Google Scholar 

  10. Corwin HL, Schwartz MM, Lewis EJ. The importance of sample size in the interpretation of the renal biopsy. Am J Nephrol. 1988;8:85–9.

    Article  CAS  PubMed  Google Scholar 

  11. Racusen LC, Colvin RB, Solez K, et al. Antibody-mediated rejection criteria – an addition to the Banff ‘97 classification of renal allograft rejection. Am J Transplant. 2003;3:708–14.

    Article  PubMed  Google Scholar 

  12. Haas M. A reevaluation of routine electron microscopy in the examination of native renal biopsies. J Am Soc Nephrol. 1997;8:70–6.

    CAS  PubMed  Google Scholar 

  13. Siegel NJ, Spargo BH, Kashgarian M, Hayslett JP. An evaluation of routine electron microscopy in the examination of renal biopsies. Nephron. 1973;10:209–15.

    Article  CAS  PubMed  Google Scholar 

  14. Pirson Y. Making the diagnosis of Alport’s syndrome. Kidney Int. 1999;56:760–75.

    Article  CAS  PubMed  Google Scholar 

  15. Morita M, White RH, Raafat F, Barnes JM, Standring DM. Glomerular basement membrane thickness in children. A morphometric study. Pediatr Nephrol. 1988;2:190–5.

    Article  CAS  PubMed  Google Scholar 

  16. Liptak P, Kemeny E, Ivanyi B. Primer: histopathology of polyomavirus-associated nephropathy in renal allografts. Nat Clin Pract Nephrol. 2006;2:631–6.

    Article  PubMed  Google Scholar 

  17. Jennette JC, Olson JL, Schwartz MM, Silva FG. Primer on the pathologic diagnosis of renal disease. In: Jennette JC, Olson JL, Schwartz MM, Silva FG, editors. Heptinstall’s pathology of the kidney. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 97–123.

    Google Scholar 

  18. D’Agati VD, Fogo AB, Bruijn JA, Jennette JC. Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am J Kidney Dis. 2004;43:368–82.

    Article  PubMed  Google Scholar 

  19. Weening JJ, D’Agati VD, Schwartz MM, et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. Kidney Int. 2004;65:521–30.

    Article  PubMed  Google Scholar 

  20. Coppo R, Troyanov S, Camilla R, et al. The Oxford IgA nephropathy clinicopathological classification is valid for children as well as adults. Kidney Int. 2010;77:921–7.

    Article  CAS  PubMed  Google Scholar 

  21. Cattran DC, Coppo R, Cook HT, et al. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int. 2009;76:534–45.

    Article  PubMed  Google Scholar 

  22. Roberts IS, Cook HT, Troyanov S, et al. The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int. 2009;76:546–56.

    Article  PubMed  Google Scholar 

  23. Camous X, Pera A, Solana R, Larbi A. NK cells in healthy aging and age-associated diseases. J Biomed Biotechnol. 2012;2012:195956.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Racusen LC, Solez K, Colvin RB, et al. The Banff 97 working classification of renal allograft pathology. Kidney Int. 1999;55:713–23.

    Article  CAS  PubMed  Google Scholar 

  25. Chang A, Gibson IW, Cohen AH, et al. A position paper on standardizing the nonneoplastic kidney biopsy report. Clin J Am Soc Nephrol. 2012;7:1365–8.

    Article  PubMed  Google Scholar 

  26. Drachenberg CB, Papadimitriou JC. Polyomavirus-associated nephropathy: update in diagnosis. Transpl Infect Dis. 2006;8:68–75.

    Article  CAS  PubMed  Google Scholar 

  27. Meehan SM, Domer P, Josephson M, et al. The clinical and pathologic implications of plasmacytic infiltrates in percutaneous renal allograft biopsies. Hum Pathol. 2001;32:205–15.

    Article  CAS  PubMed  Google Scholar 

  28. Boysen G, Bausch-Fluck D, Thoma CR, et al. Identification and functional characterization of pVHL-dependent cell surface proteins in renal cell carcinoma. Neoplasia. 2012;14:535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kurban G, Gallie BL, Leveridge M, et al. Needle core biopsies provide ample material for genomic and proteomic studies of kidney cancer: observations on DNA, RNA, protein extractions and VHL mutation detection. Pathol Res Pract. 2012;208:22–31.

    Article  CAS  PubMed  Google Scholar 

  30. Zacchia M, Vilasi A, Capasso A, et al. Genomic and proteomic approaches to renal cell carcinoma. J Nephrol. 2011;24:155–64.

    Article  CAS  PubMed  Google Scholar 

  31. Sethi S, Theis JD, Vrana JA, et al. Laser microdissection and proteomic analysis of amyloidosis, cryoglobulinemic GN, fibrillary GN, and immunotactoid glomerulopathy. Clin J Am Soc Nephrol. 2013;8:915–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Satoskar AA, Shapiro JP, Bott CN, et al. Characterization of glomerular diseases using proteomic analysis of laser capture microdissected glomeruli. Mod Pathol. 2012;25:709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nakatani S, Wei M, Ishimura E, et al. Proteome analysis of laser microdissected glomeruli from formalin-fixed paraffin-embedded kidneys of autopsies of diabetic patients: nephronectin is associated with the development of diabetic glomerulosclerosis. Nephrol Dial Transplant. 2012;27:1889–97.

    Article  CAS  PubMed  Google Scholar 

  34. Brambilla F, Lavatelli F, Merlini G, Mauri P. Clinical proteomics for diagnosis and typing of systemic amyloidoses. Proteomics Clin Appl. 2013;7:136–43.

    Article  CAS  PubMed  Google Scholar 

  35. Sethi S, Vrana JA, Theis JD, et al. Laser microdissection and mass spectrometry-based proteomics aids the diagnosis and typing of renal amyloidosis. Kidney Int. 2012;82:226–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sethi S, Theis JD, Leung N, et al. Mass spectrometry-based proteomic diagnosis of renal immunoglobulin heavy chain amyloidosis. Clin J Am Soc Nephrol. 2010;5:2180–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Klein CJ, Vrana JA, Theis JD, et al. Mass spectrometric-based proteomic analysis of amyloid neuropathy type in nerve tissue. Arch Neurol. 2011;68:195–9.

    PubMed  Google Scholar 

  38. Nasr SH, Said SM, Valeri AM, et al. The diagnosis and characteristics of renal heavy-chain and heavy/light-chain amyloidosis and their comparison with renal light-chain amyloidosis. Kidney Int. 2013;83:463–70.

    Article  CAS  PubMed  Google Scholar 

  39. Nasr SH, Fidler ME, Cornell LD, et al. Immunotactoid glomerulopathy: clinicopathologic and proteomic study. Nephrol Dial Transplant. 2012;27:4137–46.

    Article  CAS  PubMed  Google Scholar 

  40. Maes E, Broeckx V, Mertens I, et al. Analysis of the formalin-fixed paraffin-embedded tissue proteome: pitfalls, challenges, and future prospectives. Amino Acids. 2013;45:205–18.

    Article  CAS  PubMed  Google Scholar 

  41. Kretzler M, Cohen CD, Doran P, et al. Repuncturing the renal biopsy: strategies for molecular diagnosis in nephrology. J Am Soc Nephrol. 2002;13:1961–72.

    Article  PubMed  Google Scholar 

  42. Cohen CD, Frach K, Schlondorff D, Kretzler M. Quantitative gene expression analysis in renal biopsies: a novel protocol for a high-throughput multicenter application. Kidney Int. 2002;61:133–40.

    Article  CAS  PubMed  Google Scholar 

  43. Jonigk D, Modde F, Bockmeyer CL, Becker JU, Lehmann U. Optimized RNA extraction from non-deparaffinized, laser-microdissected material. Methods Mol Biol. 2011;755:67–75.

    Article  CAS  PubMed  Google Scholar 

  44. Emmert-Buck MR, Bonner RF, Smith PD, et al. Laser capture microdissection. Science. 1996;274:998–1001.

    Article  CAS  PubMed  Google Scholar 

  45. Jiang R, Scott RS, Hutt-Fletcher LM. Laser capture microdissection for analysis of gene expression in formalin-fixed paraffin-embedded tissue. Methods Mol Biol. 2011;755:77–84.

    Article  CAS  PubMed  Google Scholar 

  46. Cohen CD, Grone HJ, Grone EF, et al. Laser microdissection and gene expression analysis on formaldehyde-fixed archival tissue. Kidney Int. 2002;61:125–32.

    Article  CAS  PubMed  Google Scholar 

  47. Woroniecki RP, Bottinger EP. Laser capture microdissection of kidney tissue. Methods Mol Biol. 2009;466:73–82.

    Article  CAS  PubMed  Google Scholar 

  48. Noppert SJ, Eder S, Rudnicki M. Laser-capture microdissection of renal tubule cells and linear amplification of RNA for microarray profiling and real-time PCR. Methods Mol Biol. 2011;755:257–66.

    Article  CAS  PubMed  Google Scholar 

  49. De SW, Cornillie P, Van PM, et al. Quantitative mRNA expression analysis in kidney glomeruli using microdissection techniques. Histol Histopathol. 2011;26:267–75.

    Google Scholar 

  50. Peterson KS, Huang JF, Zhu J, et al. Characterization of heterogeneity in the molecular pathogenesis of lupus nephritis from transcriptional profiles of laser-captured glomeruli. J Clin Invest. 2004;113:1722–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sarmah CK, Samarasinghe S. Microarray gene expression: a study of between-platform association of Affymetrix and cDNA arrays. Comput Biol Med. 2011;41:980–6.

    Article  CAS  PubMed  Google Scholar 

  52. Carter SL, Eklund AC, Mecham BH, Kohane IS, Szallasi Z. Redefinition of Affymetrix probe sets by sequence overlap with cDNA microarray probes reduces cross-platform inconsistencies in cancer-associated gene expression measurements. BMC Bioinformatics. 2005;6:107.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Halloran PF, Pereira AB, Chang J, et al. Microarray diagnosis of antibody-mediated rejection in kidney transplant biopsies: an international prospective study (INTERCOM). Am J Transplant. 2013;13:2865–74.

    Article  CAS  PubMed  Google Scholar 

  54. Halloran PF, Reeve JP, Pereira AB, Hidalgo LG, Famulski KS. Antibody-mediated rejection, T cell-mediated rejection, and the injury-repair response: new insights from the Genome Canada studies of kidney transplant biopsies. Kidney Int. 2014;85:258–64.

    Article  CAS  PubMed  Google Scholar 

  55. Mengel M, Campbell P, Gebel H, et al. Precision diagnostics in transplantation: from bench to bedside. Am J Transplant. 2013;13:562–8.

    Article  CAS  PubMed  Google Scholar 

  56. Ozluk Y, Blanco PL, Mengel M, et al. Superiority of virtual microscopy versus light microscopy in transplantation pathology. Clin Transplant. 2012;26:336–44.

    Article  PubMed  Google Scholar 

  57. Einecke G, Reeve J, Sis B, et al. A molecular classifier for predicting future graft loss in late kidney transplant biopsies. J Clin Invest. 2010;120:1862–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liapis H, Storch GA, Hill DA, Rueda J, Brennan DC. CMV infection of the renal allograft is much more common than the pathology indicates: a retrospective analysis of qualitative and quantitative buffy coat CMV-PCR, renal biopsy pathology and tissue CMV-PCR. Nephrol Dial Transplant. 2003;18:397–402.

    Article  PubMed  Google Scholar 

  59. Gupta M, Filler G, Kovesi T, et al. Quantitative tissue polymerase chain reaction for Epstein-Barr virus in pediatric solid organ recipients. Am J Kidney Dis. 2003;41:212–9.

    Article  CAS  PubMed  Google Scholar 

  60. Randhawa P, Shapiro R, Vats A. Quantitation of DNA of polyomaviruses BK and JC in human kidneys. J Infect Dis. 2005;192:504–9.

    Article  CAS  PubMed  Google Scholar 

  61. Gupta M, Diaz-Mitoma F, Feber J, et al. Tissue HHV6 and 7 determination in pediatric solid organ recipients – a pilot study. Pediatr Transplant. 2003;7:458–63.

    Article  CAS  PubMed  Google Scholar 

  62. Bechert CJ, Schnadig VJ, Payne DA, Dong J. Monitoring of BK viral load in renal allograft recipients by real-time PCR assays. Am J Clin Pathol. 2010;133:242–50.

    Article  CAS  PubMed  Google Scholar 

  63. Kotton CN, Kumar D, Caliendo AM, et al. Updated international consensus guidelines on the management of cytomegalovirus in solid-organ transplantation. Transplant. 2013;96:333–60.

    Article  CAS  Google Scholar 

  64. Lautenschlager I, Razonable RR. Human herpesvirus-6 infections in kidney, liver, lung, and heart transplantation: review. Transpl Int. 2012;25:493–502.

    Article  PubMed  Google Scholar 

  65. Rassekh SR, Chan S, Harvard C, et al. Screening for submicroscopic chromosomal rearrangements in Wilms tumor using whole-genome microarrays. Cancer Genet Cytogenet. 2008;182:84–94.

    Article  CAS  PubMed  Google Scholar 

  66. Gambin T, Stankiewicz P, Sykulski M, Gambin A. Functional performance of aCGH design for clinical cytogenetics. Comput Biol Med. 2013;43:775–85.

    Article  CAS  PubMed  Google Scholar 

  67. Suthanthiran M, Schwartz JE, Ding R, et al. Urinary-cell mRNA profile and acute cellular rejection in kidney allografts. N Engl J Med. 2013;369:20–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Maluf DG, Dumur CI, Suh JL, et al. The urine microRNA profile may help monitor post-transplant renal graft function. Kidney Int. 2014;85:439–49.

    Article  CAS  PubMed  Google Scholar 

  69. Decramer S, Wittke S, Mischak H, et al. Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis. Nat Med. 2006;12:398–400.

    Article  CAS  PubMed  Google Scholar 

  70. Hueper K, Gutberlet M, Rong S, et al. Acute kidney injury: arterial spin labeling to monitor renal perfusion impairment in mice-comparison with histopathologic results and renal function. Radiology. 2014;270:117–24.

    Article  PubMed  Google Scholar 

  71. Inoue T, Kozawa E, Okada H, et al. Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging. J Am Soc Nephrol. 2011;22:1429–34.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gloviczki ML, Glockner JF, Crane JA, et al. Blood oxygen level-dependent magnetic resonance imaging identifies cortical hypoxia in severe renovascular disease. Hypertension. 2011;58:1066–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anette Melk MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Melk, A. (2016). Tools for Renal Tissue Analysis. In: Geary, D., Schaefer, F. (eds) Pediatric Kidney Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52972-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52972-0_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52970-6

  • Online ISBN: 978-3-662-52972-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics