Skip to main content

Renal Tubular Acidosis

  • Chapter
  • First Online:
Pediatric Kidney Disease

Abstract

A hyperchloremic non-anion gap metabolic acidosis, in the absence of grastrointestinal bicarbonate loss, is due to either renal loss of bicarbonate or an inability of the kidney to excrete protons in the urine. This chapter outlines renal tubular mechanisms mediating bicarbonate reabsorption by the nephron and acid secretion by the kidney and the pathologies that disturb them. Bicarbonate reabsorption predominantly occurs in the proximal tubule while acid secretion takes place in the distal nephron. Consequently, specific pathologies, which prevent bicarbonate reclamation and lead to a metabolic acidosis are referred to as proximal renal tubular acidosis (pRTA). Conversely, a failure of the kidney to excrete acid is known as distal renal tubular acidosis (dRTA). These forms of renal tubular acidosis are typically accompanied by hypokalemia. In the distal nephron acid secretion is facilitated by the electrogenic reabsorption of sodium in response to aldosterone, a process that also permits potassium secretion. Consequently actual or functional absence of aldosterone leads to a hyperkalemic metabolic acidosis. After identifying the clinical presentation of these types of disorders, with particular emphasis on genetic causes of RTA, we highlight a diagnostic approach to and treatment for them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maren TH. Chemistry of the renal reabsorption of bicarbonate. Can J Physiol Pharmacol. 1974;52(6):1041–50.

    Article  CAS  PubMed  Google Scholar 

  2. Rector Jr FC. Renal regulation of acid-base balance. Aust NZ J Med. 1981;11 Suppl 1:1–5.

    Article  Google Scholar 

  3. DuBose Jr TD. Reclamation of filtered bicarbonate. Kidney Int. 1990;38(4):584–9.

    Article  CAS  PubMed  Google Scholar 

  4. Cogan MG, Maddox DA, Lucci MS, Rector Jr FC. Control of proximal bicarbonate reabsorption in normal and acidotic rats. J Clin Invest. 1979;64(5):1168–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cogan MG. Disorders of proximal nephron function. Am J Med. 1982;72(2):275–88.

    Article  CAS  PubMed  Google Scholar 

  6. Lombard WE, Kokko JP, Jacobson HR. Bicarbonate transport in cortical and outer medullary collecting tubules. Am J Phys. 1983;244(3):F289–96.

    CAS  Google Scholar 

  7. McKinney TD, Burg MB. Bicarbonate transport by rabbit cortical collecting tubules. Effect of acid and alkali loads in vivo on transport in vitro. J Clin Invest. 1977;60(3):766–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Atkins JL, Burg MB. Bicarbonate transport by isolated perfused rat collecting ducts. Am J Phys. 1985;249(4 Pt 2):F485–9.

    CAS  Google Scholar 

  9. Capasso G, Unwin R, Agulian S, Giebisch G. Bicarbonate transport along the loop of Henle. I. Microperfusion studies of load and inhibitor sensitivity. J Clin Invest. 1991;88(2):430–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Good DW. Sodium-dependent bicarbonate absorption by cortical thick ascending limb of rat kidney. Am J Phys. 1985;248(6 Pt 2):F821–9.

    CAS  Google Scholar 

  11. Good DW, Knepper MA, Burg MB. Ammonia and bicarbonate transport by thick ascending limb of rat kidney. Am J Phys. 1984;247(1 Pt 2):F35–44.

    CAS  Google Scholar 

  12. Rector Jr FC, Carter NW, Seldin DW. The mechanism of bicarbonate reabsorption in the proximal and distal tubules of the kidney. J Clin Invest. 1965;44:278–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brown D, Zhu XL, Sly WS. Localization of membrane-associated carbonic anhydrase type IV in kidney epithelial cells. Proc Natl Acad Sci U S A. 1990;87(19):7457–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu XL, Sly WS. Carbonic anhydrase IV from human lung. Purification, characterization, and comparison with membrane carbonic anhydrase from human kidney. J Biol Chem. 1990;265(15):8795–801.

    CAS  PubMed  Google Scholar 

  15. Kaunisto K, Parkkila S, Rajaniemi H, Waheed A, Grubb J, Sly WS. Carbonic anhydrase XIV: luminal expression suggests key role in renal acidification. Kidney Int. 2002;61(6):2111–8.

    Article  CAS  PubMed  Google Scholar 

  16. Nielsen S, Smith BL, Christensen EI, Agre P. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci U S A. 1993;90(15):7275–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Preston GM, Carroll TP, Guggino WB, Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science. 1992;256(5055):385–7.

    Article  CAS  PubMed  Google Scholar 

  18. Schnermann J, Chou CL, Ma T, Traynor T, Knepper MA, Verkman AS. Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. Proc Natl Acad Sci U S A. 1998;95(16):9660–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vallon V, Verkman AS, Schnermann J. Luminal hypotonicity in proximal tubules of aquaporin-1-knockout mice. Am J Physiol Ren Physiol. 2000;278(6):F1030–3.

    CAS  Google Scholar 

  20. Cooper GJ, Boron WF. Effect of PCMBS on CO2 permeability of Xenopus oocytes expressing aquaporin 1 or its C189S mutant. Am J Phys. 1998;275(6 Pt 1):C1481–6.

    CAS  Google Scholar 

  21. Endeward V, Musa-Aziz R, Cooper GJ, Chen LM, Pelletier MF, Virkki LV, et al. Evidence that aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. FASEB J Off Publ Fed Am Soc Exp Biol. 2006;20(12):1974–81.

    CAS  Google Scholar 

  22. Nakhoul NL, Davis BA, Romero MF, Boron WF. Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. Am J Phys. 1998;274(2 Pt 1):C543–8.

    CAS  Google Scholar 

  23. de Groot BL, Hub JS. A decade of debate: significance of CO2 permeation through membrane channels still controversial. Chemphyschem Eur J Chem Phys Phys Chem. 2011;12(5):1021–2.

    Google Scholar 

  24. Spicer SS, Sens MA, Tashian RE. Immunocytochemical demonstration of carbonic anhydrase in human epithelial cells. J Histochem Cytochem Off J Histochem Soc. 1982;30(9):864–73.

    Article  CAS  Google Scholar 

  25. Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE. Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci U S A. 1983;80(9):2752–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sly WS, Whyte MP, Sundaram V, Tashian RE, Hewett-Emmett D, Guibaud P, et al. Carbonic anhydrase II deficiency in 12 families with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. N Engl J Med. 1985;313(3):139–45.

    Article  CAS  PubMed  Google Scholar 

  27. Pitts RF, Lotspeich WD. Bicarbonate and the renal regulation of acid base balance. Am J Phys. 1946;147:138–54.

    CAS  Google Scholar 

  28. Pitts RF, Lotspeich WD. The renal excretion and reabsorption of bicarbonate. Fed Proc. 1946;5(1 Pt 2):82.

    CAS  PubMed  Google Scholar 

  29. Lorenz JN, Schultheis PJ, Traynor T, Shull GE, Schnermann J. Micropuncture analysis of single-nephron function in NHE3-deficient mice. Am J Phys. 1999;277(3 Pt 2):F447–53.

    CAS  Google Scholar 

  30. Schultheis PJ, Clarke LL, Meneton P, Miller ML, Soleimani M, Gawenis LR, et al. Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet. 1998;19(3):282–5.

    Article  CAS  PubMed  Google Scholar 

  31. Wang T, Yang CL, Abbiati T, Schultheis PJ, Shull GE, Giebisch G, et al. Mechanism of proximal tubule bicarbonate absorption in NHE3 null mice. Am J Phys. 1999;277(2 Pt 2):F298–302.

    CAS  Google Scholar 

  32. Berry CA, Warnock DG, Rector Jr FC. Ion selectivity and proximal salt reabsorption. Am J Phys. 1978;235(3):F234–45.

    CAS  Google Scholar 

  33. Krapf R, Alpern RJ, Rector Jr FC, Berry CA. Basolateral membrane Na/base cotransport is dependent on CO2/HCO3 in the proximal convoluted tubule. J Gen Physiol. 1987;90(6):833–53.

    Article  CAS  PubMed  Google Scholar 

  34. Damkier HH, Nielsen S, Praetorius J. Molecular expression of SLC4-derived Na+ -dependent anion transporters in selected human tissues. Am J Physiol Regul Integr Comp Physiol. 2007;293(5):R2136–46.

    Article  CAS  PubMed  Google Scholar 

  35. Igarashi T, Sekine T, Inatomi J, Seki G. Unraveling the molecular pathogenesis of isolated proximal renal tubular acidosis. J Am Soc Nephrol JASN. 2002;13(8):2171–7.

    Article  PubMed  Google Scholar 

  36. Alper SL. Familial renal tubular acidosis. J Nephrol. 2010;23 Suppl 16:S57–76.

    PubMed  Google Scholar 

  37. Brown D, Hirsch S, Gluck S. Localization of a proton-pumping ATPase in rat kidney. J Clin Invest. 1988;82(6):2114–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zimolo Z, Montrose MH, Murer H. H+ extrusion by an apical vacuolar-type H+-ATPase in rat renal proximal tubules. J Membr Biol. 1992;126(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  39. Liu FY, Cogan MG. Axial heterogeneity of bicarbonate, chloride, and water transport in the rat proximal convoluted tubule. Effects of change in luminal flow rate and of alkalemia. J Clin Invest. 1986;78(6):1547–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fromter E, Rumrich G, Ullrich KJ. Phenomenologic description of Na+, Cl and HCO 3 absorption from proximal tubules of rat kidney. Pflugers Arch – Eur J Physiol. 1973;343(3):189–220.

    Article  CAS  Google Scholar 

  41. Rector Jr FC. Sodium, bicarbonate, and chloride absorption by the proximal tubule. Am J Phys. 1983;244(5):F461–71.

    Google Scholar 

  42. Biemesderfer D, Rutherford PA, Nagy T, Pizzonia JH, Abu-Alfa AK, Aronson PS. Monoclonal antibodies for high-resolution localization of NHE3 in adult and neonatal rat kidney. Am J Phys. 1997;273(2 Pt 2):F289–99.

    CAS  Google Scholar 

  43. Capasso G, Rizzo M, Pica A, Ferrara D, Di Maio FS, Morelli F, et al. Physiology and molecular biology of tubular bicarbonate transport. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc. 2000;15 Suppl 6:36–8.

    CAS  Google Scholar 

  44. Capasso G, Unwin R, Rizzo M, Pica A, Giebisch G. Bicarbonate transport along the loop of Henle: molecular mechanisms and regulation. J Nephrol. 2002;15 Suppl 5:S88–96.

    CAS  PubMed  Google Scholar 

  45. Quentin F, Eladari D, Frische S, Cambillau M, Nielsen S, Alper SL, et al. Regulation of the Cl/ HCO 3 exchanger AE2 in rat thick ascending limb of Henle’s loop in response to changes in acid-base and sodium balance. J Am Soc Nephrol JASN. 2004;15(12):2988–97.

    Article  PubMed  Google Scholar 

  46. Alper SL, Stuart-Tilley AK, Biemesderfer D, Shmukler BE, Brown D. Immunolocalization of AE2 anion exchanger in rat kidney. Am J Phys. 1997;273(4 Pt 2):F601–14.

    CAS  Google Scholar 

  47. Leviel F, Eladari D, Blanchard A, Poumarat JS, Paillard M, Podevin RA. Pathways for HCO 3 exit across the basolateral membrane in rat thick limbs. Am J Phys. 1999;276(6 Pt 2):F847–56.

    CAS  Google Scholar 

  48. Bastani B, Haragsim L. Immunocytochemistry of renal H-ATPase. Miner Electrolyte Metab. 1996;22(5–6):382–95.

    CAS  PubMed  Google Scholar 

  49. Brown D, Hirsch S, Gluck S. An H+-ATPase in opposite plasma membrane domains in kidney epithelial cell subpopulations. Nature. 1988;331(6157):622–4.

    Article  CAS  PubMed  Google Scholar 

  50. Teng-umnuay P, Verlander JW, Yuan W, Tisher CC, Madsen KM. Identification of distinct subpopulations of intercalated cells in the mouse collecting duct. J Am Soc Nephrol JASN. 1996;7(2):260–74.

    CAS  PubMed  Google Scholar 

  51. Brown D, Roth J, Kumpulainen T, Orci L. Ultrastructural immunocytochemical localization of carbonic anhydrase. Presence in intercalated cells of the rat collecting tubule. Histochemistry. 1982;75(2):209–13.

    Article  CAS  PubMed  Google Scholar 

  52. Stehberger PA, Shmukler BE, Stuart-Tilley AK, Peters LL, Alper SL, Wagner CA. Distal renal tubular acidosis in mice lacking the AE1 (band3) Cl/ HCO 3 exchanger (slc4a1). J Am Soc Nephrol JASN. 2007;18(5):1408–18.

    Article  CAS  PubMed  Google Scholar 

  53. Hamm LL, Simon EE. Roles and mechanisms of urinary buffer excretion. Am J Phys. 1987;253(4 Pt 2):F595–605.

    CAS  Google Scholar 

  54. Wagner CA, Devuyst O, Bourgeois S, Mohebbi N. Regulated acid-base transport in the collecting duct. Pflugers Arch Eur J Physiol. 2009;458(1):137–56.

    Article  CAS  Google Scholar 

  55. Han JS, Kim GH, Kim J, Jeon US, Joo KW, Na KY, et al. Secretory-defect distal renal tubular acidosis is associated with transporter defect in H+-ATPase and anion exchanger-1. J Am Soc Nephrol JASN. 2002;13(6):1425–32.

    Article  CAS  PubMed  Google Scholar 

  56. Kim J, Kim YH, Cha JH, Tisher CC, Madsen KM. Intercalated cell subtypes in connecting tubule and cortical collecting duct of rat and mouse. J Am Soc Nephrol JASN. 1999;10(1):1–12.

    CAS  PubMed  Google Scholar 

  57. Campbell-Thompson ML, Verlander JW, Curran KA, Campbell WG, Cain BD, Wingo CS, et al. In situ hybridization of H-K-ATPase beta-subunit mRNA in rat and rabbit kidney. Am J Phys. 1995;269(3 Pt 2):F345–54.

    CAS  Google Scholar 

  58. Nakamura S. H+-ATPase activity in selective disruption of H+-K+-ATPase alpha 1 gene of mice under normal and K-depleted conditions. J Lab Clin Med. 2006;147(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  59. Lynch IJ, Rudin A, Xia SL, Stow LR, Shull GE, Weiner ID, et al. Impaired acid secretion in cortical collecting duct intercalated cells from H-K-ATPase-deficient mice: role of HKalpha isoforms. Am J Physiol Ren Physiol. 2008;294(3):F621–7.

    Article  CAS  Google Scholar 

  60. Kim YH, Kwon TH, Frische S, Kim J, Tisher CC, Madsen KM, et al. Immunocytochemical localization of pendrin in intercalated cell subtypes in rat and mouse kidney. Am J Physiol Ren Physiol. 2002;283(4):F744–54.

    Article  Google Scholar 

  61. Wall SM, Hassell KA, Royaux IE, Green ED, Chang JY, Shipley GL, et al. Localization of pendrin in mouse kidney. Am J Physiol Ren Physiol. 2003;284(1):F229–41.

    Article  CAS  Google Scholar 

  62. Wagner CA, Mohebbi N, Capasso G, Geibel JP. The anion exchanger pendrin (SLC26A4) and renal acid-base homeostasis. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2011;28(3):497–504.

    Article  CAS  Google Scholar 

  63. Leviel F, Hubner CA, Houillier P, Morla L, El Moghrabi S, Brideau G, et al. The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J Clin Invest. 2010;120(5):1627–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gueutin V, Vallet M, Jayat M, Peti-Peterdi J, Corniere N, Leviel F, et al. Renal beta-intercalated cells maintain body fluid and electrolyte balance. J Clin Invest. 2013;123(10):4219–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chambrey R, Kurth I, Peti-Peterdi J, Houillier P, Purkerson JM, Leviel F, et al. Renal intercalated cells are rather energized by a proton than a sodium pump. Proc Natl Acad Sci U S A. 2013;110(19):7928–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Karet FE, Finberg KE, Nelson RD, Nayir A, Mocan H, Sanjad SA, et al. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet. 1999;21(1):84–90.

    Article  CAS  PubMed  Google Scholar 

  67. Smith AN, Skaug J, Choate KA, Nayir A, Bakkaloglu A, Ozen S, et al. Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nat Genet. 2000;26(1):71–5.

    Article  CAS  PubMed  Google Scholar 

  68. Eladari D, Chambrey R. Ammonium transport in the kidney. J Nephrol. 2010;23 Suppl 16:S28–34.

    PubMed  Google Scholar 

  69. Good DW, Burg MB. Ammonia production by individual segments of the rat nephron. J Clin Invest. 1984;73(3):602–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rossier G, Meier C, Bauch C, Summa V, Sordat B, Verrey F, et al. LAT2, a new basolateral 4F2hc/CD98-associated amino acid transporter of kidney and intestine. J Biol Chem. 1999;274(49):34948–54.

    Article  CAS  PubMed  Google Scholar 

  71. Sastrasinh S, Sastrasinh M. Glutamine transport in submitochondrial particles. Am J Phys. 1989;257(6 Pt 2):F1050–8.

    CAS  Google Scholar 

  72. Taylor L, Curthoys NP. Glutamine metabolism: role in acid-base balance*. Biochem Mol Biol Educ Bimonthly Publ Int Union Biochem Mol Biol. 2004;32(5):291–304.

    CAS  Google Scholar 

  73. Aronson PS, Suhm MA, Nee J. Interaction of external H+ with the Na+-H+ exchanger in renal microvillus membrane vesicles. J Biol Chem. 1983;258(11):6767–71.

    CAS  PubMed  Google Scholar 

  74. Kinsella JL, Aronson PS. Interaction of NH4 + and Li+ with the renal microvillus membrane Na+-H+ exchanger. Am J Phys. 1981;241(5):C220–6.

    CAS  Google Scholar 

  75. Nagami GT. Luminal secretion of ammonia in the mouse proximal tubule perfused in vitro. J Clin Invest. 1988;81(1):159–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nagami GT. Net luminal secretion of ammonia by the proximal tubule. Contrib Nephrol. 1988;63:1–5.

    Article  CAS  PubMed  Google Scholar 

  77. Li HC, Du Z, Barone S, Rubera I, McDonough AA, Tauc M, et al. Proximal tubule specific knockout of the Na+/H+ exchanger NHE3: effects on bicarbonate absorption and ammonium excretion. J Mol Med. 2013;91(8):951–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Choi JY, Shah M, Lee MG, Schultheis PJ, Shull GE, Muallem S, et al. Novel amiloride-sensitive sodium-dependent proton secretion in the mouse proximal convoluted tubule. J Clin Invest. 2000;105(8):1141–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Baum M, Twombley K, Gattineni J, Joseph C, Wang L, Zhang Q, et al. Proximal tubule Na+/H+ exchanger activity in adult NHE8-/-, NHE3-/-, and NHE3-/-/NHE8-/- mice. Am J Physiol Ren Physiol. 2012;303(11):F1495–502.

    Article  CAS  Google Scholar 

  80. Good DW. Ammonium transport by the thick ascending limb of Henle’s loop. Annu Rev Physiol. 1994;56:623–47.

    Article  CAS  PubMed  Google Scholar 

  81. Good DW. Effects of potassium on ammonia transport by medullary thick ascending limb of the rat. J Clin Invest. 1987;80(5):1358–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Good DW. Active absorption of NH4+ by rat medullary thick ascending limb: inhibition by potassium. Am J Phys. 1988;255(1 Pt 2):F78–87.

    CAS  Google Scholar 

  83. Kikeri D, Sun A, Zeidel ML, Hebert SC. Cell membranes impermeable to NH3. Nature. 1989;339(6224):478–80.

    Article  CAS  PubMed  Google Scholar 

  84. Flessner MF, Wall SM, Knepper MA. Permeabilities of rat collecting duct segments to NH3 and NH4 +. Am J Phys. 1991;260(2 Pt 2):F264–72.

    CAS  Google Scholar 

  85. Flessner MF, Wall SM, Knepper MA. Ammonium and bicarbonate transport in rat outer medullary collecting ducts. Am J Phys. 1992;262(1 Pt 2):F1–7.

    CAS  Google Scholar 

  86. Flessner MF, Knepper MA. Ammonium transport in collecting ducts. Miner Electrolyte Metab. 1990;16(5):299–307.

    CAS  PubMed  Google Scholar 

  87. Liu Z, Chen Y, Mo R, Hui C, Cheng JF, Mohandas N, et al. Characterization of human RhCG and mouse Rhcg as novel nonerythroid Rh glycoprotein homologues predominantly expressed in kidney and testis. J Biol Chem. 2000;275(33):25641–51.

    Article  CAS  PubMed  Google Scholar 

  88. Yip KP, Kurtz I. NH3 permeability of principal cells and intercalated cells measured by confocal fluorescence imaging. Am J Phys. 1995;269(4 Pt 2): F545–50.

    CAS  Google Scholar 

  89. Biver S, Belge H, Bourgeois S, Van Vooren P, Nowik M, Scohy S, et al. A role for Rhesus factor Rhcg in renal ammonium excretion and male fertility. Nature. 2008;456(7220):339–43.

    Article  CAS  PubMed  Google Scholar 

  90. Bourgeois S, Bounoure L, Christensen EI, Ramakrishnan SK, Houillier P, Devuyst O, et al. Haploinsufficiency of the ammonia transporter Rhcg predisposes to chronic acidosis: Rhcg is critical for apical and basolateral ammonia transport in the mouse collecting duct. J Biol Chem. 2013;288(8):5518–29.

    Article  CAS  PubMed  Google Scholar 

  91. Rodriguez-Soriano J, Edelmann Jr CM. Renal tubular acidosis. Annu Rev Med. 1969;20:363–82.

    Article  CAS  PubMed  Google Scholar 

  92. Seki G, Horita S, Suzuki M, Yamazaki O, Usui T, Nakamura M, et al. Molecular mechanisms of renal and extrarenal manifestations caused by inactivation of the electrogenic Na-HCO cotransporter NBCe1. Front Physiol. 2013;4:270.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Katzir Z, Dinour D, Reznik-Wolf H, Nissenkorn A, Holtzman E. Familial pure proximal renal tubular acidosis – a clinical and genetic study. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc. 2008;23(4):1211–5.

    CAS  Google Scholar 

  94. Inatomi J, Horita S, Braverman N, Sekine T, Yamada H, Suzuki Y, et al. Mutational and functional analysis of SLC4A4 in a patient with proximal renal tubular acidosis. Pflugers Arc Eur J Physiol. 2004;448(4):438–44.

    CAS  Google Scholar 

  95. Igarashi T, Inatomi J, Sekine T, Cha SH, Kanai Y, Kunimi M, et al. Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities. Nat Genet. 1999;23(3):264–6.

    Article  CAS  PubMed  Google Scholar 

  96. Demirci FY, Chang MH, Mah TS, Romero MF, Gorin MB. Proximal renal tubular acidosis and ocular pathology: a novel missense mutation in the gene (SLC4A4) for sodium bicarbonate cotransporter protein (NBCe1). Mol Vis. 2006;12:324–30.

    CAS  PubMed  Google Scholar 

  97. Dinour D, Chang MH, Satoh J, Smith BL, Angle N, Knecht A, et al. A novel missense mutation in the sodium bicarbonate cotransporter (NBCe1/SLC4A4) causes proximal tubular acidosis and glaucoma through ion transport defects. J Biol Chem. 2004;279(50):52238–46.

    Article  CAS  PubMed  Google Scholar 

  98. Lemann Jr J, Adams ND, Wilz DR, Brenes LG. Acid and mineral balances and bone in familial proximal renal tubular acidosis. Kidney Int. 2000;58(3):1267–77.

    Article  CAS  PubMed  Google Scholar 

  99. Gawenis LR, Stien X, Shull GE, Schultheis PJ, Woo AL, Walker NM, et al. Intestinal NaCl transport in NHE2 and NHE3 knockout mice. Am J Physiol Gastrointest Liver Physiol. 2002;282(5):G776–84.

    Article  CAS  PubMed  Google Scholar 

  100. Pan W, Borovac J, Spicer Z, Hoenderop JG, Bindels RJ, Shull GE, et al. The epithelial sodium/proton exchanger, NHE3, is necessary for renal and intestinal calcium (re)absorption. Am J Physiol Ren Physiol. 2012;302(8):F943–56.

    Article  CAS  Google Scholar 

  101. Haque SK, Ariceta G, Batlle D. Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc. 2012;27(12):4273–87.

    CAS  Google Scholar 

  102. McSherry E, Sebastian A, Morris Jr RC. Renal tubular acidosis in infants: the several kinds, including bicarbonate-wasting, classic renal tubular acidosis. J Clin Invest. 1972;51(3):499–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Soriano JR, Boichis H, Edelmann Jr CM. Bicarbonate reabsorption and hydrogen ion excretion in children with renal tubular acidosis. J Pediatr. 1967;71(6):802–13.

    Article  CAS  PubMed  Google Scholar 

  104. Edelmann CM, Soriano JR, Boichis H, Gruskin AB, Acosta MI. Renal bicarbonate reabsorption and hydrogen ion excretion in normal infants. J Clin Invest. 1967;46(8):1309–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rodriguez Soriano J. Renal tubular acidosis: the clinical entity. J Am Soc Nephrol JASN. 2002;13(8):2160–70.

    Article  PubMed  Google Scholar 

  106. McSherry E, Morris Jr RC. Attainment and maintenance of normal stature with alkali therapy in infants and children with classic renal tubular acidosis. J Clin Invest. 1978;61(2):509–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nash MA, Torrado AD, Greifer I, Spitzer A, Edelmann Jr CM. Renal tubular acidosis in infants and children. Clinical course, response to treatment, and prognosis. J Pediatr. 1972;80(5):738–48.

    Article  CAS  PubMed  Google Scholar 

  108. Rampini S, Fanconi A, Illig R, Prader A. Effect of hydrochlorothiazide on proximal renal tubular acidosis in a patient with idiopathic “de toni-debre-fanconi syndrome”. Helv Paediatr Acta. 1968;23(1):13–21.

    CAS  PubMed  Google Scholar 

  109. Shiohara M, Igarashi T, Mori T, Komiyama A. Genetic and long-term data on a patient with permanent isolated proximal renal tubular acidosis. Eur J Pediatr. 2000;159(12):892–4.

    Article  CAS  PubMed  Google Scholar 

  110. Kari J, El Desoky S, Singh AK, Gari M, Kleta R, Bockenhauer D. Renal tubular acidosis and eye findings. Kidney Int. 2014;86(1):217–8.

    Article  PubMed  Google Scholar 

  111. Skinner R. Chronic ifosfamide nephrotoxicity in children. Med Pediatr Oncol. 2003;41(3):190–7.

    Article  CAS  PubMed  Google Scholar 

  112. Rodriguez-Soriano J, Vallo A. Renal tubular acidosis. Pediatr Nephrol. 1990;4(3):268–75.

    Article  CAS  PubMed  Google Scholar 

  113. Batlle D, Haque SK. Genetic causes and mechanisms of distal renal tubular acidosis. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc. 2012;27(10):3691–704.

    CAS  Google Scholar 

  114. Reddy P. Clinical approach to renal tubular acidosis in adult patients. Int J Clin Pract. 2011;65(3):350–60.

    Article  CAS  PubMed  Google Scholar 

  115. Karet FE, Gainza FJ, Gyory AZ, Unwin RJ, Wrong O, Tanner MJ, et al. Mutations in the chloride-bicarbonate exchanger gene AE1 cause autosomal dominant but not autosomal recessive distal renal tubular acidosis. Proc Natl Acad Sci U S A. 1998;95(11):6337–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bruce LJ, Cope DL, Jones GK, Schofield AE, Burley M, Povey S, et al. Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene. J Clin Invest. 1997;100(7):1693–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jarolim P, Shayakul C, Prabakaran D, Jiang L, Stuart-Tilley A, Rubin HL, et al. Autosomal dominant distal renal tubular acidosis is associated in three families with heterozygosity for the R589H mutation in the AE1 (band 3) Cl-/ HCO- 3 exchanger. J Biol Chem. 1998;273(11):6380–8.

    Article  CAS  PubMed  Google Scholar 

  118. Fejes-Toth G, Chen WR, Rusvai E, Moser T, Naray-Fejes-Toth A. Differential expression of AE1 in renal HCO3-secreting and -reabsorbing intercalated cells. J Biol Chem. 1994;269(43):26717–21.

    CAS  PubMed  Google Scholar 

  119. Jarolim P, Rubin HL, Liu SC, Cho MR, Brabec V, Derick LH, et al. Duplication of 10 nucleotides in the erythroid band 3 (AE1) gene in a kindred with hereditary spherocytosis and band 3 protein deficiency (band 3PRAGUE). J Clin Invest. 1994;93(1):121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Maillet P, Vallier A, Reinhart WH, Wyss EJ, Ott P, Texier P, et al. Band 3 Chur: a variant associated with band 3-deficient hereditary spherocytosis and substitution in a highly conserved position of transmembrane segment 11. Br J Haematol. 1995;91(4):804–10.

    Article  CAS  PubMed  Google Scholar 

  121. Mohandas N, Winardi R, Knowles D, Leung A, Parra M, George E, et al. Molecular basis for membrane rigidity of hereditary ovalocytosis. A novel mechanism involving the cytoplasmic domain of band 3. J Clin Invest. 1992;89(2):686–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jarolim P, Palek J, Amato D, Hassan K, Sapak P, Nurse GT, et al. Deletion in erythrocyte band 3 gene in malaria-resistant Southeast Asian ovalocytosis. Proc Natl Acad Sci U S A. 1991;88(24):11022–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tanner MJ, Bruce L, Martin PG, Rearden DM, Jones GL. Melanesian hereditary ovalocytes have a deletion in red cell band 3. Blood. 1991;78(10):2785–6.

    CAS  PubMed  Google Scholar 

  124. Tanphaichitr VS, Sumboonnanonda A, Ideguchi H, Shayakul C, Brugnara C, Takao M, et al. Novel AE1 mutations in recessive distal renal tubular acidosis. Loss-of-function is rescued by glycophorin A. J Clin Invest. 1998;102(12):2173–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev. 2013;93(2):803–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Vasuvattakul S, Yenchitsomanus PT, Vachuanichsanong P, Thuwajit P, Kaitwatcharachai C, Laosombat V, et al. Autosomal recessive distal renal tubular acidosis associated with Southeast Asian ovalocytosis. Kidney Int. 1999;56(5):1674–82.

    Article  CAS  PubMed  Google Scholar 

  127. Bruce LJ, Wrong O, Toye AM, Young MT, Ogle G, Ismail Z, et al. Band 3 mutations, renal tubular acidosis and South-East Asian ovalocytosis in Malaysia and Papua New Guinea: loss of up to 95 % band 3 transport in red cells. Biochem J. 2000;350(Pt 1):41–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chu C, Woods N, Sawasdee N, Guizouarn H, Pellissier B, Borgese F, et al. Band 3 Edmonton I, a novel mutant of the anion exchanger 1 causing spherocytosis and distal renal tubular acidosis. Biochem J. 2010;426(3):379–88.

    Article  CAS  PubMed  Google Scholar 

  129. Shmukler BE, Kedar PS, Warang P, Desai M, Madkaikar M, Ghosh K, et al. Hemolytic anemia and distal renal tubular acidosis in two Indian patients homozygous for SLC4A1/AE1 mutation A858D. Am J Hematol. 2010;85(10):824–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fawaz NA, Beshlawi IO, Al Zadjali S, Al Ghaithi HK, Elnaggari MA, Elnour I, et al. dRTA and hemolytic anemia: first detailed description of SLC4A1 A858D mutation in homozygous state. Eur J Haematol. 2012;88(4):350–5.

    Article  CAS  PubMed  Google Scholar 

  131. Rungroj N, Devonald MA, Cuthbert AW, Reimann F, Akkarapatumwong V, Yenchitsomanus PT, et al. A novel missense mutation in AE1 causing autosomal dominant distal renal tubular acidosis retains normal transport function but is mistargeted in polarized epithelial cells. J Biol Chem. 2004;279(14):13833–8.

    Article  CAS  PubMed  Google Scholar 

  132. Cheidde L, Vieira TC, Lima PR, Saad ST, Heilberg IP. A novel mutation in the anion exchanger 1 gene is associated with familial distal renal tubular acidosis and nephrocalcinosis. Pediatrics. 2003;112(6 Pt 1): 1361–7.

    Article  PubMed  Google Scholar 

  133. Rysava R, Tesar V, Jirsa Jr M, Brabec V, Jarolim P. Incomplete distal renal tubular acidosis coinherited with a mutation in the band 3 (AE1) gene. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc. 1997;12(9):1869–73.

    CAS  Google Scholar 

  134. Ribeiro ML, Alloisio N, Almeida H, Gomes C, Texier P, Lemos C, et al. Severe hereditary spherocytosis and distal renal tubular acidosis associated with the total absence of band 3. Blood. 2000;96(4):1602–4.

    CAS  PubMed  Google Scholar 

  135. Sritippayawan S, Sumboonnanonda A, Vasuvattakul S, Keskanokwong T, Sawasdee N, Paemanee A, et al. Novel compound heterozygous SLC4A1 mutations in Thai patients with autosomal recessive distal renal tubular acidosis. Am J Kidney Dis Off J Natl Kidney Found. 2004;44(1):64–70.

    Article  CAS  Google Scholar 

  136. Yenchitsomanus PT, Sawasdee N, Paemanee A, Keskanokwong T, Vasuvattakul S, Bejrachandra S, et al. Anion exchanger 1 mutations associated with distal renal tubular acidosis in the Thai population. J Hum Genet. 2003;48(9):451–6.

    Article  CAS  PubMed  Google Scholar 

  137. Choo KE, Nicoli TK, Bruce LJ, Tanner MJ, Ruiz-Linares A, Wrong OM. Recessive distal renal tubular acidosis in Sarawak caused by AE1 mutations. Pediatr Nephrol. 2006;21(2):212–7.

    Article  PubMed  Google Scholar 

  138. Kittanakom S, Cordat E, Akkarapatumwong V, Yenchitsomanus PT, Reithmeier RA. Trafficking defects of a novel autosomal recessive distal renal tubular acidosis mutant (S773P) of the human kidney anion exchanger (kAE1). J Biol Chem. 2004;279(39):40960–71.

    Article  CAS  PubMed  Google Scholar 

  139. Borthwick KJ, Kandemir N, Topaloglu R, Kornak U, Bakkaloglu A, Yordam N, et al. A phenocopy of CAII deficiency: a novel genetic explanation for inherited infantile osteopetrosis with distal renal tubular acidosis. J Med Genet. 2003;40(2):115–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Feldman M, Prikis M, Athanasiou Y, Elia A, Pierides A, Deltas CC. Molecular investigation and long-term clinical progress in Greek Cypriot families with recessive distal renal tubular acidosis and sensorineural deafness due to mutations in the ATP6V1B1 gene. Clin Genet. 2006;69(2):135–44.

    Article  CAS  PubMed  Google Scholar 

  141. Hahn H, Kang HG, Ha IS, Cheong HI, Choi Y. ATP6B1 gene mutations associated with distal renal tubular acidosis and deafness in a child. Am J Kidney Dis Off J Natl Kidney Found. 2003;41(1):238–43.

    Article  CAS  Google Scholar 

  142. Ruf R, Rensing C, Topaloglu R, Guay-Woodford L, Klein C, Vollmer M, et al. Confirmation of the ATP6B1 gene as responsible for distal renal tubular acidosis. Pediatr Nephrol. 2003;18(2):105–9.

    PubMed  Google Scholar 

  143. Stover EH, Borthwick KJ, Bavalia C, Eady N, Fritz DM, Rungroj N, et al. Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J Med Genet. 2002;39(11):796–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Karet FE, Finberg KE, Nayir A, Bakkaloglu A, Ozen S, Hulton SA, et al. Localization of a gene for autosomal recessive distal renal tubular acidosis with normal hearing (rdRTA2) to 7q33-34. Am J Hum Genet. 1999;65(6):1656–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Unwin RJ, Capasso G. The renal tubular acidoses. J R Soc Med. 2001;94(5):221–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Batlle DC, Hizon M, Cohen E, Gutterman C, Gupta R. The use of the urinary anion gap in the diagnosis of hyperchloremic metabolic acidosis. N Engl J Med. 1988;318(10):594–9.

    Article  CAS  PubMed  Google Scholar 

  147. Wrong O, Davies HE. The excretion of acid in renal disease. Q J Med. 1959;28(110):259–313.

    CAS  PubMed  Google Scholar 

  148. Walsh SB, Shirley DG, Wrong OM, Unwin RJ. Urinary acidification assessed by simultaneous furosemide and fludrocortisone treatment: an alternative to ammonium chloride. Kidney Int. 2007;71(12):1310–6.

    Article  CAS  PubMed  Google Scholar 

  149. Smulders YM, Frissen PH, Slaats EH, Silberbusch J. Renal tubular acidosis. Pathophysiology and diagnosis. Arch Intern Med. 1996;156(15):1629–36.

    Article  CAS  PubMed  Google Scholar 

  150. Batlle D, Ghanekar H, Jain S, Mitra A. Hereditary distal renal tubular acidosis: new understandings. Annu Rev Med. 2001;52:471–84.

    Article  CAS  PubMed  Google Scholar 

  151. Caruana RJ, Buckalew Jr VM. The syndrome of distal (type 1) renal tubular acidosis. Clinical and laboratory findings in 58 cases. Medicine. 1988;67(2):84–99.

    Article  CAS  PubMed  Google Scholar 

  152. Domrongkitchaiporn S, Khositseth S, Stitchantrakul W, Tapaneya-olarn W, Radinahamed P. Dosage of potassium citrate in the correction of urinary abnormalities in pediatric distal renal tubular acidosis patients. Am J Kidney Dis Off J Natl Kidney Found. 2002;39(2):383–91.

    Article  CAS  Google Scholar 

  153. Tapaneya-Olarn W, Khositseth S, Tapaneya-Olarn C, Teerakarnjana N, Chaichanajarernkul U, Stitchantrakul W, et al. The optimal dose of potassium citrate in the treatment of children with distal renal tubular acidosis. J Med Assoc Thail Chotmaihet thangphaet. 2002;85 Suppl 4:S1143–9.

    Google Scholar 

  154. Santos F, Chan JC. Renal tubular acidosis in children. Diagnosis, treatment and prognosis. Am J Nephrol. 1986;6(4):289–95.

    Article  CAS  PubMed  Google Scholar 

  155. Vivante A, Lotan D, Pode-Shakked N, Landau D, Svec P, Nampoothiri S, et al. Familial autosomal recessive renal tubular acidosis: importance of early diagnosis. Nephron Physiol. 2011;119(3):P31–9.

    Article  PubMed  Google Scholar 

  156. Bajpai A, Bagga A, Hari P, Bardia A, Mantan M. Long-term outcome in children with primary distal renal tubular acidosis. Indian Pediatr. 2005;42(4):321–8.

    PubMed  Google Scholar 

  157. Bajaj G, Quan A. Renal tubular acidosis and deafness: report of a large family. Am J Kidney Dis Off J Natl Kidney Found. 1996;27(6):880–2.

    Article  CAS  Google Scholar 

  158. Bolt RJ, Wennink JM, Verbeke JI, Shah GN, Sly WS, Bokenkamp A. Carbonic anhydrase type II deficiency. Am J Kidney Dis Off J Natl Kidney Found. 2005;46(5):A50, e71-3.

    Article  Google Scholar 

  159. Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS. Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat. 2004;24(3):272.

    Article  PubMed  CAS  Google Scholar 

  160. Ismail EA, Abul Saad S, Sabry MA. Nephrocalcinosis and urolithiasis in carbonic anhydrase II deficiency syndrome. Eur J Pediatr. 1997;156(12):957–62.

    Article  CAS  PubMed  Google Scholar 

  161. Muzalef A, Alshehri M, Al-Abidi A, Al-Trabolsi HA. Marble brain disease in two Saudi Arabian siblings. Ann Trop Paediatr. 2005;25(3):213–8.

    Article  PubMed  Google Scholar 

  162. Fathallah DM, Bejaoui M, Lepaslier D, Chater K, Sly WS, Dellagi K. Carbonic anhydrase II (CA II) deficiency in Maghrebian patients: evidence for founder effect and genomic recombination at the CA II locus. Hum Genet. 1997;99(5):634–7.

    Article  CAS  PubMed  Google Scholar 

  163. McMahon C, Will A, Hu P, Shah GN, Sly WS, Smith OP. Bone marrow transplantation corrects osteopetrosis in the carbonic anhydrase II deficiency syndrome. Blood. 2001;97(7):1947–50.

    Article  CAS  PubMed  Google Scholar 

  164. Karet FE. Mechanisms in hyperkalemic renal tubular acidosis. J Am Soc Nephrol JASN. 2009;20(2):251–4.

    Article  CAS  PubMed  Google Scholar 

  165. DuBose Jr TD, Good DW. Effects of chronic hyperkalemia on renal production and proximal tubule transport of ammonium in rats. Am J Phys. 1991;260(5 Pt 2):F680–7.

    CAS  Google Scholar 

  166. Jaeger P, Bonjour JP, Karlmark B, Stanton B, Kirk RG, Duplinsky T, et al. Influence of acute potassium loading on renal phosphate transport in the rat kidney. Am J Phys. 1983;245(5 Pt 1):F601–5.

    CAS  Google Scholar 

  167. Riepe FG. Pseudohypoaldosteronism. Endocr Dev. 2013;24:86–95.

    CAS  PubMed  Google Scholar 

  168. Geller DS, Rodriguez-Soriano J, Vallo Boado A, Schifter S, Bayer M, Chang SS, et al. Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I. Nat Genet. 1998;19(3):279–81.

    Article  CAS  PubMed  Google Scholar 

  169. Sartorato P, Lapeyraque AL, Armanini D, Kuhnle U, Khaldi Y, Salomon R, et al. Different inactivating mutations of the mineralocorticoid receptor in fourteen families affected by type I pseudohypoaldosteronism. J Clin Endocrinol Metab. 2003;88(6):2508–17.

    Article  CAS  PubMed  Google Scholar 

  170. Hanukoglu A, Bistritzer T, Rakover Y, Mandelberg A. Pseudohypoaldosteronism with increased sweat and saliva electrolyte values and frequent lower respiratory tract infections mimicking cystic fibrosis. J Pediatr. 1994;125(5 Pt 1):752–5.

    Article  CAS  PubMed  Google Scholar 

  171. Chang SS, Grunder S, Hanukoglu A, Rosler A, Mathew PM, Hanukoglu I, et al. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet. 1996;12(3):248–53.

    Article  CAS  PubMed  Google Scholar 

  172. Kerem E, Bistritzer T, Hanukoglu A, Hofmann T, Zhou Z, Bennett W, et al. Pulmonary epithelial sodium-channel dysfunction and excess airway liquid in pseudohypoaldosteronism. N Engl J Med. 1999;341(3):156–62.

    Article  CAS  PubMed  Google Scholar 

  173. Saxena A, Hanukoglu I, Saxena D, Thompson RJ, Gardiner RM, Hanukoglu A. Novel mutations responsible for autosomal recessive multisystem pseudohypoaldosteronism and sequence variants in epithelial sodium channel alpha-, beta-, and gamma-subunit genes. J Clin Endocrinol Metab. 2002;87(7):3344–50.

    CAS  PubMed  Google Scholar 

  174. Strautnieks SS, Thompson RJ, Gardiner RM, Chung E. A novel splice-site mutation in the gamma subunit of the epithelial sodium channel gene in three pseudohypoaldosteronism type 1 families. Nat Genet. 1996;13(2):248–50.

    Article  CAS  PubMed  Google Scholar 

  175. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, et al. Human hypertension caused by mutations in WNK kinases. Science. 2001;293(5532):1107–12.

    Article  CAS  PubMed  Google Scholar 

  176. Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A, Toka HR, et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature. 2012;482(7383):98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Louis-Dit-Picard H, Barc J, Trujillano D, Miserey-Lenkei S, Bouatia-Naji N, Pylypenko O, et al. KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet. 2012;44(4):456–60, S1-3.

    Article  CAS  PubMed  Google Scholar 

  178. Shibata S, Zhang J, Puthumana J, Stone KL, Lifton RP. Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4. Proc Natl Acad Sci U S A. 2013;110(19):7838–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Achard JM, Disse-Nicodeme S, Fiquet-Kempf B, Jeunemaitre X. Phenotypic and genetic heterogeneity of familial hyperkalaemic hypertension (Gordon syndrome). Clin Exp Pharmacol Physiol. 2001;28(12):1048–52.

    Article  CAS  PubMed  Google Scholar 

  180. Gordon RD, Geddes RA, Pawsey CG, O’Halloran MW. Hypertension and severe hyperkalaemia associated with suppression of renin and aldosterone and completely reversed by dietary sodium restriction. Australas Ann Med. 1970;19(4):287–94.

    CAS  PubMed  Google Scholar 

  181. Schambelan M, Sebastian A, Rector Jr FC. Mineralocorticoid-resistant renal hyperkalemia without salt wasting (type II pseudohypoaldosteronism): role of increased renal chloride reabsorption. Kidney Int. 1981;19(5):716–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Todd Alexander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alexander, R.T., Bockenhauer, D. (2016). Renal Tubular Acidosis. In: Geary, D., Schaefer, F. (eds) Pediatric Kidney Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52972-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52972-0_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52970-6

  • Online ISBN: 978-3-662-52972-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics