Skip to main content

Laboratory Evaluation of Renal Disease in Childhood

  • Chapter
  • First Online:

Abstract

Laboratory evaluation is a major component of the assessment for renal disease in children. Because clinical examination rarely provides sufficient information to establish a diagnosis, nephrologists rely heavily on laboratory evaluation. Knowing the indications for each test and the normal reference ranges is important for the clinician. This chapter reviews the tests for renal disease most commonly used in clinical practice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sekhar DL, Wang L, Hollenbeak CS, Widome MD, Paul IM. A cost-effectiveness analysis of screening urine dipsticks in well-child care. Pediatrics. 2010;125(4):660–3.

    Article  PubMed  Google Scholar 

  2. Graff SL. In: Biello LA, editor. A handbook of routine urinalysis. Philadelphia: Lippincott Williams & Wilkins; 1983.

    Google Scholar 

  3. Brodehl J, Franken A, Gellissen K. Maximal tubular reabsorption of glucose in infants and children. Acta Paediatr Scand. 1972;61(4):413–20.

    Article  CAS  PubMed  Google Scholar 

  4. Whiting P, Westwood M, Bojke L, Palmer S, Richardson G, Cooper J. Clinical effectiveness and cost-effectiveness of tests for the diagnosis and investigation of urinary tract infection in children: a systematic review and economic model. Health Technol Assess. 2006;10(36):1–154.

    Article  CAS  PubMed  Google Scholar 

  5. Mori R, Yonemoto N, Fitzgerald A, Tullus K, Verrier-Jones K, Lakhanpaul M. Diagnostic performance of urine dipstick testing in children with suspected UTI: a systematic review of relationship with age and comparison with microscopy. Acta Paediatr. 2010;99(4):581–4.

    Article  CAS  PubMed  Google Scholar 

  6. Kazi BA, Buffone GJ, Revell PA, Chandramohan L, Dowlin MD, Cruz AT. Performance characteristics of urinalyses for the diagnosis of pediatric urinary tract infection. Am J Emerg Med. 2013;31(9):1405–7.

    Article  PubMed  Google Scholar 

  7. Perazella MA, Coca SG. Traditional urinary biomarkers in the assessment of hospital-acquired AKI. Clin J Am Soc Nephrol. 2012;7(1):167–74.

    Article  PubMed  Google Scholar 

  8. Galpin JE, Shinaberger JH, Stanley TM, Blumenkrantz MJ, Bayer AS, Friedman GS, et al. Acute interstitial nephritis due to methicillin. Am J Med. 1978;65(5):756–65.

    Article  CAS  PubMed  Google Scholar 

  9. Sutton JM. Urinary eosinophils. Arch Intern Med. 1986;146(11):2243–4.

    Article  CAS  PubMed  Google Scholar 

  10. Nolan 3rd CR, Anger MS, Kelleher SP. Eosinophiluria – a new method of detection and definition of the clinical spectrum. N Engl J Med. 1986;315(24):1516–19.

    Article  PubMed  Google Scholar 

  11. Muriithi AK, Nasr SH, Leung N. Utility of urine eosinophils in the diagnosis of acute interstitial nephritis. Clin J Am Soc Nephrol. 2013;8(11):1857–62.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Trachtenberg F, Barregard L. The effect of age, sex, and race on urinary markers of kidney damage in children. Am J Kidney Dis. 2007;50(6):938–45.

    Article  CAS  PubMed  Google Scholar 

  13. Csernus K, Lanyi E, Erhardt E, Molnar D. Effect of childhood obesity and obesity-related cardiovascular risk factors on glomerular and tubular protein excretion. Eur J Pediatr. 2005;164(1):44–9.

    Article  CAS  PubMed  Google Scholar 

  14. Hjorth L, Helin I, Grubb A. Age-related reference limits for urine levels of albumin, orosomucoid, immunoglobulin G and protein HC in children. Scand J Clin Lab Invest. 2000;60(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  15. Davies AG, Postlethwaite RJ, Price DA, Burn JL, Houlton CA, Fielding BA. Urinary albumin excretion in school children. Arch Dis Child. 1984;59(7):625–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hogg RJ, Furth S, Lemley KV, Portman R, Schwartz GJ, Coresh J, et al. National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative clinical practice guidelines for chronic kidney disease in children and adolescents: evaluation, classification, and stratification. Pediatrics. 2003;111(6 Pt 1):1416–21.

    Article  PubMed  Google Scholar 

  17. Executive summary: standards of medical care in diabetes – 2013. Diabetes Care. 2013;36(Suppl 1):S4–10.

    Google Scholar 

  18. Ettenger RB. The evaluation of the child with proteinuria. Pediatr Ann. 1994;23(9):486–94.

    Article  CAS  PubMed  Google Scholar 

  19. The CARI Guidelines. Urine protein as diagnostic test: evaluation of proteinuria in children. Nephrology (Carlton). 2004;9 Suppl 3:S15–19.

    Google Scholar 

  20. Brandt JR, Jacobs A, Raissy HH, Kelly FM, Staples AO, Kaufman E, et al. Orthostatic proteinuria and the spectrum of diurnal variability of urinary protein excretion in healthy children. Pediatr Nephrol. 2010;25(6):1131–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1–150.

    Article  Google Scholar 

  22. Jones CA, Francis ME, Eberhardt MS, Chavers B, Coresh J, Engelgau M, et al. Microalbuminuria in the US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis. 2002;39(3):445–59.

    Article  PubMed  Google Scholar 

  23. Hogg RJ, Portman RJ, Milliner D, Lemley KV, Eddy A, Ingelfinger J. Evaluation and management of proteinuria and nephrotic syndrome in children: recommendations from a pediatric nephrology panel established at the National Kidney Foundation conference on proteinuria, albuminuria, risk, assessment, detection, and elimination (PARADE). Pediatrics. 2000;105(6):1242–9.

    Article  CAS  PubMed  Google Scholar 

  24. Park YH, Choi JY, Chung HS, Koo JW, Kim SY, Namgoong MK, et al. Hematuria and proteinuria in a mass school urine screening test. Pediatr Nephrol. 2005;20(8):1126–30.

    Article  PubMed  Google Scholar 

  25. Vehaskari VM, Rapola J. Isolated proteinuria: analysis of a school-age population. J Pediatr. 1982;101(5):661–8.

    Article  CAS  PubMed  Google Scholar 

  26. Mori Y, Hiraoka M, Suganuma N, Tsukahara H, Yoshida H, Mayumi M. Urinary creatinine excretion and protein/creatinine ratios vary by body size and gender in children. Pediatr Nephrol. 2006;21(5):683–7.

    Article  PubMed  Google Scholar 

  27. Kim HS, Cheon HW, Choe JH, Yoo KH, Hong YS, Lee JW, et al. Quantification of proteinuria in children using the urinary protein-osmolality ratio. Pediatr Nephrol. 2001;16(1):73–6.

    Article  CAS  PubMed  Google Scholar 

  28. Serdaroglu E, Mir S. Protein-osmolality ratio for quantification of proteinuria in children. Clin Exp Nephrol. 2008;12(5):354–7.

    Article  PubMed  Google Scholar 

  29. Hooman N, Otoukesh H, Safaii H, Mehrazma M, Shokrolah Y. Quantification of proteinuria with urinary protein to osmolality ratios in children with and without renal insufficiency. Ann Saudi Med. 2005;25(3):215–18.

    PubMed  Google Scholar 

  30. Smith HS. The kidney structure and function in health and disease. New York: Oxford Univ. Press; 1951.

    Google Scholar 

  31. Arant Jr BS, Edelmann Jr CM, Spitzer A. The congruence of creatinine and inulin clearances in children: use of the Technicon AutoAnalyzer. J Pediatr. 1972;81(3):559–61.

    Article  PubMed  Google Scholar 

  32. Cole BR, Giangiacomo J, Ingelfinger JR, Robson AM. Measurement of renal function without urine collection. A critical evaluation of the constant-infusion technic for determination of inulin and para-aminohippurate. N Engl J Med. 1972;287(22):1109–14.

    Article  CAS  PubMed  Google Scholar 

  33. Swinkels DW, Hendriks JC, Nauta J, de Jong MC. Glomerular filtration rate by single-injection inulin clearance: definition of a workable protocol for children. Ann Clin Biochem. 2000;37(Pt 1):60–6.

    Article  CAS  PubMed  Google Scholar 

  34. Florijn KW, Barendregt JN, Lentjes EG, van Dam W, Prodjosudjadi W, van Saase JL, et al. Glomerular filtration rate measurement by “single-shot” injection of inulin. Kidney Int. 1994;46(1):252–9.

    Article  CAS  PubMed  Google Scholar 

  35. van Rossum LK, Cransberg K, de Rijke YB, Zietse R, Lindemans J, Vulto AG. Determination of inulin clearance by single injection or infusion in children. Pediatr Nephrol. 2005;20(6):777–81.

    Article  PubMed  Google Scholar 

  36. Levey AS. Measurement of renal function in chronic renal disease. Kidney Int. 1990;38(1):167–84.

    Article  CAS  PubMed  Google Scholar 

  37. Myers GL, Miller WG, Coresh J, Fleming J, Greenberg N, Greene T, et al. Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem. 2006;52(1):5–18.

    Article  CAS  PubMed  Google Scholar 

  38. Schwartz GJ, Brion LP, Spitzer A. The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am. 1987;34(3):571–90.

    Article  CAS  PubMed  Google Scholar 

  39. Atiyeh BA, Dabbagh SS, Gruskin AB. Evaluation of renal function during childhood. Pediatr Rev. 1996;17(5):175–80.

    Article  CAS  PubMed  Google Scholar 

  40. Hellerstein S, Berenbom M, Alon US, Warady BA. Creatinine clearance following cimetidine for estimation of glomerular filtration rate. Pediatr Nephrol. 1998;12(1):49–54.

    Article  CAS  PubMed  Google Scholar 

  41. van Acker BA, Koomen GC, Koopman MG, de Waart DR, Arisz L. Creatinine clearance during cimetidine administration for measurement of glomerular filtration rate. Lancet. 1992;340(8831):1326–9.

    Article  PubMed  Google Scholar 

  42. Hellerstein S, Berenbom M, DiMaggio S, Erwin P, Simon SD, Wilson N. Comparison of two formulae for estimation of glomerular filtration rate in children. Pediatr Nephrol. 2004;19(7):780–4.

    Article  PubMed  Google Scholar 

  43. Schwartz GJ, Haycock GB, Edelmann Jr CM, Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics. 1976;58(2):259–63.

    CAS  PubMed  Google Scholar 

  44. Counahan R, Chantler C, Ghazali S, Kirkwood B, Rose F, Barratt TM. Estimation of glomerular filtration rate from plasma creatinine concentration in children. Arch Dis Child. 1976;51(11):875–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schwartz GJ, Furth S, Cole SR, Warady B, Munoz A. Glomerular filtration rate via plasma iohexol disappearance: pilot study for chronic kidney disease in children. Kidney Int. 2006;69(11):2070–7.

    Article  CAS  PubMed  Google Scholar 

  46. Schwartz GJ, Work DF. Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol. 2009;4(11):1832–43.

    Article  PubMed  Google Scholar 

  47. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20(3):629–37.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Schwartz GJ, Schneider MF, Maier PS, Moxey-Mims M, Dharnidharka VR, Warady BA, et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int. 2012;82(4):445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rule AD, Bergstralh EJ, Slezak JM, Bergert J, Larson TS. Glomerular filtration rate estimated by cystatin C among different clinical presentations. Kidney Int. 2006;69(2):399–405.

    Article  CAS  PubMed  Google Scholar 

  50. Finney H, Newman DJ, Price CP. Adult reference ranges for serum cystatin C, creatinine and predicted creatinine clearance. Ann Clin Biochem. 2000;37(Pt 1):49–59.

    Article  CAS  PubMed  Google Scholar 

  51. Knight EL, Verhave JC, Spiegelman D, Hillege HL, de Zeeuw D, Curhan GC, et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 2004;65(4):1416–21.

    Article  CAS  PubMed  Google Scholar 

  52. Cimerman N, Brguljan PM, Krasovec M, Suskovic S, Kos J. Serum cystatin C, a potent inhibitor of cysteine proteinases, is elevated in asthmatic patients. Clin Chim Acta. 2000;300(1–2):83–95.

    Article  CAS  PubMed  Google Scholar 

  53. Wiesli P, Schwegler B, Spinas GA, Schmid C. Serum cystatin C is sensitive to small changes in thyroid function. Clin Chim Acta. 2003;338(1–2):87–90.

    Article  CAS  PubMed  Google Scholar 

  54. Sambasivan AS, Lepage N, Filler G. Cystatin C intrapatient variability in children with chronic kidney disease is less than serum creatinine. Clin Chem. 2005;51(11):2215–16.

    Article  CAS  PubMed  Google Scholar 

  55. Zappitelli M, Parvex P, Joseph L, Paradis G, Grey V, Lau S, et al. Derivation and validation of cystatin C-based prediction equations for GFR in children. Am J Kidney Dis. 2006;48(2):221–30.

    Article  CAS  PubMed  Google Scholar 

  56. Pottel H, Hoste L, Martens F. A simple height-independent equation for estimating glomerular filtration rate in children. Pediatr Nephrol. 2012;27(6):973–9.

    Article  PubMed  Google Scholar 

  57. Zappitelli M, Zhang X, Foster BJ. Estimating glomerular filtration rate in children at serial follow-up when height is unknown. Clin J Am Soc Nephrol. 2010;5(10):1763–9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Filler G, Priem F, Vollmer I, Gellermann J, Jung K. Diagnostic sensitivity of serum cystatin for impaired glomerular filtration rate. Pediatr Nephrol. 1999;13(6):501–5.

    Article  CAS  PubMed  Google Scholar 

  59. Hoste L, Dubourg L, Selistre L, De Souza VC, Ranchin B, Hadj-Aissa A, et al. A new equation to estimate the glomerular filtration rate in children, adolescents and young adults. Nephrol Dial Transplant. 2014;29:1082–91.

    Article  CAS  PubMed  Google Scholar 

  60. Blufpand HN, Westland R, van Wijk JA, Roelandse-Koop EA, Kaspers GJ, Bokenkamp A. Height-independent estimation of glomerular filtration rate in children: an alternative to the schwartz equation. J Pediatr. 2013;163(6):1722–7.

    Article  PubMed  Google Scholar 

  61. Gaspari F, Perico N, Ruggenenti P, Mosconi L, Amuchastegui CS, Guerini E, et al. Plasma clearance of nonradioactive iohexol as a measure of glomerular filtration rate. J Am Soc Nephrol. 1995;6(2):257–63.

    CAS  PubMed  Google Scholar 

  62. Stake G, Monn E, Rootwelt K, Monclair T. The clearance of iohexol as a measure of the glomerular filtration rate in children with chronic renal failure. Scand J Clin Lab Invest. 1991;51(8):729–34.

    Article  CAS  PubMed  Google Scholar 

  63. Berg UB, Back R, Celsi G, Halling SE, Homberg I, Krmar RT, et al. Comparison of plasma clearance of iohexol and urinary clearance of inulin for measurement of GFR in children. Am J Kidney Dis. 2011;57(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  64. Gaspari F, Guerini E, Perico N, Mosconi L, Ruggenenti P, Remuzzi G. Glomerular filtration rate determined from a single plasma sample after intravenous iohexol injection: is it reliable? J Am Soc Nephrol. 1996;7(12):2689–93.

    CAS  PubMed  Google Scholar 

  65. Piepsz A, Colarinha P, Gordon I, Hahn K, Olivier P, Sixt R, et al. Guidelines for glomerular filtration rate determination in children. Eur J Nucl Med. 2001;28(3):31–6.

    Google Scholar 

  66. Blaufox MD, Aurell M, Bubeck B, Fommei E, Piepsz A, Russell C, et al. Report of the Radionuclides in Nephrourology Committee on renal clearance. J Nucl Med. 1996;37(11):1883–90.

    CAS  PubMed  Google Scholar 

  67. Rose B. In: Dereck J, Muza N, editors. Clinical physiology of acid-base and electrolyte disorders. 4th ed. New York: McGraw-Hill; 1994. p. 66–103.

    Google Scholar 

  68. Perazella MA, Bomback AS. Urinary eosinophils in AIN: farewell to an old biomarker? Clin J Am Soc Nephrol. 2013;8(11):1841–3.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Pepin MN, Bouchard J, Legault L, Ethier J. Diagnostic performance of fractional excretion of urea and fractional excretion of sodium in the evaluations of patients with acute kidney injury with or without diuretic treatment. Am J Kidney Dis. 2007;50(4):566–73.

    Article  PubMed  Google Scholar 

  70. Vanmassenhove J, Glorieux G, Hoste E, Dhondt A, Vanholder R, Van Biesen W. Urinary output and fractional excretion of sodium and urea as indicators of transient versus intrinsic acute kidney injury during early sepsis. Crit Care. 2013;17(5):R234.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bijvoet OL. Relation of plasma phosphate concentration to renal tubular reabsorption of phosphate. Clin Sci. 1969;37(1):23–36.

    CAS  PubMed  Google Scholar 

  72. Walton RJ, Bijvoet OL. Nomogram for derivation of renal threshold phosphate concentration. Lancet. 1975;2(7929):309–10.

    Article  CAS  PubMed  Google Scholar 

  73. Kenny AP, Glen AC. Tests of phosphate reabsorption. Lancet. 1973;2(7821):158.

    Article  CAS  PubMed  Google Scholar 

  74. Barth JH, Jones RG, Payne RB. Calculation of renal tubular reabsorption of phosphate: the algorithm performs better than the nomogram. Ann Clin Biochem. 2000;37(Pt 1):79–81.

    Article  CAS  PubMed  Google Scholar 

  75. Hummel CS, Lu C, Loo DD, Hirayama BA, Voss AA, Wright EM. Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2. Am J Physiol Cell Physiol. 2011;300(1):C14–21.

    Article  CAS  PubMed  Google Scholar 

  76. Santer R, Kinner M, Schneppenheim R, Hillebrand G, Kemper M, Ehrich J, et al. The molecular basis of renal glucosuria: mutations in the gene for a renal glucose transporter (SGLT2). J Inherit Metab Dis. 2000;23 Suppl 1:178.

    Google Scholar 

  77. West ML, Bendz O, Chen CB, Singer GG, Richardson RM, Sonnenberg H, et al. Development of a test to evaluate the transtubular potassium concentration gradient in the cortical collecting duct in vivo. Miner Electrolyte Metab. 1986;12(4):226–33.

    CAS  PubMed  Google Scholar 

  78. Rodriguez-Soriano J, Ubetagoyena M, Vallo A. Transtubular potassium concentration gradient: a useful test to estimate renal aldosterone bio-activity in infants and children. Pediatr Nephrol. 1990;4(2):105–10.

    Article  CAS  PubMed  Google Scholar 

  79. Ethier JH, Kamel KS, Magner PO, Lemann Jr J, Halperin ML. The transtubular potassium concentration in patients with hypokalemia and hyperkalemia. Am J Kidney Dis. 1990;15(4):309–15.

    Article  CAS  PubMed  Google Scholar 

  80. Choi MJ, Ziyadeh FN. The utility of the transtubular potassium gradient in the evaluation of hyperkalemia. J Am Soc Nephrol. 2008;19(3):424–6.

    Article  CAS  PubMed  Google Scholar 

  81. Kamel KS, Halperin ML. Intrarenal urea recycling leads to a higher rate of renal excretion of potassium: an hypothesis with clinical implications. Curr Opin Nephrol Hypertens. 2011;20(5):547–54.

    Article  CAS  PubMed  Google Scholar 

  82. Calonge MJ, Gasparini P, Chillaron J, Chillon M, Gallucci M, Rousaud F, et al. Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine. Nat Genet. 1994;6(4):420–5.

    Article  CAS  PubMed  Google Scholar 

  83. Saadi I, Chen XZ, Hediger M, Ong P, Pereira P, Goodyer P, et al. Molecular genetics of cystinuria: mutation analysis of SLC3A1 and evidence for another gene in type I (silent) phenotype. Kidney Int. 1998;54(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  84. Kost GJ, Trent JK, Saeed D. Indications for measurement of total carbon dioxide in arterial blood. Clin Chem. 1988;34(8):1650–2.

    CAS  PubMed  Google Scholar 

  85. K/DOQI Working Group. K/DOQI Clinical practice guidelines for bone metabolism and disease in children with chronic kidney disease. Am J Kidney Dis. 2005;46(4):12–100.

    Google Scholar 

  86. Rees L, Jones H. Nutritional management and growth in children with chronic kidney disease. Pediatr Nephrol. 2013;28(4):527–36.

    Article  PubMed  Google Scholar 

  87. Halperin ML, Kamel KS, Goldstein MB. Fluid, electrolyte, and acid-base physiology : a problem-based approach. 3rd ed. Philadelphia: W.B. Saunders; 2010.

    Google Scholar 

  88. Figge J, Jabor A, Kazda A, Fencl V. Anion gap and hypoalbuminemia. Crit Care Med. 1998;26(11):1807–10.

    Article  CAS  PubMed  Google Scholar 

  89. Srivastava T, Garg U, Chan YR, Alon US. Essentials of laboratory medicine for the nephrology clinician. Pediatr Nephrol. 2007;22(2):170–82.

    Article  PubMed  Google Scholar 

  90. Goldstein MB, Bear R, Richardson RM, Marsden PA, Halperin ML. The urine anion gap: a clinically useful index of ammonium excretion. Am J Med Sci. 1986;292(4):198–202.

    Article  CAS  PubMed  Google Scholar 

  91. Batlle DC, Hizon M, Cohen E, Gutterman C, Gupta R. The use of the urinary anion gap in the diagnosis of hyperchloremic metabolic acidosis. N Engl J Med. 1988;318(10):594–9.

    Article  CAS  PubMed  Google Scholar 

  92. Halperin ML, Margolis BL, Robinson LA, Halperin RM, West ML, Bear RA. The urine osmolal gap: a clue to estimate urine ammonium in “hybrid” types of metabolic acidosis. Clin Invest Med. 1988;11(3):198–202.

    CAS  PubMed  Google Scholar 

  93. Dyck RF, Asthana S, Kalra J, West ML, Massey KL. A modification of the urine osmolal gap: an improved method for estimating urine ammonium. Am J Nephrol. 1990;10(5):359–62.

    Article  CAS  PubMed  Google Scholar 

  94. Halperin ML, Goldstein MB, Haig A, Johnson MD, Stinebaugh BJ. Studies on the pathogenesis of type I (distal) renal tubular acidosis as revealed by the urinary PCO2 tensions. J Clin Invest. 1974;53(3):669–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. DuBose Jr TD, Caflisch CR. Validation of the difference in urine and blood carbon dioxide tension during bicarbonate loading as an index of distal nephron acidification in experimental models of distal renal tubular acidosis. J Clin Invest. 1985;75(4):1116–23.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kim S, Lee JW, Park J, Na KY, Joo KW, Ahn C, et al. The urine-blood PCO gradient as a diagnostic index of H(+)-ATPase defect distal renal tubular acidosis. Kidney Int. 2004;66(2):761–7.

    Article  CAS  PubMed  Google Scholar 

  97. Southcott EK, Kerrigan JL, Potter JM, Telford RD, Waring P, Reynolds GJ, et al. Establishment of pediatric reference intervals on a large cohort of healthy children. Clin Chim Acta. 2010;411(19-20):1421–7.

    Article  CAS  PubMed  Google Scholar 

  98. Colantonio DA, Kyriakopoulou L, Chan MK, Daly CH, Brinc D, Venner AA, et al. Closing the gaps in pediatric laboratory reference intervals: a CALIPER database of 40 biochemical markers in a healthy and multiethnic population of children. Clin Chem. 2012;58(5):854–68.

    Article  CAS  PubMed  Google Scholar 

  99. Soldin SJ, Brugnara C, Wong EC, editors. Pediatric reference ranges. 4th ed. Washington, DC: AACC Press; 2003.

    Google Scholar 

  100. Sevastos N, Theodossiades G, Archimandritis AJ. Pseudohyperkalemia in serum: a new insight into an old phenomenon. Clin Med Res. 2008;6(1):30–2.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Asirvatham JR, Moses V, Bjornson L. Errors in potassium measurement: a laboratory perspective for the clinician. N Am J Med Sci. 2013;5(4):255–9.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Stewart GW, Corrall RJ, Fyffe JA, Stockdill G, Strong JA. Familial pseudohyperkalaemiaa new syndrome. Lancet. 1979;2(8135):175–7. Epub 1979/07/28.

    Article  CAS  PubMed  Google Scholar 

  103. Andolfo I, Alper SL, Delaunay J, Auriemma C, Russo R, Asci R, et al. Missense mutations in the ABCB6 transporter cause dominant familial pseudohyperkalemia. Am J Hematol. 2013;88(1):66–72.

    Article  CAS  PubMed  Google Scholar 

  104. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl. 2009;76(113):S1–130.

    Google Scholar 

  105. Liamis G, Liberopoulos E, Barkas F, Elisaf M. Spurious electrolyte disorders: a diagnostic challenge for clinicians. Am J Nephrol. 2013;38(1):50–7.

    Article  PubMed  Google Scholar 

  106. Clinical practice guidelines for nutrition in chronic renal failure. K/DOQI, National Kidney Foundation. Am J Kidney Dis. 2000;35(6 Suppl 2):S1–140.

    Google Scholar 

  107. Clifford SM, Bunker AM, Jacobsen JR, Roberts WL. Age and gender specific pediatric reference intervals for aldolase, amylase, ceruloplasmin, creatine kinase, pancreatic amylase, prealbumin, and uric acid. Clin Chim Acta. 2011;412(9-10):788–90.

    Article  CAS  PubMed  Google Scholar 

  108. Fathallah-Shaykh SA, Cramer MT. Uric acid and the kidney. Pediatr Nephrol. 2013;29:999–1008.

    Article  PubMed  Google Scholar 

  109. Cameron JS, Moro F, Simmonds HA. Gout, uric acid and purine metabolism in paediatric nephrology. Pediatr Nephrol. 1993;7(1):105–8.

    Article  CAS  PubMed  Google Scholar 

  110. Dahan K, Devuyst O, Smaers M, Vertommen D, Loute G, Poux JM, et al. A cluster of mutations in the UMOD gene causes familial juvenile hyperuricemic nephropathy with abnormal expression of uromodulin. J Am Soc Nephrol. 2003;14(11):2883–93.

    Article  CAS  PubMed  Google Scholar 

  111. Zivna M, Hulkova H, Matignon M, Hodanova K, Vylet’al P, Kalbacova M, et al. Dominant renin gene mutations associated with early-onset hyperuricemia, anemia, and chronic kidney failure. Am J Hum Genet. 2009;85(2):204–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bingham C, Ellard S, van’t Hoff WG, Simmonds HA, Marinaki AM, Badman MK, et al. Atypical familial juvenile hyperuricemic nephropathy associated with a hepatocyte nuclear factor-1beta gene mutation. Kidney Int. 2003;63(5):1645–51.

    Article  CAS  PubMed  Google Scholar 

  113. Adalat S, Woolf AS, Johnstone KA, Wirsing A, Harries LW, Long DA, et al. HNF1B mutations associate with hypomagnesemia and renal magnesium wasting. J Am Soc Nephrol. 2009;20(5):1123–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Noone DG, Marks SD. Hyperuricemia is associated with hypertension, obesity, and albuminuria in children with chronic kidney disease. J Pediatr. 2013;162(1):128–32.

    Article  CAS  PubMed  Google Scholar 

  115. Ruilope LM, Pontremoli R. Serum uric acid and cardio-renal diseases. Curr Med Res Opin. 2013;29 Suppl 3:25–31.

    Article  CAS  PubMed  Google Scholar 

  116. Feig DI, Johnson RJ. Hyperuricemia in childhood primary hypertension. Hypertension. 2003;42(3):247–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yanik M, Feig DI. Serum urate: a biomarker or treatment target in pediatric hypertension? Curr Opin Cardiol. 2013;28(4):433–8.

    PubMed  Google Scholar 

  118. Hamada T, Ichida K, Hosoyamada M, Mizuta E, Yanagihara K, Sonoyama K, et al. Uricosuric action of losartan via the inhibition of urate transporter 1 (URAT 1) in hypertensive patients. Am J Hypertens. 2008;21(10):1157–62.

    Article  CAS  PubMed  Google Scholar 

  119. Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA. 2008;300(8):924–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sikora P, Pijanowska M, Majewski M, Bienias B, Borzecka H, Zajczkowska M. Acute renal failure due to bilateral xanthine urolithiasis in a boy with Lesch-Nyhan syndrome. Pediatr Nephrol. 2006;21(7):1045–7.

    Article  PubMed  Google Scholar 

  121. Chao J, Terkeltaub R. A critical reappraisal of allopurinol dosing, safety, and efficacy for hyperuricemia in gout. Curr Rheumatol Rep. 2009;11(2):135–40.

    Article  CAS  PubMed  Google Scholar 

  122. Biyikli NK, Alpay H, Guran T. Hypercalciuria and recurrent urinary tract infections: incidence and symptoms in children over 5 years of age. Pediatr Nephrol. 2005;20(10):1435–8.

    Article  PubMed  Google Scholar 

  123. Ghazali S, Barratt TM. Urinary excretion of calcium and magnesium in children. Arch Dis Child. 1974;49(2):97–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Moore E, Coe F, McMann B, Favus M. Idiopathic hypercalciuria in children: prevalence and metabolic characteristics. J Pediatr. 1978;92(6):906–10.

    Article  CAS  PubMed  Google Scholar 

  125. Sorkhi H, Haji Aahmadi M. Urinary calcium to creatinin ratio in children. Indian J Pediatr. 2005;72(12):1055–6.

    Article  PubMed  Google Scholar 

  126. De Santo NG, Di Iorio B, Capasso G, Paduano C, Stamler R, Langman CB, et al. Population based data on urinary excretion of calcium, magnesium, oxalate, phosphate and uric acid in children from Cimitile (southern Italy). Pediatr Nephrol. 1992;6(2):149–57.

    Article  PubMed  Google Scholar 

  127. So NP, Osorio AV, Simon SD, Alon US. Normal urinary calcium/creatinine ratios in African-American and Caucasian children. Pediatr Nephrol. 2001;16(2):133–9.

    Article  CAS  PubMed  Google Scholar 

  128. Vachvanichsanong P, Lebel L, Moore ES. Urinary calcium excretion in healthy Thai children. Pediatr Nephrol. 2000;14(8–9):847–50.

    Article  CAS  PubMed  Google Scholar 

  129. Butani L, Kalia A. Idiopathic hypercalciuria in children – how valid are the existing diagnostic criteria? Pediatr Nephrol. 2004;19(6):577–82.

    Article  PubMed  Google Scholar 

  130. Hilgenfeld MS, Simon S, Blowey D, Richmond W, Alon US. Lack of seasonal variations in urinary calcium/creatinine ratio in school-age children. Pediatr Nephrol. 2004;19(10):1153–5.

    Article  PubMed  Google Scholar 

  131. Richmond W, Colgan G, Simon S, Stuart-Hilgenfeld M, Wilson N, Alon US. Random urine calcium/osmolality in the assessment of calciuria in children with decreased muscle mass. Clin Nephrol. 2005;64(4):264–70.

    Article  CAS  PubMed  Google Scholar 

  132. Mir S, Serdaroglu E. Quantification of hypercalciuria with the urine calcium osmolality ratio in children. Pediatr Nephrol. 2005;20(11):1562–5.

    Article  PubMed  Google Scholar 

  133. Polito C, La Manna A, Maiello R, Nappi B, Siciliano MC, Di Domenico MR, et al. Urinary sodium and potassium excretion in idiopathic hypercalciuria of children. Nephron. 2002;91(1):7–12.

    Article  CAS  PubMed  Google Scholar 

  134. Bray GA, Vollmer WM, Sacks FM, Obarzanek E, Svetkey LP, Appel LJ. A further subgroup analysis of the effects of the DASH diet and three dietary sodium levels on blood pressure: results of the DASH-Sodium trial. Am J Cardiol. 2004;94(2):222–7.

    Article  CAS  PubMed  Google Scholar 

  135. Tefekli A, Esen T, Ziylan O, Erol B, Armagan A, Ander H, et al. Metabolic risk factors in pediatric and adult calcium oxalate urinary stone formers: is there any difference? Urol Int. 2003;70(4):273–7.

    Article  CAS  PubMed  Google Scholar 

  136. Matos V, van Melle G, Boulat O, Markert M, Bachmann C, Guignard JP. Urinary phosphate/creatinine, calcium/creatinine, and magnesium/creatinine ratios in a healthy pediatric population. J Pediatr. 1997;131(2):252–7.

    Article  CAS  PubMed  Google Scholar 

  137. Hoppe B, Langman CB. Hypocitraturia in patients with urolithiasis. Arch Dis Child. 1997;76(2):174–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hoppe B, Jahnen A, Bach D, Hesse A. Urinary calcium oxalate saturation in healthy infants and children. J Urol. 1997;158(2):557–9.

    Article  CAS  PubMed  Google Scholar 

  139. Karabacak OR, Ipek B, Ozturk U, Demirel F, Saltas H, Altug U. Metabolic evaluation in stone disease metabolic differences between the pediatric and adult patients with stone disease. Urology. 2010;76(1):238–41.

    Article  PubMed  Google Scholar 

  140. DeFoor WR, Jackson E, Minevich E, Caillat A, Reddy P, Sheldon C, et al. The risk of recurrent urolithiasis in children is dependent on urinary calcium and citrate. Urology. 2010;76(1):242–5.

    Article  PubMed  Google Scholar 

  141. Arrabal-Polo MA, Arrabal-Martin M, Arias-Santiago S, Garrido-Gomez J, Poyatos-Andujar A, Zuluaga-Gomez A. Importance of citrate and the calcium : citrate ratio in patients with calcium renal lithiasis and severe lithogenesis. BJU Int. 2013;111(4):622–7.

    Article  CAS  PubMed  Google Scholar 

  142. Sikora P, Roth B, Kribs A, Michalk DV, Hesse A, Hoppe B. Hypocitraturia is one of the major risk factors for nephrocalcinosis in very low birth weight (VLBW) infants. Kidney Int. 2003;63(6):2194–9.

    Article  CAS  PubMed  Google Scholar 

  143. Stapenhorst L, Sassen R, Beck B, Laube N, Hesse A, Hoppe B. Hypocitraturia as a risk factor for nephrocalcinosis after kidney transplantation. Pediatr Nephrol. 2005;20(5):652–6.

    Article  PubMed  Google Scholar 

  144. Hoppe B. An update on primary hyperoxaluria. Nat Rev Nephrol. 2012;8(8):467–75.

    Article  CAS  PubMed  Google Scholar 

  145. Cochat P, Rumsby G. Primary hyperoxaluria. N Engl J Med. 2013;369(7):649–58.

    Article  CAS  PubMed  Google Scholar 

  146. Belostotsky R, Seboun E, Idelson GH, Milliner DS, Becker-Cohen R, Rinat C, et al. Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am J Hum Genet. 2010;87(3):392–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Matos V, Van Melle G, Werner D, Bardy D, Guignard JP. Urinary oxalate and urate to creatinine ratios in a healthy pediatric population. Am J Kidney Dis. 1999;34(2):e1.

    Article  CAS  PubMed  Google Scholar 

  148. La Manna A, Polito C, Marte A, Iovene A, Di Toro R. Hyperuricosuria in children: clinical presentation and natural history. Pediatrics. 2001;107(1):86–90.

    Article  PubMed  Google Scholar 

  149. Stapleton FB, Nash DA. A screening test for hyperuricosuria. J Pediatr. 1983;102(1):88–90.

    Article  CAS  PubMed  Google Scholar 

  150. Azizi M, Menard J. Review: measurement of plasma renin: a critical review of methodology. J Renin Angiotensin Aldosterone Syst JRAAS. 2010;11(2):89–90.

    Article  CAS  PubMed  Google Scholar 

  151. Dillon MJ, Ryness JM. Plasma renin activity and aldosterone concentration in children. Br Med J. 1975;4(5992):316–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Olson N, DeJongh B, Hough A, Parra D. Plasma renin activity-guided strategy for the management of hypertension. Pharmacotherapy. 2012;32(5):446–55.

    Article  CAS  PubMed  Google Scholar 

  153. Dillon MJ. The diagnosis of renovascular disease. Pediatr Nephrol. 1997;11(3):366–72.

    Article  CAS  PubMed  Google Scholar 

  154. Tash JA, Stock JA, Hanna MK. The role of partial nephrectomy in the treatment of pediatric renal hypertension. J Urol. 2003;169(2):625–8.

    Article  PubMed  Google Scholar 

  155. Goonasekera CD, Shah V, Wade AM, Dillon MJ. The usefulness of renal vein renin studies in hypertensive children: a 25-year experience. Pediatr Nephrol. 2002;17(11):943–9.

    Article  PubMed  Google Scholar 

  156. McLaren CA, Roebuck DJ. Interventional radiology for renovascular hypertension in children. Tech Vasc Interv Radiol. 2003;6(4):150–7.

    Article  PubMed  Google Scholar 

  157. Dillon MJ, Shah V, Barratt TM. Renal vein renin measurements in children with hypertension. Br Med J. 1978;2(6131):168–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. White PC. Disorders of aldosterone biosynthesis and action. N Engl J Med. 1994;331(4):250–8.

    Article  CAS  PubMed  Google Scholar 

  159. Whitworth JA. Mechanisms of glucocorticoid-induced hypertension. Kidney Int. 1987;31(5):1213–24.

    Article  CAS  PubMed  Google Scholar 

  160. Stowasser M, Ahmed AH, Pimenta E, Taylor PJ, Gordon RD. Factors affecting the aldosterone/renin ratio. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. Horm Metab Res. 2012;44(3):170–6.

    Article  CAS  PubMed  Google Scholar 

  161. Blumenfeld JD, Sealey JE, Schlussel Y, Vaughan Jr ED, Sos TA, Atlas SA, et al. Diagnosis and treatment of primary hyperaldosteronism. Ann Intern Med. 1994;121(11):877–85.

    Article  CAS  PubMed  Google Scholar 

  162. Walport MJ. Complement. First of two parts. N Engl J Med. 2001;344(14):1058–66.

    Article  CAS  PubMed  Google Scholar 

  163. Walport MJ. Complement. Second of two parts. N Engl J Med. 2001;344(15):1140–4.

    Article  CAS  PubMed  Google Scholar 

  164. Thurman JM, Holers VM. The central role of the alternative complement pathway in human disease. J Immunol. 2006;176(3):1305–10.

    Article  CAS  PubMed  Google Scholar 

  165. Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA, McGuire SR, et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med. 2006;12(6):682–7.

    Article  CAS  PubMed  Google Scholar 

  166. Vernon KA, Cook HT. Complement in glomerular disease. Adv Chronic Kidney Dis. 2012;19(2):84–92.

    Article  PubMed  Google Scholar 

  167. Hebert LA, Cosio FG, Neff JC. Diagnostic significance of hypocomplementemia. Kidney Int. 1991;39(5):811–21.

    Article  CAS  PubMed  Google Scholar 

  168. Harboe M, Thorgersen EB, Mollnes TE. Advances in assay of complement function and activation. Adv Drug Deliv Rev. 2011;63(12):976–87.

    Article  CAS  PubMed  Google Scholar 

  169. Mollnes TE, Jokiranta TS, Truedsson L, Nilsson B, Rodriguez de Cordoba S, Kirschfink M. Complement analysis in the 21st century. Mol Immunol. 2007;44(16):3838–49.

    Article  CAS  PubMed  Google Scholar 

  170. Dragon-Durey MA, Blanc C, Marinozzi MC, van Schaarenburg RA, Trouw LA. Autoantibodies against complement components and functional consequences. Mol Immunol. 2013;56(3):213–21.

    Article  CAS  PubMed  Google Scholar 

  171. Botto M, Kirschfink M, Macor P, Pickering MC, Wurzner R, Tedesco F. Complement in human diseases: lessons from complement deficiencies. Mol Immunol. 2009;46(14):2774–83.

    Article  CAS  PubMed  Google Scholar 

  172. Malina M, Roumenina LT, Seeman T, Le Quintrec M, Dragon-Durey MA, Schaefer F, et al. Genetics of hemolytic uremic syndromes. Presse Med. 2012;41(3 Pt 2):e105–14.

    Article  PubMed  Google Scholar 

  173. Davies DJ, Moran JE, Niall JF, Ryan GB. Segmental necrotising glomerulonephritis with antineutrophil antibody: possible arbovirus aetiology? Br Med J (Clin Res Ed). 1982;285(6342):606.

    Article  CAS  Google Scholar 

  174. Savige J, Gillis D, Benson E, Davies D, Esnault V, Falk RJ, et al. International consensus statement on testing and reporting of antineutrophil cytoplasmic antibodies (ANCA). Am J Clin Pathol. 1999;111(4):507–13.

    Article  CAS  PubMed  Google Scholar 

  175. Elena C. L28. Relevance of detection techniques for ANCA testing. Presse Med. 2013;42(4 Pt 2):582–4.

    Article  PubMed  Google Scholar 

  176. Csernok E. ANCA testing: the current stage and perspectives. Clin Exp Nephrol. 2013;17(5):615–18.

    Article  CAS  PubMed  Google Scholar 

  177. Radice A, Bianchi L, Sinico RA. Anti-neutrophil cytoplasmic autoantibodies: methodological aspects and clinical significance in systemic vasculitis. Autoimmun Rev. 2013;12(4):487–95.

    Article  CAS  PubMed  Google Scholar 

  178. Mandl LA, Solomon DH, Smith EL, Lew RA, Katz JN, Shmerling RH. Using antineutrophil cytoplasmic antibody testing to diagnose vasculitis: can test-ordering guidelines improve diagnostic accuracy? Arch Intern Med. 2002;162(13):1509–14.

    Article  PubMed  Google Scholar 

  179. van der Woude FJ, Rasmussen N, Lobatto S, Wiik A, Permin H, van Es LA, et al. Autoantibodies against neutrophils and monocytes: tool for diagnosis and marker of disease activity in Wegener’s granulomatosis. Lancet. 1985;1(8426):425–9.

    Article  PubMed  Google Scholar 

  180. Sinclair D, Stevens JM. Role of antineutrophil cytoplasmic antibodies and glomerular basement membrane antibodies in the diagnosis and monitoring of systemic vasculitides. Ann Clin Biochem. 2007;44(Pt 5):432–42.

    Article  CAS  PubMed  Google Scholar 

  181. Birck R, Schmitt WH, Kaelsch IA, van der Woude FJ. Serial ANCA determinations for monitoring disease activity in patients with ANCA-associated vasculitis: systematic review. Am J Kidney Dis. 2006;47(1):15–23.

    Article  PubMed  Google Scholar 

  182. Bosch X, Guilabert A, Font J. Antineutrophil cytoplasmic antibodies. Lancet. 2006;368(9533):404–18.

    Article  CAS  PubMed  Google Scholar 

  183. Tomasson G, Grayson PC, Mahr AD, Lavalley M, Merkel PA. Value of ANCA measurements during remission to predict a relapse of ANCA-associated vasculitis – a meta-analysis. Rheumatology (Oxford). 2012;51(1):100–9.

    Article  CAS  Google Scholar 

  184. Flossmann O, Berden A, de Groot K, Hagen C, Harper L, Heijl C, et al. Long-term patient survival in ANCA-associated vasculitis. Ann Rheum Dis. 2011;70(3):488–94.

    Article  PubMed  Google Scholar 

  185. Sinico RA, Di Toma L, Radice A. Renal involvement in anti-neutrophil cytoplasmic autoantibody associated vasculitis. Autoimmun Rev. 2013;12(4):477–82.

    Article  CAS  PubMed  Google Scholar 

  186. Walsh M, Flossmann O, Berden A, Westman K, Hoglund P, Stegeman C, et al. Risk factors for relapse of antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 2012;64(2):542–8.

    Article  CAS  PubMed  Google Scholar 

  187. Sanders JS, Stassen PM, van Rossum AP, Kallenberg CG, Stegeman CA. Risk factors for relapse in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis: tools for treatment decisions? Clin Exp Rheumatol. 2004;22(6 Suppl 36):S94–101.

    CAS  PubMed  Google Scholar 

  188. Sanders JS, Huitma MG, Kallenberg CG, Stegeman CA. Prediction of relapses in PR3-ANCA-associated vasculitis by assessing responses of ANCA titres to treatment. Rheumatology (Oxford). 2006;45(6):724–9.

    Article  CAS  Google Scholar 

  189. Roth AJ, Ooi JD, Hess JJ, van Timmeren MM, Berg EA, Poulton CE, et al. Epitope specificity determines pathogenicity and detectability in ANCA-associated vasculitis. J Clin Invest. 2013;123(4):1773–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Gou SJ, Xu PC, Chen M, Zhao MH. Epitope analysis of anti-myeloperoxidase antibodies in patients with ANCA-associated vasculitis. PLoS One. 2013;8(4):e60530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kain R, Exner M, Brandes R, Ziebermayr R, Cunningham D, Alderson CA, et al. Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat Med. 2008;14(10):1088–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kain R, Matsui K, Exner M, Binder S, Schaffner G, Sommer EM, et al. A novel class of autoantigens of anti-neutrophil cytoplasmic antibodies in necrotizing and crescentic glomerulonephritis: the lysosomal membrane glycoprotein h-lamp-2 in neutrophil granulocytes and a related membrane protein in glomerular endothelial cells. J Exp Med. 1995;181(2):585–97.

    Article  CAS  PubMed  Google Scholar 

  193. Kain R, Tadema H, McKinney EF, Benharkou A, Brandes R, Peschel A, et al. High prevalence of autoantibodies to hLAMP-2 in anti-neutrophil cytoplasmic antibody-associated vasculitis. J Am Soc Nephrol. 2012;23(3):556–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Roth AJ, Brown MC, Smith RN, Badhwar AK, Parente O, Chung H, et al. Anti-LAMP-2 antibodies are not prevalent in patients with antineutrophil cytoplasmic autoantibody glomerulonephritis. J Am Soc Nephrol. 2012;23(3):545–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kain R. L29. Relevance of anti-LAMP-2 in vasculitis: why the controversy. Presse Med. 2013;42(4 Pt 2):584–8.

    Article  PubMed  Google Scholar 

  196. Saisoong S, Eiam-Ong S, Hanvivatvong O. Correlations between antinucleosome antibodies and anti-double-stranded DNA antibodies, C3, C4, and clinical activity in lupus patients. Clin Exp Rheumatol. 2006;24(1):51–8.

    CAS  PubMed  Google Scholar 

  197. Malleson PN, Sailer M, Mackinnon MJ. Usefulness of antinuclear antibody testing to screen for rheumatic diseases. Arch Dis Child. 1997;77(4):299–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Satoh M, Chan EK, Ho LA, Rose KM, Parks CG, Cohn RD, et al. Prevalence and sociodemographic correlates of antinuclear antibodies in the United States. Arthritis Rheum. 2012;64(7):2319–27.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Pisetsky DS. Antinuclear antibodies in rheumatic disease: a proposal for a function-based classification. Scand J Immunol. 2012;76(3):223–8.

    Article  CAS  PubMed  Google Scholar 

  200. Servais G, Karmali R, Guillaume MP, Badot V, Duchateau J, Corazza F. Anti DNA antibodies are not restricted to a specific pattern of fluorescence on HEp2 cells. Clin Chem Lab Med. 2009;47(5):543–9.

    Article  CAS  PubMed  Google Scholar 

  201. Frodlund M, Dahlstrom O, Kastbom A, Skogh T, Sjowall C. Associations between antinuclear antibody staining patterns and clinical features of systemic lupus erythematosus: analysis of a regional Swedish register. BMJ Open. 2013;3(10):e003608.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Mariz HA, Sato EI, Barbosa SH, Rodrigues SH, Dellavance A, Andrade LE. Pattern on the antinuclear antibody-HEp-2 test is a critical parameter for discriminating antinuclear antibody-positive healthy individuals and patients with autoimmune rheumatic diseases. Arthritis Rheum. 2011;63(1):191–200.

    Article  CAS  PubMed  Google Scholar 

  203. Fritzler MJ. The antinuclear antibody test: last or lasting gasp? Arthritis Rheum. 2011;63(1):19–22.

    Article  PubMed  Google Scholar 

  204. Haynes DC, Gershwin ME, Robbins DL, Miller 3rd JJ, Cosca D. Autoantibody profiles in juvenile arthritis. J Rheumatol. 1986;13(2):358–63.

    CAS  PubMed  Google Scholar 

  205. Cabral DA, Petty RE, Fung M, Malleson PN. Persistent antinuclear antibodies in children without identifiable inflammatory rheumatic or autoimmune disease. Pediatrics. 1992;89(3):441–4.

    CAS  PubMed  Google Scholar 

  206. Tan EM, Feltkamp TE, Smolen JS, Butcher B, Dawkins R, Fritzler MJ, et al. Range of antinuclear antibodies in “healthy” individuals. Arthritis Rheum. 1997;40(9):1601–11.

    Article  CAS  PubMed  Google Scholar 

  207. Abeles AM, Abeles M. The clinical utility of a positive antinuclear antibody test result. Am J Med. 2013;126(4):342–8.

    Article  PubMed  Google Scholar 

  208. Marks SD, Tullus K. Autoantibodies in systemic lupus erythematosus. Pediatr Nephrol. 2012;27(10):1855–68.

    Article  PubMed  Google Scholar 

  209. Cervera R, Vinas O, Ramos-Casals M, Font J, Garcia-Carrasco M, Siso A, et al. Anti-chromatin antibodies in systemic lupus erythematosus: a useful marker for lupus nephropathy. Ann Rheum Dis. 2003;62(5):431–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Pickering MC, Botto M. Are anti-C1q antibodies different from other SLE autoantibodies? Nat Rev Rheumatol. 2010;6(8):490–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Noone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Noone, D., Langlois, V. (2016). Laboratory Evaluation of Renal Disease in Childhood. In: Geary, D., Schaefer, F. (eds) Pediatric Kidney Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52972-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52972-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52970-6

  • Online ISBN: 978-3-662-52972-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics