Skip to main content

Disorders of Kidney Formation

  • Chapter
  • First Online:
  • 2677 Accesses

Abstract

In this chapter, disorders of kidney formation, so-called congenital anomalies of the kidney and urinary tract (CAKUT) are defined including their epidemiology and long-term outcome. A detailed review of the molecular signaling pathways that lead to normal kidney and urinary tract formation is included with a focus on those genes and proteins that have been shown to be pertinent in animal models of CAKUT and in humans. Clinical management of unilateral renal agenesis, renal hypo/dysplasia, multicystic renal dysplasia, renal ectopia, and renal fusion anomalies is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.ncbi.nlm.nih.gov/

  2. 2.

    http://www.medicine.uiowa.edu/pendredandbor/

References

  1. Ardissino G, Dacco V, Testa S, Bonaudo R, Claris-Appiani A, Taioli E, et al. Epidemiology of chronic renal failure in children: data from the ItalKid project. Pediatrics. 2003;111(4 Pt 1):e382–7.

    Article  PubMed  Google Scholar 

  2. Studies NAPRTaC. Annual dialysis report 2011.

    Google Scholar 

  3. Potter EL. Normal and abnormal development of the kidney. Chicago: Year Book Medical Publishers; 1972.

    Google Scholar 

  4. Han BK, Babcock DS. Sonographic measurements and appearance of normal kidneys in children. AJR Am J Roentgenol. 1985;145(3):611–6.

    Article  CAS  PubMed  Google Scholar 

  5. Dinkel EEM, Dittrich M, Peters H, Berres M, Schulte-Wissermann H. Kidney size in childhood. Sonographical growth charts for kidney length and volume. Pediatr Radiol. 1985;15:38–43.

    Article  CAS  PubMed  Google Scholar 

  6. Wiesel A, Queisser-Luft A, Clementi M, Bianca S, Stoll C. Prenatal detection of congenital renal malformations by fetal ultrasonographic examination: an analysis of 709,030 births in 12 European countries. Eur J Med Genet. 2005;48(2):131–44.

    Article  CAS  PubMed  Google Scholar 

  7. Melo BF, Aguiar MB, Bouzada MC, Aguiar RL, Pereira AK, Paixao GM, et al. Early risk factors for neonatal mortality in CAKUT: analysis of 524 affected newborns. Pediatr Nephrol. 2012;27(6):965–72.

    Article  PubMed  Google Scholar 

  8. Piscione TD, Rosenblum ND. The malformed kidney: disruption of glomerular and tubular development. Clin Genet. 1999;56(5):341–56.

    Article  CAS  PubMed  Google Scholar 

  9. Queisser-Luft A, Stolz G, Wiesel A, Schlaefer K, Spranger J. Malformations in newborn: results based on 30,940 infants and fetuses from the Mainz congenital birth defect monitoring system (1990–1998). Arch Gynecol Obstet. 2002;266(3):163–7.

    Article  CAS  PubMed  Google Scholar 

  10. Limwongse CCS, Cassidy SB. Syndromes and malformations of the urinary tract. In: Barratt TMAE, Harmon WE, editors. Pediatric nephrology. 4th ed. Baltimore: Williams & Wilkins; 1999. p. 427–49.

    Google Scholar 

  11. Winyard P, Chitty L. Dysplastic and polycystic kidneys: diagnosis, associations and management. Prenat Diagn. 2001;21(11):924–35.

    Article  CAS  PubMed  Google Scholar 

  12. Harris J, Robert E, Kallen B. Epidemiologic characteristics of kidney malformations. Eur J Epidemiol. 2000;16(11):985–92.

    Article  CAS  PubMed  Google Scholar 

  13. Roodhooft AM, Birnholz JC, Holmes LB. Familial nature of congenital absence and severe dysgenesis of both kidneys. N Engl J Med. 1984;310(21):1341–5.

    Article  CAS  PubMed  Google Scholar 

  14. Guarino N, Tadini B, Camardi P, Silvestro L, Lace R, Bianchi M. The incidence of associated urological abnormalities in children with renal ectopia. J Urol. 2004;172(4 Pt 2):1757–9; discussion 9.

    Article  PubMed  Google Scholar 

  15. Weizer AZ, Silverstein AD, Auge BK, Delvecchio FC, Raj G, Albala DM, et al. Determining the incidence of horseshoe kidney from radiographic data at a single institution. J Urol. 2003;170(5):1722–6.

    Article  PubMed  Google Scholar 

  16. Quirino IG, Diniz JS, Bouzada MC, Pereira AK, Lopes TJ, Paixao GM, et al. Clinical course of 822 children with prenatally detected nephrouropathies. Clin J Am Soc Nephrol. 2012;7(3):444–51.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gonzalez Celedon C, Bitsori M, Tullus K. Progression of chronic renal failure in children with dysplastic kidneys. Pediatr Nephrol. 2007;22(7):1014–20.

    Article  PubMed  Google Scholar 

  18. Sanna-Cherchi S, Ravani P, Corbani V, Parodi S, Haupt R, Piaggio G, et al. Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int. 2009;76(5):528–33.

    Article  PubMed  Google Scholar 

  19. Wuhl E, van Stralen KJ, Verrina E, Bjerre A, Wanner C, Heaf JG, et al. Timing and outcome of renal replacement therapy in patients with congenital malformations of the kidney and urinary tract. Clin J Am Soc Nephrol. 2013;8(1):67–74.

    Article  PubMed  Google Scholar 

  20. Costantini F. Genetic controls and cellular behaviors in branching morphogenesis of the renal collecting system. Wiley Interdiscip Rev Dev Biol. 2012;1(5):693–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chai OH, Song CH, Park SK, Kim W, Cho ES. Molecular regulation of kidney development. Anat Cell Biol. 2013;46(1):19–31.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schwarz R, Stephens F, Cussen L. The pathogenesis of renal dysplasia1 II. The significance of lateral and medial ectopy of the ureteric orifice. Investig Urol. 1981;19(September):97–100.

    CAS  Google Scholar 

  23. Hu MC, Rosenblum ND. Genetic regulation of branching morphogenesis: lessons learned from loss-of-function phenotypes. Pediatr Res. 2003;54(4):433–8.

    Article  PubMed  Google Scholar 

  24. Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994;367:380–3.

    Article  CAS  PubMed  Google Scholar 

  25. Schuchardt A, D’Agati V, Pachnis V, Costantini F. Renal agenesis and hypodysplasia in ret-k - mutant mice result from defects in ureteric bud development. Development. 1996;122:1919–29.

    CAS  PubMed  Google Scholar 

  26. Enomoto H, Araki T, Jackman A, Heuckeroth R, Snider W, Johnson E, et al. GFRa1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron. 1998;21:317–24.

    Article  CAS  PubMed  Google Scholar 

  27. Pichel J, Shen L, Sheng H, Granholm A-C, Drago J, Grinberg A, et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature. 1996;382:73–6.

    Article  CAS  PubMed  Google Scholar 

  28. Maeshima A, Sakurai H, Choi Y, Kitamura S, Vaughn DA, Tee JB, et al. Glial cell-derived neurotrophic factor independent ureteric bud outgrowth from the Wolffian duct. J Am Soc Nephrol. 2007;18(12):3147–55.

    Article  CAS  PubMed  Google Scholar 

  29. Reidy KJ, Rosenblum ND. Cell and molecular biology of kidney development. Semin Nephrol. 2009;29(4):321–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grieshammer U, Ma L, Plump A, Wang F, Tessier-Lavigne M, Martin G. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell. 2004;6(May):709–17.

    Article  CAS  PubMed  Google Scholar 

  31. Miyazaki Y, Oshima K, Fogo A, Hogan B, Ichikawa I. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Investig. 2000;105(7):863–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu PX, Adams J, Peters H, Brown MC, Heaney S, Maas R. Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet. 1999;23(1):113–7.

    Article  CAS  PubMed  Google Scholar 

  33. Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D. Six1 is required for the early organogenesis of mammalian kidney. Development. 2003;130(14):3085–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nishinakamura R, Matsumoto Y, Nakao K, Nakamura K, Sato A, Copeland NG, et al. Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development. 2001;128(16):3105–15.

    CAS  PubMed  Google Scholar 

  35. Dressler G, Deutsch U, Chowdhury K, Nornes H, Gruss P. Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development. 1990;109:787–95.

    CAS  PubMed  Google Scholar 

  36. Dziarmaga A, Eccles M, Goodyer P. Suppression of ureteric bud apoptosis rescues nephron endowment and adult renal function in Pax2 mutant mice. J Am Soc Nephrol. 2006;17(6):1568–75.

    Article  CAS  PubMed  Google Scholar 

  37. Brophy PD, Ostrom L, Lang KM, Dressler GR. Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development. 2001;128(23):4747–56.

    CAS  PubMed  Google Scholar 

  38. Lokmane L, Heliot C, Garcia-Villalba P, Fabre M, Cereghini S. vHNF1 functions in distinct regulatory circuits to control ureteric bud branching and early nephrogenesis. Development. 2010;137(2):347–57.

    Article  CAS  PubMed  Google Scholar 

  39. Gresh L, Fischer E, Reimann A, Tanguy M, Garbay S, Shao X, et al. A transcriptional network in polycystic kidney disease. EMBO J. 2004;23(7):1657–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paces-Fessy M, Fabre M, Lesaulnier C, Cereghini S. Hnf1b and Pax2 cooperate to control different pathways in kidney and ureter morphogenesis. Hum Mol Genet. 2012;21(14):3143–55.

    Article  CAS  PubMed  Google Scholar 

  41. Bose J, Grotewold L, Ruther U. Pallister-hall syndrome phenotype in mice mutant for Gli3. Hum Mol Genet. 2002;11(9):1129–35.

    Article  CAS  PubMed  Google Scholar 

  42. Hu MC, Mo R, Bhella S, Wilson CW, Chuang PT, Hui CC, et al. GLI3-dependent transcriptional repression of Gli1, Gli2 and kidney patterning genes disrupts renal morphogenesis. Development. 2006;133(3):569–78.

    Article  CAS  PubMed  Google Scholar 

  43. Cain JE, Islam E, Haxho F, Blake J, Rosenblum ND. GLI3 repressor controls functional development of the mouse ureter. J Clin Invest. 2011;121(3):1199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yosypiv IV. Renin-angiotensin system in ureteric bud branching morphogenesis: implications for kidney disease. Pediatr Nephrol. 2014;29(4):609–20.

    Article  PubMed  Google Scholar 

  45. Yosypiv IV. Renin-angiotensin system in ureteric bud branching morphogenesis: insights into the mechanisms. Pediatr Nephrol. 2011;26(9):1499–512.

    Article  PubMed  Google Scholar 

  46. Nishimura H, Yerkes E, Hohenfellner K, Miyazaki Y, Ma J, Hunley T, et al. Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell. 1999;3(January):1–10.

    Article  CAS  PubMed  Google Scholar 

  47. Gubler MC, Antignac C. Renin-angiotensin system in kidney development: renal tubular dysgenesis. Kidney Int. 2010;77(5):400–6.

    Article  CAS  PubMed  Google Scholar 

  48. Batourina E, Choi C, Paragas N, Bello N, Hensle T, Costantini F, et al. Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nat Genet. 2002;32:109–15.

    Article  CAS  PubMed  Google Scholar 

  49. Batourina E, Gim S, Bello N, Shy M, Clagett-Dame M, Srinivas S, et al. Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Nat Genet. 2001;27(January):74–8.

    CAS  PubMed  Google Scholar 

  50. Mendelsohn C, Batourina E, Fung S, Gilbert T, Dodd J. Stromal cells mediate retinoid-dependent functions essential for renal development. Development. 1999;126:1139–48.

    CAS  PubMed  Google Scholar 

  51. Lelievre-Pegorier M, Vilar J, Ferrier ML, Moreau E, Freund N, Gilbert T, et al. Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney Int. 1998;54(5):1455–62.

    Article  CAS  PubMed  Google Scholar 

  52. Goodyer P, Kurpad A, Rekha S, Muthayya S, Dwarkanath P, Iyengar A, et al. Effects of maternal vitamin A status on kidney development: a pilot study. Pediatr Nephrol. 2007;22(2):209–14.

    Article  PubMed  Google Scholar 

  53. Czeizel AE, Dobo M, Vargha P. Hungarian cohort-controlled trial of periconceptional multivitamin supplementation shows a reduction in certain congenital abnormalities. Birth Defects Res A Clin Mol Teratol. 2004;70(11):853–61.

    Article  CAS  PubMed  Google Scholar 

  54. Hernandez-Diaz S, Werler MM, Walker AM, Mitchell AA. Folic acid antagonists during pregnancy and the risk of birth defects. N Engl J Med. 2000;343(22):1608–14.

    Article  CAS  PubMed  Google Scholar 

  55. Nyengaard JR, Bendtsen TF. Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec. 1992;232(2):194–201.

    Article  CAS  PubMed  Google Scholar 

  56. Warady BA, Schaefer F, Alexander SR, editors. Pediatric dialysis. 2nd ed. New York: Springer; 2012.

    Google Scholar 

  57. Weber S, Moriniere V, Knuppel T, Charbit M, Dusek J, Ghiggeri GM, et al. Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol. 2006;17(10):2864–70.

    Article  CAS  PubMed  Google Scholar 

  58. Schwaderer AL, Bates CM, McHugh KM, McBride KL. Renal anomalies in family members of infants with bilateral renal agenesis/adysplasia. Pediatr Nephrol. 2007;22(1):52–6.

    Article  PubMed  Google Scholar 

  59. Oda T, Elkahloun AG, Pike BL, Okajima K, Krantz ID, Genin A, et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet. 1997;16(3):235–42.

    Article  CAS  PubMed  Google Scholar 

  60. Kamath BM, Podkameni G, Hutchinson AL, Leonard LD, Gerfen J, Krantz ID, et al. Renal anomalies in Alagille syndrome: a disease-defining feature. Am J Med Genet A. 2012;158A(1):85–9.

    Article  PubMed  CAS  Google Scholar 

  61. McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet. 2006;79(1):169–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wilkie AO, Slaney SF, Oldridge M, Poole MD, Ashworth GJ, Hockley AD, et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet. 1995;9(2):165–72.

    Article  CAS  PubMed  Google Scholar 

  63. Seyedzadeh A, Kompani F, Esmailie E, Samadzadeh S, Farshchi B. High-grade vesicoureteral reflux in Pfeiffer syndrome. Urol J. 2008;5(3):200–2.

    PubMed  Google Scholar 

  64. Hatada I, Ohashi H, Fukushima Y, Kaneko Y, Inoue M, Komoto Y, et al. An imprinted gene p57KIP2 is mutated in Beckwith-Wiedemann syndrome. Nat Genet. 1996;14(2):171–3.

    Article  CAS  PubMed  Google Scholar 

  65. Goldman M, Smith A, Shuman C, Caluseriu O, Wei C, Steele L, et al. Renal abnormalities in beckwith-wiedemann syndrome are associated with 11p15.5 uniparental disomy. J Am Soc Nephrol. 2002;13(8):2077–84.

    Article  CAS  PubMed  Google Scholar 

  66. Kochhar A, Orten DJ, Sorensen JL, Fischer SM, Cremers CW, Kimberling WJ, et al. SIX1 mutation screening in 247 branchio-oto-renal syndrome families: a recurrent missense mutation associated with BOR. Hum Mutat. 2008;29(4):565.

    Article  PubMed  Google Scholar 

  67. Hoskins BE, Cramer CH, Silvius D, Zou D, Raymond RM, Orten DJ, et al. Transcription factor SIX5 is mutated in patients with branchio-oto-renal syndrome. Am J Hum Genet. 2007;80(4):800–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson D, Vincent C, et al. A human homologue of the Drosophila eyes absent gene underlies Branchio-Oto -Renal(BOR) syndrome and identifies a novel gene family. Nat Genet. 1997;15:157–64.

    Article  CAS  PubMed  Google Scholar 

  69. Houston CS, Opitz JM, Spranger JW, Macpherson RI, Reed MH, Gilbert EF, et al. The campomelic syndrome: review, report of 17 cases, and follow-up on the currently 17-year-old boy first reported by Maroteaux et al in 1971. Am J Med Genet. 1983;15(1):3–28.

    Article  CAS  PubMed  Google Scholar 

  70. Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994;79(6):1111–20.

    Article  CAS  PubMed  Google Scholar 

  71. Sakaki-Yumoto M, Kobayashi C, Sato A, Fujimura S, Matsumoto Y, Takasato M, et al. The murine homolog of SALL4, a causative gene in Okihiro syndrome, is essential for embryonic stem cell proliferation, and cooperates with Sall1 in anorectal, heart, brain and kidney development. Development. 2006;133(15):3005–13.

    Article  CAS  PubMed  Google Scholar 

  72. McGregor L, Makela V, Darling SM, Vrontou S, Chalepakis G, Roberts C, et al. Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/Fras1 encoding a putative extracellular matrix protein. Nat Genet. 2003;34(2):203–8.

    Article  CAS  PubMed  Google Scholar 

  73. Alazami AM, Shaheen R, Alzahrani F, Snape K, Saggar A, Brinkmann B, et al. FREM1 mutations cause bifid nose, renal agenesis, and anorectal malformations syndrome. Am J Hum Genet. 2009;85(3):414–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jadeja S, Smyth I, Pitera JE, Taylor MS, van Haelst M, Bentley E, et al. Identification of a new gene mutated in Fraser syndrome and mouse myelencephalic blebs. Nat Genet. 2005;37(5):520–5.

    Article  CAS  PubMed  Google Scholar 

  75. Vogel MJ, van Zon P, Brueton L, Gijzen M, van Tuil MC, Cox P, et al. Mutations in GRIP1 cause Fraser syndrome. J Med Genet. 2012;49(5):303–6.

    Article  PubMed  Google Scholar 

  76. Van Esch H, Groenen P, Nesbit MA, Schuffenhauer S, Lichtner P, Vanderlinden G, et al. GATA3 haplo-insufficiency causes human HDR syndrome. Nature. 2000;406(6794):419–22.

    Article  PubMed  CAS  Google Scholar 

  77. Chenouard A, Isidor B, Allain-Launay E, Moreau A, Le Bideau M, Roussey G. Renal phenotypic variability in HDR syndrome: glomerular nephropathy as a novel finding. Eur J Pediatr. 2013;172(1):107–10.

    Article  PubMed  Google Scholar 

  78. Costa-Barbosa FA, Balasubramanian R, Keefe KW, Shaw ND, Al-Tassan N, Plummer L, et al. Prioritizing genetic testing in patients with Kallmann syndrome using clinical phenotypes. J Clin Endocrinol Metab. 2013;98(5):E943–53.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Franco B, Guioli S, Pragliola A, Incerti B, Bardoni B, Tonlorenzi R, et al. A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature. 1991;353(6344):529–36.

    Article  CAS  PubMed  Google Scholar 

  80. Bamshad M, Lin RC, Law DJ, Watkins WC, Krakowiak PA, Moore ME, et al. Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nat Genet. 1997;16(3):311–5.

    Article  CAS  PubMed  Google Scholar 

  81. Kang S, Graham Jr JM, Olney AH, Biesecker LG. GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Nat Genet. 1997;15(3):266–8.

    Article  CAS  PubMed  Google Scholar 

  82. Sanyanusin P, Schimmenti L, McNoe L, Ward T, Pierpont M, Sullivan M, et al. Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteric reflux. Nat Genet. 1995;9:358–64.

    Article  CAS  PubMed  Google Scholar 

  83. Gribouval O, Gonzales M, Neuhaus T, Aziza J, Bieth E, Laurent N, et al. Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet. 2005;37(9):964–8.

    Article  CAS  PubMed  Google Scholar 

  84. Bohn S, Thomas H, Turan G, Ellard S, Bingham C, Hattersley AT, et al. Distinct molecular and morphogenetic properties of mutations in the human HNF1beta gene that lead to defective kidney development. J Am Soc Nephrol. 2003;14(8):2033–41.

    Article  CAS  PubMed  Google Scholar 

  85. Pilia G, Hughes-Benzie RM, MacKenzie A, Baybayan P, Chen EY, Huber R, et al. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet. 1996;12(3):241–7.

    Article  CAS  PubMed  Google Scholar 

  86. Tint GS, Irons M, Elias ER, Batta AK, Frieden R, Chen TS, et al. Defective cholesterol biosynthesis associated with the Smith-Lemli-Opitz syndrome. N Engl J Med. 1994;330(2):107–13.

    Article  CAS  PubMed  Google Scholar 

  87. Kohlhase J, Wischermann A, Reichenbach H, Froster U, Engel W. Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat Genet. 1998;18(1):81–3.

    Article  CAS  PubMed  Google Scholar 

  88. Preuss N, Brosius U, Biermanns M, Muntau AC, Conzelmann E, Gartner J. PEX1 mutations in complementation group 1 of Zellweger spectrum patients correlate with severity of disease. Pediatr Res. 2002;51(6):706–14.

    Article  CAS  PubMed  Google Scholar 

  89. Chatterjee R, Ramos E, Hoffman M, VanWinkle J, Martin DR, Davis TK, et al. Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations. Hum Genet. 2012;131(11):1725–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Skinner MA, Safford SD, Reeves JG, Jackson ME, Freemerman AJ. Renal aplasia in humans is associated with RET mutations. Am J Hum Genet. 2008;82(2):344–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yang Y, Houle AM, Letendre J, Richter A. RET Gly691Ser mutation is associated with primary vesicoureteral reflux in the French-Canadian population from Quebec. Hum Mutat. 2008;29(5):695–702.

    Article  CAS  PubMed  Google Scholar 

  92. Jeanpierre C, Mace G, Parisot M, Moriniere V, Pawtowsky A, Benabou M, et al. RET and GDNF mutations are rare in fetuses with renal agenesis or other severe kidney development defects. J Med Genet. 2011;48(7):497–504.

    Article  CAS  PubMed  Google Scholar 

  93. Hwang DY, Dworschak GC, Kohl S, Saisawat P, Vivante A, Hilger AC, et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int. 2014;85(6):1429–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fraser FC, Ling D, Clogg D, Nogrady B. Genetic aspects of the BOR syndrome – branchial fistulas, ear pits, hearing loss, and renal anomalies. Am J Med Genet. 1978;2(3):241–52.

    Article  CAS  PubMed  Google Scholar 

  95. Melnick M, Bixler D, Silk K, Yune H, Nance WE. Autosomal dominant branchiootorenal dysplasia. Birth Defects Orig Artic Ser. 1975;11(5):121–8.

    CAS  PubMed  Google Scholar 

  96. Chang EH, Menezes M, Meyer NC, Cucci RA, Vervoort VS, Schwartz CE, et al. Branchio-oto-renal syndrome: the mutation spectrum in EYA1 and its phenotypic consequences. Hum Mutat. 2004;23(6):582–9.

    Article  CAS  PubMed  Google Scholar 

  97. Chen A, Francis M, Ni L, Cremers CW, Kimberling WJ, Sato Y, et al. Phenotypic manifestations of branchio-oto-renal syndrome. Am J Med Genet. 1995;58(4):365–70.

    Article  CAS  PubMed  Google Scholar 

  98. Fraser FC, Sproule JR, Halal F. Frequency of the branchio-oto-renal (BOR) syndrome in children with profound hearing loss. Am J Med Genet. 1980;7(3):341–9.

    Article  CAS  PubMed  Google Scholar 

  99. Krug P, Moriniere V, Marlin S, Koubi V, Gabriel HD, Colin E, et al. Mutation screening of the EYA1, SIX1, and SIX5 genes in a large cohort of patients harboring branchio-oto-renal syndrome calls into question the pathogenic role of SIX5 mutations. Hum Mutat. 2011;32(2):183–90.

    Article  CAS  PubMed  Google Scholar 

  100. Ozaki H, Watanabe Y, Ikeda K, Kawakami K. Impaired interactions between mouse Eyal harboring mutations found in patients with branchio-oto-renal syndrome and Six, Dach, and G proteins. J Hum Genet. 2002;47(3):107–16.

    Article  CAS  PubMed  Google Scholar 

  101. Available from: www.cscc.unc.edu/rivur/.

  102. Li X, Oghi KA, Zhang J, Krones A, Bush KT, Glass CK, et al. Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature. 2003;426(6964):247–54.

    Article  CAS  PubMed  Google Scholar 

  103. Ruf RG, Xu PX, Silvius D, Otto EA, Beekmann F, Muerb UT, et al. SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes. Proc Natl Acad Sci U S A. 2004;101(21):8090–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sajithlal G, Zou D, Silvius D, Xu PX. Eya 1 acts as a critical regulator for specifying the metanephric mesenchyme. Dev Biol. 2005;284(2):323–36.

    Article  CAS  PubMed  Google Scholar 

  105. Miller EM, Hopkin R, Bao L, Ware SM. Implications for genotype-phenotype predictions in Townes-Brocks syndrome: case report of a novel SALL1 deletion and review of the literature. Am J Med Genet A. 2012;158A(3):533–40.

    Article  PubMed  CAS  Google Scholar 

  106. Townes PL, Brocks ER. Hereditary syndrome of imperforate anus with hand, foot, and ear anomalies. J Pediatr. 1972;81(2):321–6.

    Article  CAS  PubMed  Google Scholar 

  107. O’Callaghan M, Young ID. The Townes-Brocks syndrome. J Med Genet. 1990;27(7):457–61.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kurnit DM, Steele MW, Pinsky L, Dibbins A. Autosomal dominant transmission of a syndrome of anal, ear, renal, and radial congenital malformations. J Pediatr. 1978;93(2):270–3.

    Article  CAS  PubMed  Google Scholar 

  109. Martinez-Frias ML, Bermejo Sanchez E, Arroyo Carrera I, Perez Fernandez JL, Pardo Romero M, Buron Martinez E, et al. The Townes-Brocks syndrome in Spain: the epidemiological aspects in a consecutive series of cases. An Esp Pediatr. 1999;50(1):57–60.

    CAS  PubMed  Google Scholar 

  110. Kohlhase J. SALL1 mutations in Townes-Brocks syndrome and related disorders. Hum Mutat. 2000;16(6):460–6.

    Article  CAS  PubMed  Google Scholar 

  111. Marlin S, Blanchard S, Slim R, Lacombe D, Denoyelle F, Alessandri JL, et al. Townes-Brocks syndrome: detection of a SALL1 mutation hot spot and evidence for a position effect in one patient. Hum Mutat. 1999;14(5):377–86.

    Article  CAS  PubMed  Google Scholar 

  112. Solomon BD. VACTERL/VATER association. Orphanet J Rare Dis. 2011;6:56.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Rittler M, Paz JE, Castilla EE. VACTERL association, epidemiologic definition and delineation. Am J Med Genet. 1996;63(4):529–36.

    Article  CAS  PubMed  Google Scholar 

  114. Solomon BD, Pineda-Alvarez DE, Raam MS, Bous SM, Keaton AA, Velez JI, et al. Analysis of component findings in 79 patients diagnosed with VACTERL association. Am J Med Genet A. 2010;152A(9):2236–44.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Brown AK, Roddam AW, Spitz L, Ward SJ. Oesophageal atresia, related malformations, and medical problems: a family study. Am J Med Genet. 1999;85(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  116. van Rooij IA, Wijers CH, Rieu PN, Hendriks HS, Brouwers MM, Knoers NV, et al. Maternal and paternal risk factors for anorectal malformations: a Dutch case-control study. Birth Defects Res A Clin Mol Teratol. 2010;88(3):152–8.

    PubMed  Google Scholar 

  117. Stankiewicz P, Sen P, Bhatt SS, Storer M, Xia Z, Bejjani BA, et al. Genomic and genic deletions of the FOX gene cluster on 16q24.1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations. Am J Hum Genet. 2009;84(6):780–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Garcia-Barcelo MM, Wong KK, Lui VC, Yuan ZW, So MT, Ngan ES, et al. Identification of a HOXD13 mutation in a VACTERL patient. Am J Med Genet A. 2008;146A(24):3181–5.

    Article  CAS  PubMed  Google Scholar 

  119. Tongsong T, Wanapirak C, Piyamongkol W, Sudasana J. Prenatal sonographic diagnosis of VATER association. J Clin Ultrasound. 1999;27(7):378–84.

    Article  CAS  PubMed  Google Scholar 

  120. Murphy-Kaulbeck L, Dodds L, Joseph KS, Van den Hof M. Single umbilical artery risk factors and pregnancy outcomes. Obstet Gynecol. 2010;116(4):843–50.

    Article  PubMed  Google Scholar 

  121. Faivre L, Portnoi MF, Pals G, Stoppa-Lyonnet D, Le Merrer M, Thauvin-Robinet C, et al. Should chromosome breakage studies be performed in patients with VACTERL association? Am J Med Genet A. 2005;137(1):55–8.

    Article  PubMed  Google Scholar 

  122. Weaver RG, Cashwell LF, Lorentz W, Whiteman D, Geisinger KR, Ball M. Optic nerve coloboma associated with renal disease. Am J Med Genet. 1988;29(3):597–605.

    Article  CAS  PubMed  Google Scholar 

  123. Bower M, Salomon R, Allanson J, Antignac C, Benedicenti F, Benetti E, et al. Update of PAX2 mutations in renal coloboma syndrome and establishment of a locus-specific database. Hum Mutat. 2012;33(3):457–66.

    Article  CAS  PubMed  Google Scholar 

  124. Fletcher J, Hu M, Berman Y, Collins F, Grigg J, McIver M, et al. Multicystic dysplastic kidney and variable phenotype in a family with a novel deletion mutation of PAX2. J Am Soc Nephrol. 2005;16(9):2754–61.

    Article  CAS  PubMed  Google Scholar 

  125. Salomon R, Tellier AL, Attie-Bitach T, Amiel J, Vekemans M, Lyonnet S, et al. PAX2 mutations in oligomeganephronia. Kidney Int. 2001;59(2):457–62.

    Article  CAS  PubMed  Google Scholar 

  126. Dureau P, Attie-Bitach T, Salomon R, Bettembourg O, Amiel J, Uteza Y, et al. Renal coloboma syndrome. Ophthalmology. 2001;108(10):1912–6.

    Article  CAS  PubMed  Google Scholar 

  127. Parsa CF, Silva ED, Sundin OH, Goldberg MF, De Jong MR, Sunness JS, et al. Redefining papillorenal syndrome: an underdiagnosed cause of ocular and renal morbidity. Ophthalmology. 2001;108(4):738–49.

    Article  CAS  PubMed  Google Scholar 

  128. Eccles MR, Schimmenti LA. Renal-coloboma syndrome: a multi-system developmental disorder caused by PAX2 mutations. Clin Genet. 1999;56(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  129. Schimmenti LA, Cunliffe HE, McNoe LA, Ward TA, French MC, Shim HH, et al. Further delineation of renal-coloboma syndrome in patients with extreme variability of phenotype and identical PAX2 mutations. Am J Hum Genet. 1997;60(4):869–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Bower M, Eccles M, Heidet L, Schimmenti LA. Clinical utility gene card for: renal coloboma (Papillorenal) syndrome. Eur J Hum Genet. 2011;19(9).

    Google Scholar 

  131. Coffinier C, Thepot D, Babinet C, Yaniv M, Barra J. Essential role for the homeoprotein vHNF1/HNF1beta in visceral endoderm differentiation. Development. 1999;126(21):4785–94.

    CAS  PubMed  Google Scholar 

  132. Kolatsi-Joannou M, Bingham C, Ellard S, Bulman MP, Allen LI, Hattersley AT, et al. Hepatocyte nuclear factor-1beta: a new kindred with renal cysts and diabetes and gene expression in normal human development. J Am Soc Nephrol. 2001;12(10):2175–80.

    CAS  PubMed  Google Scholar 

  133. Bellanne-Chantelot C, Chauveau D, Gautier JF, Dubois-Laforgue D, Clauin S, Beaufils S, et al. Clinical spectrum associated with hepatocyte nuclear factor-1beta mutations. Ann Intern Med. 2004;140(7):510–7.

    Article  CAS  PubMed  Google Scholar 

  134. Bellanne-Chantelot C, Clauin S, Chauveau D, Collin P, Daumont M, Douillard C, et al. Large genomic rearrangements in the hepatocyte nuclear factor-1beta (TCF2) gene are the most frequent cause of maturity-onset diabetes of the young type 5. Diabetes. 2005;54(11):3126–32.

    Article  CAS  PubMed  Google Scholar 

  135. Edghill EL, Bingham C, Ellard S, Hattersley AT. Mutations in hepatocyte nuclear factor-1beta and their related phenotypes. J Med Genet. 2006;43(1):84–90.

    Article  CAS  PubMed  Google Scholar 

  136. Ulinski T, Lescure S, Beaufils S, Guigonis V, Decramer S, Morin D, et al. Renal phenotypes related to hepatocyte nuclear factor-1beta (TCF2) mutations in a pediatric cohort. J Am Soc Nephrol. 2006;17(2):497–503.

    Article  CAS  PubMed  Google Scholar 

  137. Bingham C, Bulman MP, Ellard S, Allen LI, Lipkin GW, Hoff WG, et al. Mutations in the hepatocyte nuclear factor-1beta gene are associated with familial hypoplastic glomerulocystic kidney disease. Am J Hum Genet. 2001;68(1):219–24.

    Article  CAS  PubMed  Google Scholar 

  138. Bingham C, Ellard S, Cole TR, Jones KE, Allen LI, Goodship JA, et al. Solitary functioning kidney and diverse genital tract malformations associated with hepatocyte nuclear factor-1beta mutations. Kidney Int. 2002;61(4):1243–51.

    Article  CAS  PubMed  Google Scholar 

  139. Lindner TH, Njolstad PR, Horikawa Y, Bostad L, Bell GI, Sovik O. A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1beta. Hum Mol Genet. 1999;8(11):2001–8.

    Article  CAS  PubMed  Google Scholar 

  140. Rizzoni G, Loirat C, Levy M, Milanesi C, Zachello G, Mathieu H. Familial hypoplastic glomerulocystic kidney. A new entity? Clin Nephrol. 1982;18(5):263–8.

    CAS  PubMed  Google Scholar 

  141. Bingham C, Ellard S, Allen L, Bulman M, Shepherd M, Frayling T, et al. Abnormal nephron development associated with a frameshift mutation in the transcription factor hepatocyte nuclear factor-1 beta. Kidney Int. 2000;57(3):898–907.

    Article  CAS  PubMed  Google Scholar 

  142. Decramer S, Parant O, Beaufils S, Clauin S, Guillou C, Kessler S, et al. Anomalies of the TCF2 gene are the main cause of fetal bilateral hyperechogenic kidneys. J Am Soc Nephrol. 2007;18(3):923–33.

    Article  CAS  PubMed  Google Scholar 

  143. Bingham C, Hattersley AT. Renal cysts and diabetes syndrome resulting from mutations in hepatocyte nuclear factor-1beta. Nephrol Dial Transplant. 2004;19(11):2703–8.

    Article  CAS  PubMed  Google Scholar 

  144. Adalat S, Woolf AS, Johnstone KA, Wirsing A, Harries LW, Long DA, et al. HNF1B mutations associate with hypomagnesemia and renal magnesium wasting. J Am Soc Nephrol. 2009;20(5):1123–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kikuchi R, Kusuhara H, Hattori N, Kim I, Shiota K, Gonzalez FJ, et al. Regulation of tissue-specific expression of the human and mouse urate transporter 1 gene by hepatocyte nuclear factor 1 alpha/beta and DNA methylation. Mol Pharmacol. 2007;72(6):1619–25.

    Article  CAS  PubMed  Google Scholar 

  146. Karstensen HG, Tommerup N. Isolated and syndromic forms of congenital anosmia. Clin Genet. 2012;81(3):210–5.

    Article  CAS  PubMed  Google Scholar 

  147. Tsai PS, Gill JC. Mechanisms of disease: insights into X-linked and autosomal-dominant Kallmann syndrome. Nat Clin Pract Endocrinol Metab. 2006;2(3):160–71.

    Article  CAS  PubMed  Google Scholar 

  148. Naftolin F, Harris GW, Bobrow M. Effect of purified luteinizing hormone releasing factor on normal and hypogonadotrophic anosmic men. Nature. 1971;232(5311):496–7.

    Article  CAS  PubMed  Google Scholar 

  149. Schwanzel-Fukuda M, Bick D, Pfaff DW. Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome. Brain Res Mol Brain Res. 1989;6(4):311–26.

    Article  CAS  PubMed  Google Scholar 

  150. Cariboni A, Pimpinelli F, Colamarino S, Zaninetti R, Piccolella M, Rumio C, et al. The product of X-linked Kallmann’s syndrome gene (KAL1) affects the migratory activity of gonadotropin-releasing hormone (GnRH)-producing neurons. Hum Mol Genet. 2004;13(22):2781–91.

    Article  CAS  PubMed  Google Scholar 

  151. Falardeau J, Chung WC, Beenken A, Raivio T, Plummer L, Sidis Y, et al. Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice. J Clin Invest. 2008;118(8):2822–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Dode C, Levilliers J, Dupont JM, De Paepe A, Le Du N, Soussi-Yanicostas N, et al. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet. 2003;33(4):463–5.

    Article  CAS  PubMed  Google Scholar 

  153. Dode C, Teixeira L, Levilliers J, Fouveaut C, Bouchard P, Kottler ML, et al. Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2. PLoS Genet. 2006;2(10):e175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Duke VM, Winyard PJ, Thorogood P, Soothill P, Bouloux PM, Woolf AS. KAL, a gene mutated in Kallmann’s syndrome, is expressed in the first trimester of human development. Mol Cell Endocrinol. 1995;110(1–2):73–9.

    Article  CAS  PubMed  Google Scholar 

  155. John U, Benz K, Hubler A, Patzer L, Zenker M, Amann K. Oligohydramnios associated with sonographically normal kidneys. Urology. 2012;79(5):1155–7.

    Article  PubMed  Google Scholar 

  156. Kumar D, Moss G, Primhak R, Coombs R. Congenital renal tubular dysplasia and skull ossification defects similar to teratogenic effects of angiotensin converting enzyme (ACE) inhibitors. J Med Genet. 1997;34(7):541–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Mahieu-Caputo D, Dommergues M, Delezoide AL, Lacoste M, Cai Y, Narcy F, et al. Twin-to-twin transfusion syndrome. Role of the fetal renin-angiotensin system. Am J Pathol. 2000;156(2):629–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Barr Jr M, Cohen Jr MM. ACE inhibitor fetopathy and hypocalvaria: the kidney-skull connection. Teratology. 1991;44(5):485–95.

    Article  CAS  PubMed  Google Scholar 

  159. Gubler MC. Renal tubular dysgenesis. Pediatr Nephrol. 2014;29(1):51–9.

    Article  PubMed  Google Scholar 

  160. Uematsu M, Sakamoto O, Ohura T, Shimizu N, Satomura K, Tsuchiya S. A further case of renal tubular dysgenesis surviving the neonatal period. Eur J Pediatr. 2009;168(2):207–9.

    Article  PubMed  Google Scholar 

  161. Jongmans MC, Admiraal RJ, van der Donk KP, Vissers LE, Baas AF, Kapusta L, et al. CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. J Med Genet. 2006;43(4):306–14.

    Article  CAS  PubMed  Google Scholar 

  162. Brockschmidt A, Chung B, Weber S, Fischer DC, Kolatsi-Joannou M, Christ L, et al. CHD1L: a new candidate gene for congenital anomalies of the kidneys and urinary tract (CAKUT). Nephrol Dial Transplant. 2012;27(6):2355–64.

    Article  CAS  PubMed  Google Scholar 

  163. Ma NF, Hu L, Fung JM, Xie D, Zheng BJ, Chen L, et al. Isolation and characterization of a novel oncogene, amplified in liver cancer 1, within a commonly amplified region at 1q21 in hepatocellular carcinoma. Hepatology. 2008;47(2):503–10.

    Article  CAS  PubMed  Google Scholar 

  164. Sanna-Cherchi S, Sampogna RV, Papeta N, Burgess KE, Nees SN, Perry BJ, et al. Mutations in DSTYK and dominant urinary tract malformations. N Engl J Med. 2013;369(7):621–9.

    Article  CAS  PubMed  Google Scholar 

  165. Handrigan GR, Chitayat D, Lionel AC, Pinsk M, Vaags AK, Marshall CR, et al. Deletions in 16q24.2 are associated with autism spectrum disorder, intellectual disability and congenital renal malformation. J Med Genet. 2013;50(3):163–73.

    Article  CAS  PubMed  Google Scholar 

  166. Sanna-Cherchi S, Kiryluk K, Burgess KE, Bodria M, Sampson MG, Hadley D, et al. Copy-number disorders are a common cause of congenital kidney malformations. Am J Hum Genet. 2012;91(6):987–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. van Vuuren SH, Damen-Elias HA, Stigter RH, van der Doef R, Goldschmeding R, de Jong TP, et al. Size and volume charts of fetal kidney, renal pelvis and adrenal gland. Ultrasound Obstet Gynecol. 2012;40(6):659–64.

    Article  PubMed  Google Scholar 

  168. Kupferman JC, Druschel CM, Kupchik GS. Increased prevalence of renal and urinary tract anomalies in children with Down syndrome. Pediatrics. 2009;124(4):e615–21.

    Article  PubMed  Google Scholar 

  169. Cereda A, Carey JC. The trisomy 18 syndrome. Orphanet J Rare Dis. 2012;7:81.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Iliopoulos D, Sekerli E, Vassiliou G, Sidiropoulou V, Topalidis A, Dimopoulou D, et al. Patau syndrome with a long survival (146 months): a clinical report and review of literature. Am J Med Genet A. 2006;140(1):92–3.

    Article  PubMed  Google Scholar 

  171. Morris RK, Quinlan-Jones E, Kilby MD, Khan KS. Systematic review of accuracy of fetal urine analysis to predict poor postnatal renal function in cases of congenital urinary tract obstruction. Prenat Diagn. 2007;27(10):900–11.

    Article  CAS  PubMed  Google Scholar 

  172. Bueva A, Guignard JP. Renal function in preterm neonates. Pediatr Res. 1994;36(5):572–7.

    Article  CAS  PubMed  Google Scholar 

  173. Mure PY, Sabatier-Laval E, Dodat H. Malformations of male internal genitalia originating from the Wolffian duct. Arch Pediatr. 1997;4(2):163–9.

    Article  CAS  PubMed  Google Scholar 

  174. Oppelt PG, Lermann J, Strick R, Dittrich R, Strissel P, Rettig I, et al. Malformations in a cohort of 284 women with Mayer-Rokitansky-Kuster-Hauser syndrome (MRKH). Reprod Biol Endocrinol. 2012;10:57.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Behr SC, Courtier JL, Qayyum A. Imaging of mullerian duct anomalies. Radiographics. 2012;32(6):E233–50.

    Article  PubMed  Google Scholar 

  176. van Vuuren SH, van der Doef R, Cohen-Overbeek TE, Goldschmeding R, Pistorius LR, de Jong TP. Compensatory enlargement of a solitary functioning kidney during fetal development. Ultrasound Obstet Gynecol. 2012;40(6):665–8.

    Article  PubMed  Google Scholar 

  177. Cascio S, Paran S, Puri P. Associated urological anomalies in children with unilateral renal agenesis. J Urol. 1999;162(3 Pt 2):1081–3.

    Article  CAS  PubMed  Google Scholar 

  178. Kaneyama K, Yamataka A, Satake S, Yanai T, Lane GJ, Kaneko K, et al. Associated urologic anomalies in children with solitary kidney. J Pediatr Surg. 2004;39(1):85–7.

    Article  PubMed  Google Scholar 

  179. Krzemien G, Roszkowska-Blaim M, Kostro I, Wojnar J, Karpinska M, Sekowska R. Urological anomalies in children with renal agenesis or multicystic dysplastic kidney. J Appl Genet. 2006;47(2):171–6.

    Article  PubMed  Google Scholar 

  180. Grinsell MM, Butz K, Gurka MJ, Gurka KK, Norwood V. Sport-related kidney injury among high school athletes. Pediatrics. 2012;130(1):e40–5.

    Article  PubMed  Google Scholar 

  181. Shibata S, Nagata M. Pathogenesis of human renal dysplasia: an alternative scenario to the major theories. Pediatr Int. 2003;45(5):605–9.

    Article  PubMed  Google Scholar 

  182. Narchi H. Risk of hypertension with multicystic kidney disease: a systematic review. Arch Dis Child. 2005;90(9):921–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Rabelo EA, Oliveira EA, Silva GS, Pezzuti IL, Tatsuo ES. Predictive factors of ultrasonographic involution of prenatally detected multicystic dysplastic kidney. BJU Int. 2005;95(6):868–71.

    Article  PubMed  Google Scholar 

  184. Hains DS, Bates CM, Ingraham S, Schwaderer AL. Management and etiology of the unilateral multicystic dysplastic kidney: a review. Pediatr Nephrol. 2009;24(2):233–41.

    Article  PubMed  Google Scholar 

  185. D’Alberton A, Reschini E, Ferrari N, Candiani P. Prevalence of urinary tract abnormalities in a large series of patients with uterovaginal atresia. J Urol. 1981;126(5):623–4.

    PubMed  Google Scholar 

  186. Fedele L, Bianchi S, Agnoli B, Tozzi L, Vignali M. Urinary tract anomalies associated with unicornuate uterus. J Urol. 1996;155(3):847–8.

    Article  CAS  PubMed  Google Scholar 

  187. Raj GV, Auge BK, Assimos D, Preminger GM. Metabolic abnormalities associated with renal calculi in patients with horseshoe kidneys. J Endourol. 2004;18(2):157–61.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. Remi Salomon for his contributions to the previous version of this chapter in the first edition of this volume.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman D. Rosenblum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosenblum, N.D., Gupta, I.R. (2016). Disorders of Kidney Formation. In: Geary, D., Schaefer, F. (eds) Pediatric Kidney Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52972-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52972-0_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52970-6

  • Online ISBN: 978-3-662-52972-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics