Skip to main content

Imaging the Pediatric Urinary Tract

  • Chapter
  • First Online:
Pediatric Kidney Disease
  • 2734 Accesses

Abstract

Imaging has played and continues to play an important role in the diagnosis and follow-up of many diseases of the pediatric urinary tract. Both congenital and acquired diseases of the urinary tract are imaged using a number of different modalities and in many cases it is the imaging study that offers a diagnosis or at least narrows what may begin as a fairly lengthy differential diagnosis. Radiography, excretory urography, contrast fluoroscopy, sonography, computed tomography, magnetic resonance imaging and scintigraphy have all been used to assess the urinary tract, each possessing its own relative strengths and weaknesses. It is crucial not only to know the most appropriate modality for the investigation of a particular patient but also to understand the risks and benefits associated with the various available modalities and how they apply to the pediatric patient. This chapter will explore the role of imaging in the work-up of patients with disease of the urinary system and provide a framework for the clinician in terms of the better understanding the available modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kirks DR, Griscom NT. Practical pediatric imaging : diagnostic radiology of infants and children. 3rd ed. Philadelphia: Lippincott-Raven; 1998. p. 1226: xx.

    Google Scholar 

  2. Aaronson IA, Cremin BJ. Clinical paediatric uroradiology. Edinburgh: Churchill Livingstone; 1984. p. 441.

    Google Scholar 

  3. Kuhn JP, et al. Caffey’s pediatric diagnostic imaging. 10th ed. Philadelphia: Mosby; 2004. p. 2 v.

    Google Scholar 

  4. Brenner D, et al. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001;176(2):289–96.

    Article  CAS  PubMed  Google Scholar 

  5. Costello JE, et al. CT radiation dose: current controversies and dose reduction strategies. AJR Am J Roentgenol. 2013;201(6):1283–90.

    Article  PubMed  Google Scholar 

  6. Morcos SK, Thomsen HS. Adverse reactions to iodinated contrast media. Eur Radiol. 2001;11(7):1267–75.

    Article  CAS  PubMed  Google Scholar 

  7. Lameier NH. Contrast-induced nephropathy – prevention and risk reduction. Nephrol Dial Transplant. 2006;21(6):i11–23.

    Article  CAS  Google Scholar 

  8. McClennan BL. Adverse reactions to iodinated contrast media. Recognition and response. Invest Radio. 1994;29 Suppl 1:S46–50.

    Article  Google Scholar 

  9. Malviya S, et al. Sedation and general anaesthesia in children undergoing MRI and CT: adverse events and outcomes. Br J Anaesth. 2000;84(6):743–8.

    Article  CAS  PubMed  Google Scholar 

  10. Frush DP, Bisset 3rd GS, Hall SC. Pediatric sedation in radiology: the practice of safe sleep. AJR Am J Roentgenol. 1996;167(6):1381–7.

    Article  CAS  PubMed  Google Scholar 

  11. Robbin ML. Ultrasound contrast agents: a promising future. Radiol Clin North Am. 2001;39(3):399–414.

    Article  CAS  PubMed  Google Scholar 

  12. Peratoner L, et al. Kidney length and scarring in children with urinary tract infection: importance of ultrasound scans. Abdom Imaging. 2005;30(6):780–5.

    Article  CAS  PubMed  Google Scholar 

  13. Dacher JN, et al. Imaging strategies in pediatric urinary tract infection. Eur Radiol. 2005;15(7):1283–8.

    Article  PubMed  Google Scholar 

  14. Practice parameter: the diagnosis, treatment, and evaluation of the initial urinary tract infection in febrile infants and young children. American Academy of Pediatrics. Committee on Quality Improvement. Subcommittee on Urinary Tract Infection. Pediatrics. 1999;103(4 Pt 1):843–52.

    Google Scholar 

  15. Monsalve J, et al. Imaging of cancer predisposition syndromes in children. Radiogra. 2011;31(1):263–80.

    Article  Google Scholar 

  16. Chen JJ, et al. The renal length nomogram: multivariable approach. J Urol. 2002;168(5):2149–52.

    Article  PubMed  Google Scholar 

  17. Blane CE, et al. Sonographic standards for normal infant kidney length. AJR Am J Roentgenol. 1985;145(6):1289–91.

    Article  CAS  PubMed  Google Scholar 

  18. Rosenbaum DM, Korngold E, Teele RL. Sonographic assessment of renal length in normal children. AJR Am J Roentgenol. 1984;142(3):467–9.

    Article  CAS  PubMed  Google Scholar 

  19. Ginalski JM, Michaud A, Genton N. Renal growth retardation in children: sign suggestive of vesicoureteral reflux? AJR Am J Roentgenol. 1985;145(3):617–9.

    Article  CAS  PubMed  Google Scholar 

  20. Hricak H, et al. Neonatal kidneys: sonographic anatomic correlation. Radiology. 1983;147(3):699–702.

    Article  CAS  PubMed  Google Scholar 

  21. Haller JO, Berdon WE, Friedman AP. Increased renal cortical echogenicity: a normal finding in neonates and infants. Radiology. 1982;142(1):173–4.

    Article  CAS  PubMed  Google Scholar 

  22. Starinsky R, et al. Increased renal medullary echogenicity in neonates. Pediatr Radiol. 1995;25 Suppl 1:S43–5.

    PubMed  Google Scholar 

  23. Nimkin K, et al. Urolithiasis in a children’s hospital: 1985–1990. Urol Radiol. 1992;14(3):139–43.

    Article  CAS  PubMed  Google Scholar 

  24. Ricci MA, Lloyd DA. Renal venous thrombosis in infants and children. Arch Surg. 1990;125(9):1195–9.

    Article  CAS  PubMed  Google Scholar 

  25. Brun P, et al. Value of Doppler ultrasound for the diagnosis of renal artery stenosis in children. Pediatr Nephrol. 1997;11(1):27–30.

    Article  CAS  PubMed  Google Scholar 

  26. Fang YC, et al. A case of acute renal artery thrombosis caused by blunt trauma: computed tomographic and Doppler ultrasonic findings. J Formos Med Assoc. 1993;92(4):356–8.

    CAS  PubMed  Google Scholar 

  27. Hitzel A, et al. Color and power Doppler sonography versus DMSA scintigraphy in acute pyelonephritis and in prediction of renal scarring. J Nucl Med. 2002;43(1):27–32.

    PubMed  Google Scholar 

  28. Irshad A, et al. An overview of renal transplantation: current practice and use of ultrasound. Semin Ultrasound CT MR. 2009;30(4):298–314.

    Article  PubMed  Google Scholar 

  29. Sharma AK, et al. Utility of serial Doppler ultrasound scans for the diagnosis of acute rejection in renal allografts. Transpl Int. 2004;17(3):138–44.

    Article  PubMed  Google Scholar 

  30. Fotter R. Pediatric uroradiology. Medical radiology. Berlin: Springer; 2001. p. 431.

    Book  Google Scholar 

  31. Lebowitz RL, et al. International system of radiographic grading of vesicoureteric reflux. International Reflux Study in Children. Pediatr Radiol. 1985;15(2):105–9.

    Article  CAS  PubMed  Google Scholar 

  32. Ward VL. Patient dose reduction during voiding cystourethrography. Pediatr Radiol. 2006;36 Suppl 2:168–72.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mettler FA. Essentials of nuclear medicine imaging. 5th ed. Philadelphia: Saunders Elsevier; 2006.

    Google Scholar 

  34. Fleming JS, et al. Guidelines for the measurement of glomerular filtration rate using plasma sampling. Nucl Med Commun. 2004;25(8):759–69.

    Article  PubMed  Google Scholar 

  35. Unver T, et al. Comparison of direct radionuclide cystography and voiding cystourethrography in detecting vesicoureteral reflux. Pediatr Int. 2006;48(3):287–91.

    Article  PubMed  Google Scholar 

  36. Sukan A, et al. Comparison of direct radionuclide cystography and voiding direct cystography in the detection of vesicoureteral reflux. Ann Nucl Med. 2003;17(7):549–53.

    Article  PubMed  Google Scholar 

  37. Fettich J, et al. Guidelines for direct radionuclide cystography in children. Eur J Nucl Med Mol Imaging. 2003;30(5):B39–44.

    Article  PubMed  Google Scholar 

  38. Carpio F, Morey AF. Radiographic staging of renal injuries. World J Urol. 1999;17(2):66–70.

    Article  CAS  PubMed  Google Scholar 

  39. Piepsz A, Ham HR. Pediatric applications of renal nuclear medicine. Semin Nucl Med. 2006;36(1):16–35.

    Article  PubMed  Google Scholar 

  40. Ward VL, et al. Pediatric radiation exposure and effective dose reduction during voiding cystourethrography. Radiology. 2008;249(3):1002–9.

    Article  PubMed  Google Scholar 

  41. Peters AM, Morony S, Gordon I. Indirect radionuclide cystography demonstrates reflux under physiological conditions. Clin Radiol. 1990;41(1):44–7.

    Article  CAS  PubMed  Google Scholar 

  42. Gordon I, Peters AM, Morony S. Indirect radionuclide cystography: a sensitive technique for the detection of vesico-ureteral reflux. Pediatr Nephrol. 1990;4(6):604–6.

    Article  CAS  PubMed  Google Scholar 

  43. Gordon I. Indirect radionuclide cystography – the coming of age. Nucl Med Commun. 1989;10(7):457–8.

    Article  CAS  PubMed  Google Scholar 

  44. Pollet JE, Sharp PF, Smith FW. Comparison of “direct” and “indirect” radionuclide cystography. J Nucl Med. 1985;26(12):1501–2.

    CAS  PubMed  Google Scholar 

  45. Bower G, et al. Comparison of “direct” and “indirect” radionuclide cystography. J Nucl Med. 1985;26(5):465–8.

    CAS  PubMed  Google Scholar 

  46. Pollet JE, et al. Intravenous radionuclide cystography for the detection of vesicorenal reflux. J Urol. 1981;125(1):75–8.

    CAS  PubMed  Google Scholar 

  47. Conway JJ, Kruglik JD. Effectiveness of direct and indirect radionuclide cystography in detecting vesicoureteral reflux. J Nucl Med. 1976;17(02):81–3.

    CAS  PubMed  Google Scholar 

  48. Conway JJ, et al. Direct and indirect radionuclide cystography. J Urol. 1975;113(5):689–93.

    CAS  PubMed  Google Scholar 

  49. Conway JJ, Belman AB, King LR. Direct and indirect radionuclide cystography. Semin Nucl Med. 1974;4(2):197–211.

    Article  CAS  PubMed  Google Scholar 

  50. Gordon I, et al. Guidelines for indirect radionuclide cystography. Eur J Nucl Med. 2001;28(3):16–20.

    Google Scholar 

  51. Mandell GA, et al. Procedure guideline for radionuclide cystography in children. Society of Nuclear Medicine. J Nucl Med. 1997;38(10):1650–4.

    CAS  PubMed  Google Scholar 

  52. De Sadeleer C, et al. How good is technetium-99m mercaptoacetyltriglycine indirect cystography? Eur J Nucl Med. 1994;21(3):223–7.

    Article  PubMed  Google Scholar 

  53. Corso A, Ostinelli A, Trombetta MA. “Indirect” radioisotope cystography after the furosemide test: its diagnostic efficacy compared to “direct” study. Radiol Med (Torino). 1989;78(6):645–8.

    CAS  Google Scholar 

  54. Vlajkovic M, et al. Radionuclide voiding patterns in children with vesicoureteral reflux. Eur J Nucl Med Mol Imaging. 2003;30(4):532–7.

    Article  CAS  PubMed  Google Scholar 

  55. Hoberman A, et al. Imaging studies after a first febrile urinary tract infection in young children. N Engl J Med. 2003;348(3):195–202.

    Article  PubMed  Google Scholar 

  56. Stokland E, et al. Imaging of renal scarring. Acta Paediatr Suppl. 1999;88(431):13–21.

    Article  CAS  PubMed  Google Scholar 

  57. Goldraich NP, Goldraich LH. Update on dimercaptosuccinic acid renal scanning in children with urinary tract infection. Pediatr Nephrol. 1995;9(2):221–6; discussion 227.

    Article  CAS  PubMed  Google Scholar 

  58. Mastin ST, Drane WE, Iravani A. Tc-99m DMSA SPECT imaging in patients with acute symptoms or history of UTI. Comparison with ultrasonography. Clin Nucl Med. 1995;20(5):407–12.

    Article  CAS  PubMed  Google Scholar 

  59. Majd M, et al. Acute pyelonephritis: comparison of diagnosis with 99mTc-DMSA, SPECT, spiral CT, MR imaging, and power Doppler US in an experimental pig model. Radiology. 2001;218(1):101–8.

    Article  CAS  PubMed  Google Scholar 

  60. Applegate KE, et al. A prospective comparison of high-resolution planar, pinhole, and triple-detector SPECT for the detection of renal cortical defects. Clin Nucl Med. 1997;22(10):673–8.

    Article  CAS  PubMed  Google Scholar 

  61. Cook GJ, Lewis MK, Clarke SE. An evaluation of 99Tcm-DMSA SPET with three-dimensional reconstruction in 68 patients with varied renal pathology. Nucl Med Commun. 1995;16(11):958–67.

    Article  CAS  PubMed  Google Scholar 

  62. Yen TC, et al. A comparative study of evaluating renal scars by 99mTc-DMSA planar and SPECT renal scans, intravenous urography, and ultrasonography. Ann Nucl Med. 1994;8(2):147–52.

    Article  CAS  PubMed  Google Scholar 

  63. Takeda M, et al. Value of dimercaptosuccinic acid single photon emission computed tomography and magnetic resonance imaging in detecting renal injury in pediatric patients with vesicoureteral reflux. Comparison with dimercaptosuccinic acid planar scintigraphy and intravenous pyelography. Eur Urol. 1994;25(4):320–5.

    CAS  PubMed  Google Scholar 

  64. Mouratidis B, Ash JM, Gilday DL. Comparison of planar and SPECT 99Tcm-DMSA scintigraphy for the detection of renal cortical defects in children. Nucl Med Commun. 1993;14(2):82–6.

    Article  CAS  PubMed  Google Scholar 

  65. Sheehy N, et al. Pediatric 99mTc-DMSA SPECT performed by using iterative reconstruction with isotropic resolution recovery: improved image quality and reduced radiopharmaceutical activity. Radiology. 2009;251(2):511–6.

    Article  PubMed  Google Scholar 

  66. Piepsz A, et al. Consensus on renal cortical scintigraphy in children with urinary tract infection. Scientific Committee of Radionuclides in Nephrourology. Semin Nucl Med. 1999;29(2):160–74.

    Article  CAS  PubMed  Google Scholar 

  67. Itoh K, et al. Qualitative and quantitative evaluation of renal parenchymal damage by 99mTc-DMSA planar and SPECT scintigraphy. Ann Nucl Med. 1995;9(1):23–8.

    Article  CAS  PubMed  Google Scholar 

  68. Craig JC, et al. How accurate is dimercaptosuccinic acid scintigraphy for the diagnosis of acute pyelonephritis? A meta-analysis of experimental studies. J Nucl Med. 2000;41(6):986–93.

    CAS  PubMed  Google Scholar 

  69. Chiou YY, et al. Renal fibrosis: prediction from acute pyelonephritis focus volume measured at 99mTc dimercaptosuccinic acid SPECT. Radiology. 2001;221(2):366–70.

    Article  CAS  PubMed  Google Scholar 

  70. Yen TC, et al. Identification of new renal scarring in repeated episodes of acute pyelonephritis using Tc-99m DMSA renal SPECT. Clin Nucl Med. 1998;23(12):828–31.

    Article  CAS  PubMed  Google Scholar 

  71. Yen TC, et al. Technetium-99m-DMSA renal SPECT in diagnosing and monitoring pediatric acute pyelonephritis. J Nucl Med. 1996;37(8):1349–53.

    CAS  PubMed  Google Scholar 

  72. Ell PJ, Gambhir SS. Nuclear medicine in clinical diagnosis and treatment. 3rd ed. Edinburgh: Chuchill Livingstone; 2004.

    Google Scholar 

  73. Mandell GA, et al. Procedure guideline for diuretic renography in children. Society of Nuclear Medicine. J Nucl Med. 1997;38(10):1647–50.

    CAS  PubMed  Google Scholar 

  74. Rossleigh MA. Renal cortical scintigraphy and diuresis renography in infants and children. J Nucl Med. 2001;42(1):91–5.

    CAS  PubMed  Google Scholar 

  75. McCarthy CS, et al. Pitfalls and limitations of diuretic renography. Abdom Imaging. 1994;19(1):78–81.

    Article  CAS  PubMed  Google Scholar 

  76. Conway JJ, Maizels M. The “well tempered” diuretic renogram: a standard method to examine the asymptomatic neonate with hydronephrosis or hydroureteronephrosis. A report from combined meetings of The Society for Fetal Urology and members of The Pediatric Nuclear Medicine Council – The Society of Nuclear Medicine. J Nucl Med. 1992;33(11):2047–51.

    CAS  PubMed  Google Scholar 

  77. Donoso G, et al. 99mTc-MAG3 diuretic renography in children: a comparison between F0 and F+20. Nucl Med Commun. 2003;24(11):1189–93.

    Article  CAS  PubMed  Google Scholar 

  78. Wong DC, Rossleigh MA, Farnsworth RH. F+0 diuresis renography in infants and children. J Nucl Med. 1999;40(11):1805–11.

    CAS  PubMed  Google Scholar 

  79. Lowe LH, et al. Pediatric renal masses: Wilms tumor and beyond. Radiographics. 2000;20(6):1585–603.

    Article  CAS  PubMed  Google Scholar 

  80. Buckley JC, McAninch JW. The diagnosis, management, and outcomes of pediatric renal injuries. Urol Clin North Am. 2006;33(1):33–40, vi.

    Article  PubMed  Google Scholar 

  81. McAleer IM, Kaplan JW. Pediatric genitourinary trauma. Urol Clin North Am. 1995;22(1):177–88.

    CAS  PubMed  Google Scholar 

  82. Dacher JN, et al. Rational use of CT in acute pyelonephritis: findings and relationships with reflux. Pediatr Radiol. 1993;23(4):281–5.

    Article  CAS  PubMed  Google Scholar 

  83. Tunaci A, Yekeler E. Multidetector row CT of the kidneys. Eur J Radiol. 2004;52(1):56–66.

    Article  PubMed  Google Scholar 

  84. Benko A, et al. Canadian Association of Radiologists: consensus guidelines for the prevention of contrast-induced nephropathy. Can Assoc Radiol J. 2007;58(2):79–87.

    PubMed  Google Scholar 

  85. Slovis TL. Children, computed tomography radiation dose, and the As Low As Reasonably Achievable (ALARA) concept. Pediatrics. 2003;112(4):971–2.

    Article  PubMed  Google Scholar 

  86. Volle E, Park W, Kaufmann HJ. MRI examination and monitoring of pediatric patients under sedation. Pediatr Radiol. 1996;26(4):280–1.

    Article  CAS  PubMed  Google Scholar 

  87. Li A, et al. Acute adverse reactions to magnetic resonance contrast media – gadolinium chelates. Br J Radiol. 2006;79(941):368–71.

    Article  CAS  PubMed  Google Scholar 

  88. Akgun H, et al. Are gadolinium-based contrast media nephrotoxic? A renal biopsy study. Arch Pathol Lab Med. 2006;130(9):1354–7.

    PubMed  Google Scholar 

  89. Sadowski EA, et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007;243(1):148–57.

    Article  PubMed  Google Scholar 

  90. Thomsen HS, et al. Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol. 2013;23(2):307–18.

    Article  PubMed  Google Scholar 

  91. Hoffer FA. Magnetic resonance imaging of abdominal masses in the pediatric patient. Semin Ultrasound CT MR. 2005;26(4):212–23.

    Article  PubMed  Google Scholar 

  92. Rohrschneider WK, et al. US, CT and MR imaging characteristics of nephroblastomatosis. Pediatr Radiol. 1998;28(6):435–43.

    Article  CAS  PubMed  Google Scholar 

  93. Israel GM, et al. The use of opposed-phase chemical shift MRI in the diagnosis of renal angiomyolipomas. AJR Am J Roentgenol. 2005;184(6):1868–72.

    Article  PubMed  Google Scholar 

  94. Pretorius ES, Wickstrom ML, Siegelman ES. MR imaging of renal neoplasms. Magn Reson Imaging Clin N Am. 2000;8(4):813–36.

    CAS  PubMed  Google Scholar 

  95. Ramchandani P, et al. Impact of magnetic resonance on staging of renal carcinoma. Urology. 1986;27(6):564–8.

    Article  CAS  PubMed  Google Scholar 

  96. Hallscheidt PJ, et al. Preoperative staging of renal cell carcinoma with inferior vena cava thrombus using multidetector CT and MRI: prospective study with histopathological correlation. J Comput Assist Tomogr. 2005;29(1):64–8.

    Article  PubMed  Google Scholar 

  97. Kim D, et al. Abdominal aorta and renal artery stenosis: evaluation with MR angiography. Radiology. 1990;174(3 Pt 1):727–31.

    Article  CAS  PubMed  Google Scholar 

  98. Zhang H, Prince MR. Renal MR angiography. Magn Reson Imaging Clin N Am. 2004;12(3):487–503, vi.

    Article  PubMed  Google Scholar 

  99. Schoenberg SO, et al. Renal MR angiography: current debates and developments in imaging of renal artery stenosis. Semin Ultrasound CT MR. 2003;24(4):255–67.

    Article  PubMed  Google Scholar 

  100. Marcos HB, Choyke PL. Magnetic resonance angiography of the kidney. Semin Nephrol. 2000;20(5):450–5.

    CAS  PubMed  Google Scholar 

  101. Vasbinder GB, et al. Accuracy of computed tomographic angiography and magnetic resonance angiography for diagnosing renal artery stenosis. Ann Intern Med. 2004;141(9):674–82; discussion 682.

    Article  PubMed  Google Scholar 

  102. Kovanlikaya A, et al. Comparison of MRI and renal cortical scintigraphy findings in childhood acute pyelonephritis: preliminary experience. Eur J Radiol. 2004;49(1):76–80.

    Article  PubMed  Google Scholar 

  103. Weiser AC, et al. The role of gadolinium enhanced magnetic resonance imaging for children with suspected acute pyelonephritis. J Urol. 2003;169(6):2308–11.

    Article  PubMed  Google Scholar 

  104. Leonidas JC, Berdon WE. MR imaging of urinary tract infections in children. Radiology. 1999;210(2):582–4.

    Article  CAS  PubMed  Google Scholar 

  105. Ku JH, et al. Is there a role for magnetic resonance imaging in renal trauma? Int J Urol. 2001;8(6):261–7.

    Article  CAS  PubMed  Google Scholar 

  106. Marcos HB, Noone TC, Semelka RC. MRI evaluation of acute renal trauma. J Magn Reson Imaging. 1998;8(4):989–90.

    Article  CAS  PubMed  Google Scholar 

  107. Cohen HL, et al. Congenital abnormalities of the genitourinary system. Semin Roentgenol. 2004;39(2):282–303.

    Article  PubMed  Google Scholar 

  108. Rohrschneider WK, et al. Functional and morphologic evaluation of congenital urinary tract dilatation by using combined static-dynamic MR urography: findings in kidneys with a single collecting system. Radiology. 2002;224(3):683–94.

    Article  PubMed  Google Scholar 

  109. Nolte-Ernsting CC, Adam GB, Gunther RW. MR urography: examination techniques and clinical applications. Eur Radiol. 2001;11(3):355–72.

    Article  CAS  PubMed  Google Scholar 

  110. Karabacakoglu A, et al. Diagnostic value of diuretic-enhanced excretory MR urography in patients with obstructive uropathy. Eur J Radiol. 2004;52(3):320–7.

    Article  PubMed  Google Scholar 

  111. Grattan-Smith JD, Jones RA. MR urography in children. Pediatr Radio. 2006;36:1119–32.

    Article  Google Scholar 

  112. Arlen AM, et al. Magnetic resonance urography for diagnosis of pediatric ureteral stricture. J Pediatr Urol. 2014;10(5):792–8.

    Article  PubMed  Google Scholar 

  113. Jones RA, Grattan-Smith JD, Little S. Pediatric magnetic resonance urography. J Magn Reson Imaging. 2011;33(3):510–26.

    Article  PubMed  Google Scholar 

  114. Schmid-Tannwald C, et al. Diffusion-weighted MRI of the abdomen: current value in clinical routine. J Magn Reson Imaging. 2013;37(1):35–47.

    Article  PubMed  Google Scholar 

  115. Lee CU, et al. MR elastography in renal transplant patients and correlation with renal allograft biopsy: a feasibility study. Acad Radiol. 2012;19(7):834–41.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Paulson DF, et al. Pediatric urolithiasis. J Urol. 1972;108(5):811–4.

    CAS  PubMed  Google Scholar 

  117. Breatnach E, Smith SE. The radiology of renal stones in children. Clin Radiol. 1983;34(1):59–64.

    Article  CAS  PubMed  Google Scholar 

  118. Day DL, Scheinman JI, Mahan J. Radiological aspects of primary hyperoxaluria. AJR Am J Roentgenol. 1986;146(2):395–401.

    Article  CAS  PubMed  Google Scholar 

  119. Patriquin H, Robitaille P. Renal calcium deposition in children: sonographic demonstration of the Anderson-Carr progression. AJR Am J Roentgenol. 1986;146(6):1253–6.

    Article  CAS  PubMed  Google Scholar 

  120. Jevtic V. Imaging of renal osteodystrophy. Eur J Radiol. 2003;46(2):85–95.

    Article  CAS  PubMed  Google Scholar 

  121. Lebowitz RL. Urography in children: when should it be done? 1. Infection. Postgrad Med. 1978;64(4):63–72.

    Article  CAS  PubMed  Google Scholar 

  122. Lebowitz RL. Urography in children: when should it be done? 2. Conditions other than infection. Postgrad Med. 1978;64(5):61–70.

    Article  CAS  PubMed  Google Scholar 

  123. American Academy of Pediatrics: Committee on Radiology. Excretory urography for evaluation of enuresis. Pediatrics. 1980;65(1):A49–50.

    Google Scholar 

  124. Lebowitz RL. Excretory urography in children. AJR Am J Roentgenol. 1994;163(4):990.

    Article  CAS  PubMed  Google Scholar 

  125. Sourtzis S, et al. Radiologic investigation of renal colic: unenhanced helical CT compared with excretory urography. AJR Am J Roentgenol. 1999;172(6):1491–4.

    Article  CAS  PubMed  Google Scholar 

  126. McNicholas MM, et al. Excretory phase CT urography for opacification of the urinary collecting system. AJR Am J Roentgenol. 1998;170(5):1261–7.

    Article  CAS  PubMed  Google Scholar 

  127. O’Malley ME, et al. Comparison of excretory phase, helical computed tomography with intravenous urography in patients with painless haematuria. Clin Radiol. 2003;58(4):294–300.

    Article  PubMed  Google Scholar 

  128. Borthne AS, et al. Pediatric excretory MR urography: comparative study of enhanced and non-enhanced techniques. Eur Radiol. 2003;13(6):1423–7.

    PubMed  Google Scholar 

  129. Pollack HM, Banner MP. Current status of excretory urography. A premature epitaph? Urol Clin North Am. 1985;12(4):585–601.

    CAS  PubMed  Google Scholar 

  130. Carrico C, Lebowitz RL. Incontinence due to an infrasphincteric ectopic ureter: why the delay in diagnosis and what the radiologist can do about it. Pediatr Radiol. 1998;28(12):942–9.

    Article  CAS  PubMed  Google Scholar 

  131. Smith H, et al. Routine excretory urography in follow-up of superficial transitional cell carcinoma of bladder. Urology. 1989;34(4):193–6.

    Article  CAS  PubMed  Google Scholar 

  132. Kawashima A, et al. Imaging of urethral disease: a pictorial review. Radiographics. 2004;24 Suppl 1:S195–216.

    Article  PubMed  Google Scholar 

  133. Yoder IC, Papanicolaou N. Imaging the urethra in men and women. Urol Radiol. 1992;14(1):24–8.

    Article  CAS  PubMed  Google Scholar 

  134. Pavlica P, Barozzi L, Menchi I. Imaging of male urethra. Eur Radiol. 2003;13(7):1583–96.

    Article  PubMed  Google Scholar 

  135. Sclafani SJ, Becker JA. Radiologic diagnosis of extrarenal genitourinary trauma. Urol Radiol. 1985;7(4):201–10.

    CAS  PubMed  Google Scholar 

  136. Grignon A, et al. Ureteropelvic junction stenosis: antenatal ultrasonographic diagnosis, postnatal investigation, and follow-up. Radiology. 1986;160(3):649–51.

    Article  CAS  PubMed  Google Scholar 

  137. Wood BP, et al. Ureterovesical obstruction and megaloureter: diagnosis by real-time US. Radiology. 1985;156(1):79–81.

    Article  CAS  PubMed  Google Scholar 

  138. Gilsanz V, Miller JH, Reid BS. Ultrasonic characteristics of posterior urethral valves. Radiology. 1982;145(1):143–5.

    Article  CAS  PubMed  Google Scholar 

  139. Mascatello VJ, et al. Ultrasonic evaluation of the obstructed duplex kidney. AJR Am J Roentgenol. 1977;129(1):113–20.

    Article  CAS  PubMed  Google Scholar 

  140. Nussbaum AR, et al. Ectopic ureter and ureterocele: their varied sonographic manifestations. Radiology. 1986;159(1):227–35.

    Article  CAS  PubMed  Google Scholar 

  141. Griffin J, Jennings C, MacErlean D. Ultrasonic evaluation of simple and ectopic ureteroceles. Clin Radiol. 1983;34(1):55–7.

    Article  CAS  PubMed  Google Scholar 

  142. Strife JL, et al. Multicystic dysplastic kidney in children: US follow-up. Radiology. 1993;186(3):785–8.

    Article  CAS  PubMed  Google Scholar 

  143. Hains DS, et al. Management and etiology of the unilateral multicystic dysplastic kidney: a review. Pediatr Nephrol. 2009;24(2):233–41.

    Article  PubMed  Google Scholar 

  144. Edell SL, Bonavita JA. The sonographic appearance of acute pyelonephritis. Radiology. 1979;132(3):683–5.

    Article  CAS  PubMed  Google Scholar 

  145. Rosenfield AT, et al. Acute focal bacterial nephritis (acute lobar nephronia). Radiology. 1979;132(3):553–61.

    Article  CAS  PubMed  Google Scholar 

  146. Bjorgvinsson E, Majd M, Eggli KD. Diagnosis of acute pyelonephritis in children: comparison of sonography and 99mTc-DMSA scintigraphy. AJR Am J Roentgenol. 1991;157(3):539–43.

    Article  CAS  PubMed  Google Scholar 

  147. Farmer KD, Gellett LR, Dubbins PA. The sonographic appearance of acute focal pyelonephritis 8 years experience. Clin Radiol. 2002;57(6):483–7.

    Article  PubMed  Google Scholar 

  148. Dacher JN, et al. Renal sinus hyperechogenicity in acute pyelonephritis: description and pathological correlation. Pediatr Radiol. 1999;29(3):179–82.

    Article  CAS  PubMed  Google Scholar 

  149. Khanna G, et al. Detection of preoperative wilms tumor rupture with CT: a report from the Children’s Oncology Group. Radiology. 2013;266(2):610–7.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Khanna G, et al. Evaluation of diagnostic performance of CT for detection of tumor thrombus in children with Wilms tumor: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2012;58(4):551–5.

    Article  PubMed  Google Scholar 

  151. McDonald K, et al. Added value of abdominal cross-sectional imaging (CT or MRI) in staging of Wilms’ tumours. Clin Radiol. 2013;68(1):16–20.

    Article  CAS  PubMed  Google Scholar 

  152. Stein JP, et al. Blunt renal trauma in the pediatric population: indications for radiographic evaluation. Urology. 1994;44(3):406–10.

    Article  CAS  PubMed  Google Scholar 

  153. John SD. Trends in pediatric emergency imaging. Radiol Clin North Am. 1999;37(5):995–1034, vi.

    Article  CAS  PubMed  Google Scholar 

  154. Rose JS. Ultrasound in abdominal trauma. Emerg Med Clin North Am. 2004;22(3):581–99, vii.

    Article  PubMed  Google Scholar 

  155. Soudack M, et al. Experience with focused abdominal sonography for trauma (FAST) in 313 pediatric patients. J Clin Ultrasound. 2004;32(2):53–61.

    Article  PubMed  Google Scholar 

  156. Taylor GA, Sivit CJ. Posttraumatic peritoneal fluid: is it a reliable indicator of intraabdominal injury in children? J Pediatr Surg. 1995;30(12):1644–8.

    Article  CAS  PubMed  Google Scholar 

  157. Pieretti R, Gilday D, Jeffs R. Differential kidney scan in pediatric urology. Urology. 1974;4(6):665–8.

    Article  CAS  PubMed  Google Scholar 

  158. Mandell GA, et al. Procedure guideline for renal cortical scintigraphy in children. Society of Nuclear Medicine. J Nucl Med. 1997;38(10):1644–6.

    CAS  PubMed  Google Scholar 

  159. Clausen TD, Kanstrup IL, Iversen J. Reference values for 99mTc-MAG3 renography determined in healthy, potential renal donors. Clin Physiol Funct Imaging. 2002;22(5):356–60.

    Article  PubMed  Google Scholar 

  160. Schofer O, et al. Technetium-99m mercaptoacetyltriglycine clearance: reference values for infants and children. Eur J Nucl Med. 1995;22(11):1278–81.

    Article  CAS  PubMed  Google Scholar 

  161. Tsukamoto E, et al. Validity of 99mTc-DMSA renal uptake by planar posterior-view method in children. Ann Nucl Med. 1999;13(6):383–7.

    Article  CAS  PubMed  Google Scholar 

  162. Gainza FJ, et al. Evaluation of complications due to percutaneous renal biopsy in allografts and native kidneys with color-coded Doppler sonography. Clin Nephrol. 1995;43(5):303–8.

    CAS  PubMed  Google Scholar 

  163. Morin F, Cote I. Tc-99m MAG3 evaluation of recipients with En bloc renal grafts from pediatric cadavers. Clin Nucl Med. 2000;25(8):579–84.

    Article  CAS  PubMed  Google Scholar 

  164. Tulchinsky M, Malpani AR, Eggli DF. Diagnosis of urinoma by MAG3 scintigraphy in a renal transplant patient. Clin Nucl Med. 1995;20(1):80–1.

    Article  CAS  PubMed  Google Scholar 

  165. Carmody E, et al. Sequential Tc 99m mercaptoacetyl-triglycine (MAG3) renography as an evaluator of early renal transplant function. Clin Transplant. 1993;7(3):245–9.

    CAS  PubMed  Google Scholar 

  166. Cohn DA, Gruenewald S. Postural renal transplant obstruction: a case report and review of the literature. Clin Nucl Med. 2001;26(8):673–6.

    Article  CAS  PubMed  Google Scholar 

  167. Goodear M, Barratt L, Wycherley A. Intraperitoneal urine leak in a patient with a renal transplant on Tc-99m MAG3 imaging. Clin Nucl Med. 1998;23(11):789–90.

    Article  CAS  PubMed  Google Scholar 

  168. Mange KC, et al. Focal acute tubular necrosis in a renal allograft. Transplantation. 1997;64(10):1490–2.

    Article  CAS  PubMed  Google Scholar 

  169. Dubovsky EV, Russell CD, Erbas B. Radionuclide evaluation of renal transplants. Semin Nucl Med. 1995;25(1):49–59.

    Article  CAS  PubMed  Google Scholar 

  170. Dubovsky EV, Russell CD. Radionuclide evaluation of renal transplants. Semin Nucl Med. 1988;18(3):181–98.

    Article  CAS  PubMed  Google Scholar 

  171. Nankivell BJ, et al. Diagnosis of kidney transplant obstruction using Mag3 diuretic renography. Clin Transplant. 2001;15(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  172. Riccabona M, et al. ESPR Uroradiology Task Force and ESUR Paediatric Working Group – Imaging recommendations in paediatric uroradiology, part V: childhood cystic kidney disease, childhood renal transplantation and contrast-enhanced ultrasonography in children. Pediatr Radiol. 2012;42(10):1275–83.

    Article  PubMed  Google Scholar 

  173. McHugh K, et al. Simple renal cysts in children: diagnosis and follow-up with US. Radiology. 1991;178(2):383–5.

    Article  CAS  PubMed  Google Scholar 

  174. Stuck KJ, Koff SA, Silver TM. Ultrasonic features of multicystic dysplastic kidney: expanded diagnostic criteria. Radiology. 1982;143(1):217–21.

    Article  CAS  PubMed  Google Scholar 

  175. Patriquin HB, O’Regan S. Medullary sponge kidney in childhood. AJR Am J Roentgenol. 1985;145(2):315–9.

    Article  CAS  PubMed  Google Scholar 

  176. Pretorius DH, et al. Diagnosis of autosomal dominant polycystic kidney disease in utero and in the young infant. J Ultrasound Med. 1987;6(5):249–55.

    Article  CAS  PubMed  Google Scholar 

  177. Traubici J, Daneman A. High-resolution renal sonography in children with autosomal recessive polycystic kidney disease. AJR Am J Roentgenol. 2005;184(5):1630–3.

    Article  PubMed  Google Scholar 

  178. Garel LA, et al. Juvenile nephronophthisis: sonographic appearance in children with severe uremia. Radiology. 1984;151(1):93–5.

    Article  CAS  PubMed  Google Scholar 

  179. Fredericks BJ, et al. Glomerulocystic renal disease: ultrasound appearances. Pediatr Radiol. 1989;19(3):184–6.

    Article  CAS  PubMed  Google Scholar 

  180. Srinath A, Shneider BL. Congenital hepatic fibrosis and autosomal recessive polycystic kidney disease. J Pediatr Gastroenterol Nutr. 2012;54(5):580–7.

    Article  PubMed  PubMed Central  Google Scholar 

  181. El-Assmy A, et al. Kidney stone size and hounsfield units predict successful shockwave lithotripsy in children. Urology. 2013;81(4):880–4.

    Article  PubMed  Google Scholar 

  182. Wilson DA, Wenzl JE, Altshuler GP. Ultrasound demonstration of diffuse cortical nephrocalcinosis in a case of primary hyperoxaluria. AJR Am J Roentgenol. 1979;132(4):659–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors express their gratitude to Dr. Paul Babyn and Dr. Martin Charron for their valuable assistance in the preparation and review of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Traubici, J., Lim, R. (2016). Imaging the Pediatric Urinary Tract. In: Geary, D., Schaefer, F. (eds) Pediatric Kidney Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52972-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52972-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52970-6

  • Online ISBN: 978-3-662-52972-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics