Skip to main content

Selected New Aspects of SOFCs

  • Chapter
  • First Online:
Intermediate-Temperature Solid Oxide Fuel Cells

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 1313 Accesses

Abstract

This chapter focuses on selected special types of SOFCs, including symmetrical SOFCs, single-chamber SOFCs (SC-SOFCs), and direct-flame fuel cells. Symmetrical SOFCs have attracted increasing attention because of enhanced thermomechanical compatibility of the electrolyte and electrodes, reduced fabrication cost, and improved resistance to coking and sulfur poisoning. Despite their lower efficiency, SC-SOFCs have advantages over dual-chamber SOFCs that are particularly relevant for portable power generation. Because complications due to sealing are eliminated, the SC-SOFCs greatly simplify the system design and enhance the thermal and mechanical shock resistance, thereby enabling rapid start-up and shutdown. The direct-flame fuel cell can be operated on virtually any carbon-based fuel (as well as other fuels that contain hydrogen) and uses a simple no-chamber setup. In this chapter, progress in the development of electrode materials for these new SOFCs is described, the fundamental properties of materials in the electrode, such as electrical conductivity, thermomechanical properties, and redox behavior, are analyzed, and the performance and stability of SOFCs with these electrode materials are outlined. Finally, the development of chemical-electricity co-generation in the SOFC reactor is also reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badding M, Brown J, Ketcham T, Julien DS (2001)Solid oxide fuel cells with symmetric composite electrodes. US Patent 20010044043

    Google Scholar 

  2. Ruiz-Morales JC, Marrero-López D, Canales-Vázquez J, Irvine JTS (2011) Symmetric and reversible solid oxide fuel cells. RSC Adv 1:1403–1414

    Article  Google Scholar 

  3. Ruiz-Morales JC, Canales-Vázquez J, Lincke H, Martínez JP, Marrero-López D, Pérez-Coll D, Irvine J, Núñez P (2008) Potential electrode materials for symmetrical solid oxide fuel cells. Bol Soc Esp Ceram Vidrio 47:183–188

    Article  Google Scholar 

  4. Atkinson A, Barnett S, Gorte RJ, Irvine JTS, McEvoy AJ, Mogensen M, Singhal SC, Vohs J (2004) Advanced anodes for high-temperature fuel cells. Nat Mater 3:17–27

    Article  Google Scholar 

  5. Gross MD, Vohs JM, Gorte RJ (2007) A strategy for achieving high performance with SOFC ceramic anodes. Electrochem Solid-State Lett 10:B65–B69

    Article  Google Scholar 

  6. Ruiz-Morales JC, Lincke H, Marrero-López D, Canales-Vázquez J, Núñez P (2007) Lanthanum chromite materials as potential symmetrical electrodes for solid oxide fuel cells. Bol Soc Esp Ceram Vidrio 46:218–223

    Article  Google Scholar 

  7. Mizusaki J, Yamauchi S, Fueki K, Ishikawa A (1984) Nonstoichiometry of the perovskite-type oxide La1-xSrxCrO3-δ. Solid State Ionics 12:119–124

    Article  Google Scholar 

  8. Zhang Y, Zhou Q, He T (2011) La0.7Ca0.3CrO3-Ce0.8Gd0.2O1.9 composites as symmetrical electrodes for solid-oxide fuel cells. J Power Sources 196:76–83

    Article  Google Scholar 

  9. Zhang Y, Shen Y, Du X, Li J, Cao X, He T (2011) Nanostructured GDC-impregnated La0.7Ca0.3CrO3−δ symmetrical electrodes for solid oxide fuel cells operating on hydrogen and city gas. Int J Hydrog Energy 36:3673–3680

    Article  Google Scholar 

  10. Lin B, Wang S, Liu X, Meng G (2010) Simple solid oxide fuel cells. J Alloys Compd 490:214–222

    Article  Google Scholar 

  11. Nitadori T, Ichiki T, Misono M (1988) Catalytic properties of perovskite-type mixed oxides (ABO3) consisting of rare earth and 3d transition metals. The roles of the A- and B-site ions. Bull Chem Soc Jpn 61:621–626

    Article  Google Scholar 

  12. Sumathi R, Johnson K, Viswanathan B, Varadarajan TK (1998) Selective oxidation and dehydrogenation of benzyl alcohol on ABB’O3 (A = Ba, B = Pb, Ce, Ti and B’ = Bi, Cu, Sb)- type perovskite oxides-temperature programmed reduction studies. Appl Catal A 172:15–22

    Article  Google Scholar 

  13. Peña MA, Fierro JLG (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101:1981–2017

    Article  Google Scholar 

  14. Sfeir J, Buffat PA, Möckli P, Xanthopoulos N, Vasquez R, Mathieu HJ, Van Herle J, Thampi KR (2001) Lanthanum chromite based catalysts for oxidation of methane directly on SOFC anodes. J Catal 202:229–244

    Article  Google Scholar 

  15. Bastidas DM, Tao S, Irvine JTS (2006) A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes. J Mater Chem 16:1603–1605

    Article  Google Scholar 

  16. Ruiz-Morales JC, Canales-Vázquez J, Peña-Martínez J, López DM, Núñez P (2006) On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3−δ as both anode and cathode material with improved microstructure in solid oxide fuel cells. Electrochim Acta 52:278–284

    Article  Google Scholar 

  17. Ruiz-Morales JC, Canales-Vázquez J, Ballesteros-Pérez B, Peña-Martínez J, Marrero-López D, Irvine JTS, Núñez P (2007) LSCM-(YSZ-CGO) composites as improved symmetrical electrodes for solid oxide fuel cells. J Eur Ceram Soc 27:4223–4227

    Article  Google Scholar 

  18. Jiang SP, Zhang L, Zhang Y (2007) Lanthanum strontium manganese chromite cathode and anode synthesized by gel-casting for solid oxide fuel cells. J Mater Chem 17:2627–2635

    Article  Google Scholar 

  19. Zhu X, Lü Z, Wei B, Huang X, Zhang Y, Su W (2011) A symmetrical solid oxide fuel cell prepared by dry-pressing and impregnating methods. J Power Sources 196:729–733

    Article  Google Scholar 

  20. Zhang L, Chen X, Jiang SP, He HQ, Xiang Y (2009) Characterization of doped La0.7A0.3Cr0.5Mn0.5O3−δ (A = Ca, Sr, Ba) electrodes for solid oxide fuel cells. Solid State Ionics 180:1076–1082

    Article  Google Scholar 

  21. El-Himri A, Marrero-López D, Ruiz-Morales JC, Peña-Martínez J, Núñez P (2009) Structural and electrochemical characterisation of Pr0.7Ca0.3Cr1−yMnyO3−δ as symmetrical solid oxide fuel cell electrodes. J Power Sources 188:230–237

    Article  Google Scholar 

  22. Song Y, Tan W, Xu D, Bu Y, Zhong Q (2013) La0.75Sr0.25-xCexCr0.5Mn0.5O3−δ electrode material for symmetric solid oxide fuel cells with H2S-containing fuel. J Alloys Compd 576:341–344

    Article  Google Scholar 

  23. Song Y, Zhong Q, Tan W (2014) Synthesis and electrochemical behaviour of ceria substitution LSCM as a possible symmetric solid oxide fuel cell electrode material exposed to H2 fuel containing H2S. Int J Hydrog Energy 39:13694–13700

    Article  Google Scholar 

  24. Peña-Martínez J, Marrero-López D, Pérez-Coll D, Ruiz-Morales JC, Núñez P (2007) Performance of XSCoF (X = Ba, La and Sm) and LSCrX′ (X′ = Mn, Fe and Al) perovskite-structure materials on LSGM electrolyte for IT-SOFC. Electrochim Acta 52:2950–2958

    Article  Google Scholar 

  25. Zheng Y, Zhang C, Ran R, Cai R, Shao Z, Farrusseng D (2009) A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3-δ perovskite oxide as both the anode and cathode. Acta Mater 57:1165–1175

    Article  Google Scholar 

  26. Martínez-Coronado R, Aguadero A, Alonso JA, Fernández-Díaz MT (2013) Reversible oxygen removal and uptake in the La2ZnMnO6 double perovskite: performance in symmetrical SOFC cells. Solid State Sci 18:64–70

    Article  Google Scholar 

  27. Zhou J, Chen G, Wu K, Cheng Y (2014) The performance of La0.6Sr1.4MnO4 layered perovskite electrode material for intermediate temperature symmetrical solid oxide fuel cells. J Power Sources 270:418–425

    Article  Google Scholar 

  28. Liu X, Han D, Zhou Y, Meng X, Wu H, Li J, Zeng F, Zhan Z (2014) Sc-substituted La0.6Sr0.4FeO3-δ mixed conducting oxides as promising electrodes for symmetrical solid oxide fuel cells. J Power Sources 246:457–463

    Article  Google Scholar 

  29. Zhou Y, Liu X, Li J, Nie H, Ye X, Wang S, Zhan Z (2014) Novel metal-supported solid oxide fuel cells with impregnated symmetric La0.6Sr0.4Fe0.9Sc0.1O3-δ electrodes. J Power Sources 252:164–168

    Article  Google Scholar 

  30. Hartley A, Sahibzada M, Weston M, Metcalfe IS, Mantzavinos D (2000) La0.6Sr0.4Co0.2Fe0.8O3 as the anode and cathode for intermediate temperature solid oxide fuel cells. Catal Today 55:197–204

    Article  Google Scholar 

  31. Lai BK, Kerman K, Ramanathan S (2011) Nanostructured La0.6Sr0.4Co0.8Fe0.2O3/Y0.08Zr0.92O1.96/La0.6Sr0.4Co0.8Fe0.2O3 (LSCF/YSZ/LSCF) symmetric thin film solid oxide fuel cells. J Power Sources 196:1826–1832

    Article  Google Scholar 

  32. Yang Z, Chen Y, Jin C, Xiao G, Han M, Chen F (2015) La0.7Sr0.3Fe0.7Ga0.3O3−δ as electrode material for a symmetrical solid oxide fuel cell. RSC Adv 5:2702–2705

    Article  Google Scholar 

  33. Ruiz-Morales JC, Canales-Vázquez J, Savaniu C, Marrero-López D, Zhou W, Irvine JTS (2006) Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature 439:568–571

    Article  Google Scholar 

  34. Slater PR, Fagg DP, Irvine JTS (1997) Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells. J Mater Chem 7:2495–2498

    Article  Google Scholar 

  35. Marina OA, Canfield NL, Stevenson JW (2002) Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics 149:21–28

    Article  Google Scholar 

  36. Canales-Vázquez J, Ruiz-Morales JC, Marrero-López D, Peña-Martínez J, Núñez P, Gómez-Romero P (2007) Fe-substituted (La, Sr)TiO3 as potential electrodes for symmetrical fuel cells (SFCs). J Power Sources 171:552–557

    Article  Google Scholar 

  37. Napolitano F, Lamas DG, Soldati A, Serquis A (2012) Synthesis and structural characterization of co-doped lanthanum strontium titanates. Int J Hydrog Energy 37:18302–18309

    Article  Google Scholar 

  38. Napolitano F, Soldati AL, Geck J, Lamas DG, Serquis A (2013) Electronic and structural properties of La0.4Sr0.6Ti1-yCoyO3±δ electrode materials for symmetric SOFC studied by hard X-ray absorption spectroscopy. Int J Hydrog Energy 38:89658973

    Article  Google Scholar 

  39. Martínez-Coronado R, Aguadero A, Pérez-Coll D, Troncoso L, Alonso JA, Fernández-Díaz MT (2012) Characterization of La0.5Sr0.5Co0.5Ti0.5O3-δ as symmetrical electrode material for intermediate-temperature solid-oxide fuel cells. Int J Hydrog Energy 37:18310–18318

    Article  Google Scholar 

  40. Liu Q, Dong X, Xiao G, Zhao F, Chen F (2010) A novel electrode material for symmetrical SOFCs. Adv Mater 22:5478–5482

    Article  Google Scholar 

  41. Meng X, Liu X, Han D, Wu H, Li J, Zhan Z (2014) Symmetrical solid oxide fuel cells with impregnated SrFe0.75Mo0.25O3-δ electrodes. J Power Sources 252:58–63

    Article  Google Scholar 

  42. Song Y, Zhong Q, Tan W, Pan C (2014) Effect of cobalt-substitution Sr2Fe1.5-xCoxMo0.5O6-δ for intermediate temperature symmetrical solid oxide fuel cells fed with H2-H2S. Electrochim Acta 139:13–20

    Article  Google Scholar 

  43. Li W, Cheng Y, Zhou Q, Wei T, Li Z, Yan H, Wang Z, Han X (2015) Evaluation of double perovskite Sr2FeTiO6-δ as potential cathode or anode materials for intermediate-temperature solid oxide fuel cells. Ceram Int 41:12393–12400

    Article  Google Scholar 

  44. Porras-Vazquez JM, Pike T, Hancock CA, Marco JF, Berry FJ, Slater PR (2013) Investigation into the effect of Si doping on the performance of SrFeO3-δ SOFC electrode materials. J Mater Chem A1:11834–11841

    Article  Google Scholar 

  45. Fernández-Ropero AJ, Porras-Vázquez JM, Cabeza A, Slater PR, Marrero-López D, Losilla ER (2014) High valence transition metal doped strontium ferrites for electrode materials in symmetrical SOFCs. J Power Sources 249:405–413

    Article  Google Scholar 

  46. Chen M, Paulson S, Thangadurai V, Birss V (2013) Sr-rich chromium ferrites as symmetrical solid oxide fuel cell electrodes. J Power Sources 236:68–79

    Article  Google Scholar 

  47. Molero-Sánchez B, Prado-Gonjal J, Ávila-Brande D, Chen M, Morán E, Birss V (2015) High performance La0.3Ca0.7Cr0.3Fe0.7O3-δ air electrode for reversible solid oxide fuel cell applications. Int J Hydrog Energy 40:1902–1910

    Article  Google Scholar 

  48. Zhou Q, Yuan C, Han D, Luo T, Li J, Zhan Z (2014) Evaluation of LaSr2Fe2CrO9-δ as a potential Electrode for symmetrical solid oxide fuel cells. Electrochim Acta 133:453–458

    Article  Google Scholar 

  49. Wei T, Zhang Q, Huang YH, Goodenough JB (2012) Cobalt-based double-perovskite symmetrical electrodes with low thermal expansion for solid oxide fuel cells. J Mater Chem 22:225–231

    Article  Google Scholar 

  50. Stephens IEL, Bondarenko AS, Gronbjerg U, Rossmeisl J, Chorkendorff I (2012) Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ Sci 5:6744–6762

    Article  Google Scholar 

  51. Ruiz-Morales JC, Canales-Vázquez J, Marrero-López D, Pérez-Coll D, Peña-Martínez J, Núñez P (2008) An all-in-one flourite-based symmetrical solid oxide fuel cell. J Power Sources 177:154–160

    Article  Google Scholar 

  52. Buyukaksoy A, Petrovsky V, Dogan F (2013) Solid oxide fuel cells with symmetrical Pt-YSZ electrodes prepared by YSZ infiltration. J Electrochem Soc 160:F482–F486

    Article  Google Scholar 

  53. Lin Y, Su C, Huang C, Kim JS, Kwak C, Shao Z (2012) A new symmetric solid oxide fuel cell with a samaria-doped ceria framework and a silver-infiltrated electrocatalyst. J Power Sources 197:57–64

    Article  Google Scholar 

  54. Raza R, Liu Q, Nisar J, Wang X, Ma Y, Zhu B (2011) ZnO/NiO nanocomposite electrodes for low-temperature solid oxide fuel cells. Electrochem Commun 13:917–920

    Article  Google Scholar 

  55. Fan L, Zhang H, Chen M, Wang C, Wang H, Singh M, Zhu B (2013) Electrochemical study of lithiated transition metal oxide composite as symmetrical electrode for low temperature ceramic fuel cells. Int J Hydrog Energy 38:11398–11405

    Article  Google Scholar 

  56. Zhang L, Tao S (2011) An intermediate temperature solid oxide fuel cell fabricated by one step co-press-sintering. Int J Hydrog Energy 36:14643–14647

    Article  Google Scholar 

  57. Yang G, Su C, Ran R, Tadé MO, Shao Z (2014) Advanced symmetric solid oxide fuel cell with an infiltrated K2NiF4-type La2NiO4 electrode. Energy Fuels 28:356–362

    Article  Google Scholar 

  58. Delahaye T, Jardiel T, Joubert O, Laucournet R, Gauthier G, Caldes MT (2011) Electrochemical properties of novel SOFC dual electrode La0.75Sr0.25Cr0.5Mn0.3Ni0.2O3-δ. Solid State Ionics 184:39–41

    Article  Google Scholar 

  59. Liu L, Sun K, Li X, Zhang M, Liu Y, Zhang N, Zhou X (2012) A novel doped CeO2-LaFeO3 composite oxide as both anode and cathode for solid oxide fuel cells. Int J Hydrog Energy 37:12574–12579

    Article  Google Scholar 

  60. Yang G, Su C, Chen Y, Tadé MO, Shao Z (2014) Nano La0.6Ca0.4Fe0.8Ni0.2O3-δ decorated porous doped ceria as a novel cobalt-free electrode for “symmetrical” solid oxide fuel cells. J Mater Chem A 2:19526–19535

    Article  Google Scholar 

  61. Yang G, Shen J, Chen Y, Tadé MO, Shao Z (2015) Cobalt-free Ba0.5Sr0.5Fe0.8Cu0.1Ti0.1O3-δ as a bi-functional electrode material for solid oxide fuel cells. J Power Sources 298:184–192

    Article  Google Scholar 

  62. Yang C, Yang Z, Jin C, Xiao G, Chen F, Han M (2012) Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells. Adv Mater 24:1439–1443

    Article  Google Scholar 

  63. Zhang P, Guan G, Khaerudini DS, Hao X, Han M, Kasai Y, Sasagawa K, Abudula A (2014) Properties of A-site nonstoichiometry (Pr0.4)xSr0.6Co0.2Fe0.7Nb0.1O3-δ (0.9 ≤ x ≤ 1.1) as symmetrical electrode material for solid oxide fuel cells. J Power Sources 248:163–171

    Article  Google Scholar 

  64. Zhang P, Guan G, Khaerudini DS, Hao X, Xue C, Han M, Kasai Y, Abudula A (2014) Evaluation of performances of solid oxide fuel cells with symmetrical electrode material. J Power Sources 266:241–249

    Article  Google Scholar 

  65. Yang Z, Xu N, Han M, Chen F (2014) Performance evaluation of La0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ as both anode and cathode material in solid oxide fuel cells. Int J Hydrog Energy 39:7402–7406

    Article  Google Scholar 

  66. Zhang P, Guan G, Khaerudini DS, Hao X, Xue C, Han M, Kasai Y, Abudula A (2015) B-site Mo-doped perovskite Pr0.4Sr0.6(Co0.2Fe0.8)1-xMoxO3-δ (x = 0, 0.05, 0.1 and 0.2) as electrode for symmetrical solid oxide fuel cell. J Power Sources 276:347–356

    Article  Google Scholar 

  67. Kuhn M, Napporn T (2010) Single-chamber solid oxide fuel cell technology—from its origins to today’s state of the art. Energies 3:57–134

    Article  Google Scholar 

  68. Hibino T, Wang S, Kakimoto S, Sano M (1999) Single chamber solid oxide fuel cell constructed from an yttria‐stabilized zirconia electrolyte. Electrochem Solid-State Lett 2:317–319

    Article  Google Scholar 

  69. Yano M, Tomita A, Sano M, Hibino T (2007) Recent advances in single-chamber solid oxide fuel cells: a review. Solid State Ionics 177:3351–3359

    Article  Google Scholar 

  70. Shao Z, Haile SM, Ahn J, Ronney PD, Zhan Z, Barnett SA (2005) A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature 435:795–798

    Article  Google Scholar 

  71. Hibino T, Hashimoto A, Inoue T, J-i T, S-i Y, Sano M (2000) A low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures. Science 288:2031–2033

    Article  Google Scholar 

  72. Jasinski P, Suzuki T, Byars Z, Dogan F, Anderson HU (2003) Comparison of anode and electrolyte support configuration of single-chamber SOFC. In: Proceedings-electrochemical society, pp 1101–1108, Electrochemical Society

    Google Scholar 

  73. Shao Z, Kwak C, Haile SM (2004) Anode-supported thin-film fuel cells operated in a single chamber configuration 2T-I-12. Solid State Ionics 175:39–46

    Article  Google Scholar 

  74. Hibino T, Hashimoto A, Inoue T, Ji T, Si Y, Sano M (2000) Single‐chamber solid oxide fuel cells at intermediate temperatures with various hydrocarbon‐air mixtures. J Electrochem Soc 147:2888–2892

    Article  Google Scholar 

  75. Yano M, Kawai T, Okamoto K, Nagao M, Sano M, Tomita A, Hibino T (2007) Single-chamber SOFCs using dimethyl ether and ethanol. J Electrochem Soc 154:B865–B870

    Article  Google Scholar 

  76. Gauckler LJ, Beckel D, Buergler BE, Jud E, Muecke UP, Prestat M, Rupp JLM, Richter J (2004) Solid oxide fuel cells: systems and materials. CHIMIA Int J Chem 58:837–850

    Article  Google Scholar 

  77. Hibino T, Wang S, Kakimoto S, Sano M (2000) One-chamber solid oxide fuel cell constructed from a YSZ electrolyte with a Ni anode and LSM cathode. Solid State Ionics 127:89–98

    Article  Google Scholar 

  78. D’Epifanio A, Fabbri E, Di Bartolomeo E, Licoccia S, Traversa E (2009) Single Chamber Solid Oxide Fuel Cells (SC-SOFCs) based on a proton conducting electrolyte. ECS Trans 25:1001–1006

    Article  Google Scholar 

  79. Asano K, Hibino T, Iwahara H (1995) A novel solid oxide fuel cell system using the partial oxidation of methane. J Electrochem Soc 142:3241–3245

    Article  Google Scholar 

  80. Fabbri E, D’Epifanio A, Di Bartolomeo E, Licoccia S, Traversa E (2008) Tailoring the chemical stability of Ba(Ce0.8−xZrx)Y0.2O3−δ protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs). Solid State Ionics 179:558–564

    Article  Google Scholar 

  81. Fabbri E, D’Epifanio A, Sanna S, Di Bartolomeo E, Balestrino G, Licoccia S, Traversa E (2010) A novel single chamber solid oxide fuel cell based on chemically stable thin films of Y-doped BaZrO3 proton conducting electrolyte. Energy Environ Sci 3:618–621

    Article  Google Scholar 

  82. Lamas DG, Cabezas MD, Fábregas IO, Walsöe de Reca NE, Lascalea GE, Kodjaian A, Vidal MA, Amadeo NE, Larrondo SA (2007) NiO/ZrO2-CeO2 anodes for single-chamber solid-oxide fuel cells operating on methane/air mixtures. ECS Trans 7:961–970

    Article  Google Scholar 

  83. Zhang C, Sun L, Ran R, Shao Z (2009) Activation of a single-chamber solid oxide fuel cell by a simple catalyst-assisted in-situ process. Electrochem Commun 11:1563–1566

    Article  Google Scholar 

  84. de Larramendi IR, Lamas DG, Cabezas MD, de Larramendi JIR, de Reca NEW, Rojo T (2009) Development of electrolyte-supported intermediate-temperature single-chamber solid oxide fuel cells using Ln(0.7)Sr(0.3)Fe(0.8)Co(0.2)O(3-delta) (Ln = Pr, La, Gd) cathodes. J Power Sources 193:774–778

    Article  Google Scholar 

  85. Morel B, Roberge R, Savoie S, Napporn TW, Meunier M (2007) Catalytic activity and performance of LSM cathode materials in single chamber SOFC. Appl Catal A 323:181–187

    Article  Google Scholar 

  86. Piñol S (2006) Stable single-chamber solid oxide fuel cells based on doped ceria electrolytes and La0.5Sr0.5CoO3 as a new cathode. J Fuel Cell Sci Technol 3:434–437

    Article  Google Scholar 

  87. Piñol S, Morales M, Espiell F (2007) Low temperature anode-supported solid oxide fuel cells based on gadolinium doped ceria electrolytes. J Power Sources 169:2–8

    Article  Google Scholar 

  88. Shao Z, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–173

    Article  Google Scholar 

  89. Zhang C, Zheng Y, Lin Y, Ran R, Shao Z, Farrusseng D (2009) A comparative study of La0.8Sr0.2MnO3 and La0.8Sr0.2Sc0.1Mn0.9O3 as cathode materials of single-chamber SOFCs operating on a methane–air mixture. J Power Sources 191:225–232

    Article  Google Scholar 

  90. Wei B, Lü Z, Huang X, Liu M, Chen K, Su W (2007) Enhanced performance of a single-chamber solid oxide fuel cell with an SDC-impregnated cathode. J Power Sources 167:58–63

    Article  Google Scholar 

  91. Liu M, Lü Z, Wei B, Huang X, Chen K, Su W (2009) Study on impedance spectra of La0.7Sr0.3MnO3 and Sm0.2Ce0.8O1.9-impregnated La0.7Sr0.3MnO3 cathode in single chamber fuel cell condition. Electrochim Acta 54:4726–4730

    Article  Google Scholar 

  92. Yue X, Yan A, Zhang M, Liu L, Dong Y, Cheng M (2008) Investigation on scandium-doped manganate La0.8Sr0.2Mn1-xScxO3−δ cathode for intermediate temperature solid oxide fuel cells. J Power Sources 185:691–697

    Article  Google Scholar 

  93. Zhang C, Zheng Y, Ran R, Shao Z, Jin W, Xu N, Ahn J (2008) Initialization of a methane-fueled single-chamber solid-oxide fuel cell with NiO + SDC anode and BSCF + SDC cathode. J Power Sources 179:640–648

    Article  Google Scholar 

  94. Hao Y, Shao Z, Mederos J, Lai W, Goodwin DG, Haile SM (2006) Recent advances in single-chamber fuel-cells: experiment and modeling. Solid State Ionics 177:2013–2021

    Article  Google Scholar 

  95. Hao Y, Goodwin DG (2008) Efficiency and fuel utilization of methane-powered single-chamber solid oxide fuel cells. J Power Sources 183:157–163

    Article  Google Scholar 

  96. Kronemayer H, Barzan D, Horiuchi M, Suganuma S, Tokutake Y, Schulz C, Bessler WG (2007) A direct-flame solid oxide fuel cell (DFFC) operated on methane, propane, and butane. J Power Sources 166:120–126

    Article  Google Scholar 

  97. Zhu X, Wei B, Lü Z, Yang L, Huang X, Zhang Y, Liu M (2012) A direct flame solid oxide fuel cell for potential combined heat and power generation. Int J Hydrog Energy 37:8621–8629

    Article  Google Scholar 

  98. Vogler M, Horiuchi M, Bessler WG (2010) Modeling, simulation and optimization of a no-chamber solid oxide fuel cell operated with a flat-flame burner. J Power Sources 195:7067–7077

    Article  Google Scholar 

  99. Horiuchi M, Suganuma S, Watanabe M (2004) Electrochemical power generation directly from combustion flame of gases, liquids, and solids. J Electrochem Soc 151:A1402–A1405

    Article  Google Scholar 

  100. Wang K, Ran R, Hao Y, Shao Z, Jin W, Xu N (2008) A high-performance no-chamber fuel cell operated on ethanol flame. J Power Sources 177:33–39

    Article  Google Scholar 

  101. Wang K, Zeng P, Ahn J (2011) High performance direct flame fuel cell using a propane flame. Proc Combust Inst 33:3431–3437

    Article  Google Scholar 

  102. Song J, Ran R, Shao Z (2010) Hydrazine as efficient fuel for low-temperature SOFC through ex-situ catalytic decomposition with high selectivity toward hydrogen. Int J Hydrog Energy 35:7919–7924

    Article  Google Scholar 

  103. Wang Y, Shi Y, Yu X, Cai N, Li S (2013) Direct flame fuel cell performance using a multi-element diffusion flame burner. ECS Trans 57:279–288

    Article  Google Scholar 

  104. Wang YQ, Shi YX, Yu XK, Cai NS, Li SQ (2013) Integration of solid oxide fuel cells with multi-element diffusion flame burners. J Electrochem Soc 160:F1241–F1244

    Article  Google Scholar 

  105. Wang Y, Shi Y, Yu X, Cai N, Qian J, Wang S (2014) Experimental characterization of a direct methane flame solid oxide fuel cell power generation unit. J Electrochem Soc 161:F1348–F1353

    Article  Google Scholar 

  106. Bermúdez JM, Fidalgo B, Arenillas A, Menéndez JA (2012) CO2 reforming of coke oven gas over a Ni/γAl2O3 catalyst to produce syngas for methanol synthesis. Fuel 94:197–203

    Article  Google Scholar 

  107. Jun K-W, Roh H-S, Kim K-S, Ryu J-S, Lee K-W (2004) Catalytic investigation for Fischer–Tropsch synthesis from bio-mass derived syngas. Appl Catal A 259:221–226

    Article  Google Scholar 

  108. Zhang Q, Liu P, Fujiyama Y, Chen C, Li X (2011) Synthesis of light hydrocarbons from syngas in near-critical phase. Appl Catal A 401:147–152

    Article  Google Scholar 

  109. Vollmar HE, Maier CU, Nölscher C, Merklein T, Poppinger M (2000) Innovative concepts for the coproduction of electricity and syngas with solid oxide fuel cells. J Power Sources 86:90–97

    Article  Google Scholar 

  110. Leal EM, Brouwer J (2005) A thermodynamic analysis of electricity and hydrogen co-production using a solid oxide fuel cell. J Fuel Cell Sci Technol 3:137–143

    Article  Google Scholar 

  111. Zhu H, Kee RJ, Pillai MR, Barnett SA (2008) Modeling electrochemical partial oxidation of methane for cogeneration of electricity and syngas in solid-oxide fuel cells. J Power Sources 183:143–150

    Article  Google Scholar 

  112. Zhang X, Ohara S, Chen H, Fukui T (2002) Conversion of methane to syngas in a solid oxide fuel cell with Ni–SDC anode and LSGM electrolyte. Fuel 81:989–996

    Article  Google Scholar 

  113. Zhan Z, Lin Y, Pillai M, Kim I, Barnett SA (2006) High-rate electrochemical partial oxidation of methane in solid oxide fuel cells. J Power Sources 161:460–465

    Article  Google Scholar 

  114. Karl J, Frank N, Karellas S, Saule M, Hohenwarter U (2009) Conversion of syngas from biomass in solid oxide fuel cells. J Fuel Cell Sci Technol 6:021005

    Article  Google Scholar 

  115. Shao Z, Zhang C, Wang W, Su C, Zhou W, Zhu Z, Park HJ, Kwak C (2011) Electric power and synthesis gas co-generation from methane with zero waste gas emission. Angew Chem Int Ed 50:1792–1797

    Article  Google Scholar 

  116. Pillai M, Bierschenk D, Barnett S (2008) Electrochemical partial oxidation of methane in solid oxide fuel cells: effect of anode reforming activity. Catal Lett 121:19–23

    Article  Google Scholar 

  117. Hibino T, Iwahara H (1993) Simplification of solid oxide fuel cell system using partial oxidation of methane. Chem Lett 7:1131–1134

    Article  Google Scholar 

  118. Shi H, Su C, Yang G, Ran R, Hao Y, Tade MO, Shao Z (2014) Fabrication and operation of flow-through tubular SOFCs for electric power and synthesis gas cogeneration from methane. AlChE J 60:1036–1044

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shao, Z., Tadé, M.O. (2016). Selected New Aspects of SOFCs. In: Intermediate-Temperature Solid Oxide Fuel Cells. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52936-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52936-2_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52934-8

  • Online ISBN: 978-3-662-52936-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics