Skip to main content

Interconnect Materials for IT-SOFCs

  • Chapter
  • First Online:
Intermediate-Temperature Solid Oxide Fuel Cells

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 1388 Accesses

Abstract

This chapter presents the definition, functions, and requirements of the interconnect materials for intermediate temperature solid oxide fuel cells (IT-SOFCs), including several interconnect materials for SOFCs. In the past, the most promising candidates have been LaCrO3- and YCrO3-based perovskite materials. Recently, metal-based materials and modified or coated alloys have also attracted attention. However, different interconnect materials are suitable for SOFCs with different temperature ranges. For high-temperature SOFCs, only limited types of perovskite-based oxides are applicable as interconnects. With the decrease in operation temperature to the intermediate range, i.e., 500–800 °C, metal-based interconnects can be used, thus making the SOFCs more versatile in stack construction. In this chapter, we focus on the development of LaCrO3 and YCrO3 perovskite-based interconnects and various metal-based interconnects primarily based on Cr, Ni, and Fe. Recently, several coating systems, such as spinel coating and perovskite coating, have been adopted for metal-based interconnects to reduce chromium volatilization and maintain a low electrical resistance, which might provide a new approach to designing and developing stable interconnects with low resistance. This chapter aims to provide useful guidelines for future research on interconnect materials for IT-SOFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu WZ, Deevi SC (2003) Development of interconnect materials for solid oxide fuel cells. Mater Sci Eng A 348:227–243

    Article  Google Scholar 

  2. Fergus JW (2004) Lanthanum chromite-based materials for solid oxide fuel cell interconnects. Solid State Ionics 171:1–15

    Article  Google Scholar 

  3. Wu J, Liu X (2010) Recent development of SOFC metallic interconnect. J Mater Sci Technol 26:293–305

    Article  Google Scholar 

  4. Fergus JW (2005) Metallic interconnects for solid oxide fuel cells. Mater Sci Eng A 397:271–283

    Article  Google Scholar 

  5. Yamamoto T, Itoh H, Mori M, Mori N, Watanabe T, Imanishi N, Takeda Y, Yamamoto O (1996) Chemical stability between NiO/8YSZ cermet and alkaline-earth metal substituted lanthanum chromite. J Power Sources 61:219–222

    Article  Google Scholar 

  6. Wang S, Lin B, Chen Y, Liu X, Meng G (2009) Evaluation of simple, easily sintered La0.7Ca0.3Cr0.97O3-δ perovskite oxide as novel interconnect material for solid oxide fuel cells. J Alloys Compd 479:764–768

    Article  Google Scholar 

  7. Kim J, Peck D, Song R, Lee G, Shin D, Hyun S, Wackerl J, Hilpert K (2006) Synthesis and sintering properties of (La0.8Ca0.2-xSrx)CrO3 perovskite materials for SOFC interconnect. J Electroceram 17:729–733

    Article  Google Scholar 

  8. van Hassel B, Kawada T, Sakai N, Yokokawa H, Dokiya M (1993) Oxygen permeation modelling of La1-yCayCrO3-δ. Solid State Ionics 66:41–47

    Article  Google Scholar 

  9. Mori M, Yamamoto T, Itoh H, Watanabe T (1997) Compatibility of alkaline earth metal (Mg, Ca, Sr)-doped lanthanum chromites as separators in planar-type high-temperature solid oxide fuel cells. J Mater Sci 32:2423–2431

    Article  Google Scholar 

  10. Yokokawa H, Sakai N, Kawada T, Dokiya M (1991) Chemical thermodynamic considerations in sintering of LaCrO3-based perovskites. J Electrochem Soc 138:1018–1027

    Article  Google Scholar 

  11. Mori M, Hiei Y, Yamamoto T (2001) Control of the thermal expansion of strontium-doped lanthanum chromite perovskites by b-site doping for high-temperature solid oxide fuel cell separators. J Am Ceram Soc 84:781–786

    Article  Google Scholar 

  12. Peck D, Miller M, Hilpert K (2001) Vaporization and thermodynamic activities in La0.80Sr0.2-xCaxCrO3-δ, x = 0.05, 0.10, and 0.15, investigated by Knudsen Effusion Mass Spectrometry. J Electrochem Soc 148:A657–A661

    Article  Google Scholar 

  13. Wang S, Lin B, Xie K, Dong Y, Liu X, Meng G (2009) Low temperature sintering ability and electrical conductivity of SOFC interconnect material La0.7Ca0.3Cr0.97O3. J Alloys Compd 468:499–504

    Article  Google Scholar 

  14. Mori M, Hiei Y (2001) Thermal expansion behavior of titanium-doped La(Sr)CrO3 solid oxide fuel cell interconnects. J Am Ceram Soc 84:2573–2578

    Article  Google Scholar 

  15. Mori M (2002) Enhancing effect on densification and thermal expansion compatibility for La0.8Sr0.2Cr0.9Ti0.1O3-Based SOFC interconnect with b-site doping. J Electrochem Soc 149:A797–A803

    Article  Google Scholar 

  16. Lee G, Song R, Kim J, Peck D, Lim T, Shul Y, Shin D (2006) Properties of Cu, Ni, and V doped-LaCrO3 interconnect materials prepared by Pechini, ultrasonic spray pyrolysis and glycine nitrate processes for SOFC. J Electroceram 17:723–727

    Article  Google Scholar 

  17. Duran P, Tartaj J, Capel F, Moure C (2004) Formation, sintering and thermal expansion behaviour of Sr- and Mg-doped LaCrO3 as SOFC interconnector prepared by the ethylene glycol polymerized complex solution synthesis method. J Eur Ceram Soc 24:2619–2629

    Article  Google Scholar 

  18. Fu Y, Wang H, Hu S, Tay K (2011) Electrical conduction behaviors of isovalent and acceptor dopants on B site of (La0.8Ca0.2)CrO3-δ perovskites. Ceram Int 37:2127–2134

    Article  Google Scholar 

  19. Setz L, Santacruz I, León-Reina L, De laTorre A, Aranda M, Mello-Castanho S, Moreno R, Colomer M (2015) Strontium and cobalt doped-lanthanum chromite: characterisation of synthesized powders and sintered materials. Ceram Int 41:1177–1187

    Article  Google Scholar 

  20. Fu Y, Wang H (2011) Preparation and characterization of ceramic interconnect La0.8Ca0.2Cr0.9M0.1O3-δ (M = Al, Co, Cu, Fe) for IT-SOFCs. Int J Hydrog Energy 36:747–754

    Article  Google Scholar 

  21. Wei T, Liu X, Yuan C, Gao Q, Xin X, Wang S (2014) A modified liquid-phase-assisted sintering mechanism for La0.8Sr0.2Cr1-xFexO3-δ-A high density, redox-stable perovskite interconnect for solid oxide fuel cells. J Power Sources 250:152–159

    Article  Google Scholar 

  22. Zhou X, Deng F, Zhu M, Meng G, Liu X (2007) High performance composite interconnectLa0.7Ca0.3CrO3/20 mol% ReO1.5 dopedCeO2 (Re = Sm, Gd, Y) for solid oxide fuel cells. J Power Sources 164:293–299

    Article  Google Scholar 

  23. Weber W, Griffin C, Bates J (1987) Effects of cation substitution on electrical and thermal transport properties of YCrO3 and LaCrO3. J Am Ceram Soc 70:265–270

    Article  Google Scholar 

  24. Armstrong T, Stevenson J, McCready D, Paulik S, Raney P (1996) The effect of reducing environments on the stability of acceptor substituted yttrium chromite. Solid State Ionics 92:213–223

    Article  Google Scholar 

  25. Wang S, Bin Lin B, Dong Y, Fang D, Ding H, Liu X, Meng G (2009) Stable, easily sintered Ca-Zn-doped YCrO3 as novel interconnect materials for co-fired yttrium-stabilized zirconia-based solid oxide fuel cells. J Power Sources 188:483–488

    Article  Google Scholar 

  26. Yoon K, Cramer C, Stevenson J, Marina O (2010) Improvement of sintering, thermal behavior, and electrical properties of calcium- and transition metal-doped yttrium chromite. Electrochem Solid-State Lett 13:B101–B105

    Article  Google Scholar 

  27. Yoon K, Cramer C, Thomsen E, Coyle C, Coffey G, Marina O (2010) Calcium- and cobalt-doped yttrium chromites as an interconnect material for solid oxide fuel cells. J Electrochem Soc 157:B856–B861

    Article  Google Scholar 

  28. Yoon K, Stevenson J, Marina O (2011) Effect of nickel substitution on defect chemistry, electrical properties, and dimensional stability of calcium-doped yttrium chromite. Solid State Ionics 193:60–65

    Article  Google Scholar 

  29. Yoon K, Cramer C, Stevenson J, Marina O (2010) Advanced ceramic interconnect material for solid oxide fuel cells: electrical and thermal properties of calcium- and nickel-doped yttrium chromites. J Power Sources 195:7587–7593

    Article  Google Scholar 

  30. Yoon K, Cramer C, Stevenson J, Marina O (2011) High performance ceramic interconnect material for solid oxide fuel cells (SOFCs): Ca- and transition metal-doped yttrium chromite. J Power Sources 196:8531–8538

    Article  Google Scholar 

  31. Liu Z, Dong D, Huang X, Lü Z, Sui Y, Wang X, Miao J, Shen X, Su W (2005) A novel interconnect material for SOFCs. Electrochem Solid-State Lett 8:A250–A252

    Article  Google Scholar 

  32. Devi P (1993) Citrate gel processing of the perovskite lanthanide chromites. J Mater Chem 3:373–379

    Article  Google Scholar 

  33. Hirota K, Kunifusa Y, Yoshinaka M, Yamaguchi O (2002) Formation, sintering, and electrical conductivity of (Nd1-xCax)CrO3 (0 ≤ x ≤ 0.25) using citric acid as a gelling agent. Mater Res Bull 37:2335–2344

    Article  Google Scholar 

  34. Shen Y, Liu M, He T (2009) Preparation, electrical conductivity, and thermal expansion behavior of dense Nd1-xCaxCrO3 solid solutions. J Am Ceram Soc 92:2259–2264

    Article  Google Scholar 

  35. Liu M, Shen Y, Ji Y, He T (2008) Structures and properties of Sr-doped NdCrO3 solid solutions. J Alloys Compd 461:628–632

    Article  Google Scholar 

  36. Shen Y, Liu M, He T, Jiang SP (2010) A potential interconnect material for solid oxide fuel cells: Nd0.75Ca0.25Cr0.98O3-δ. J Power Sources 195:977–983

    Article  Google Scholar 

  37. Mori M, Wang Z, Serizawa N, Itoh T (2011) Evaluation of SrTi1-xCoxO3 perovskites (0 ≤ x ≤0.2) as interconnect materials for solid oxide fuel cells. J Fuel Cell. Sci Technol 8:051010

    Google Scholar 

  38. Park B, Lee J, Lee S, Lim T, Park S, Song R, Im W, Shin D (2012) La-doped SrTiO3 interconnect materials for anode-supported flat-tubular solid oxide fuel cells. Int J Hydrog Energy 37:4319–4327

    Article  Google Scholar 

  39. Hosseini N, Sammes N, Chung J (2014) Manganese-doped lanthanum calcium titanate as an interconnect for flat-tubular solid oxide fuel cells. J Power Sources 245:599–608

    Article  Google Scholar 

  40. Du Z, Zhao H, Zhou X, Xie Z, Zhang C (2013) Electrical conductivity and cell performance of La0.3Sr0.7Ti1-xCrxO3-δ perovskite oxides used as anode and interconnect material for SOFCs. Int J Hydrog Energy 38:1068–1073

    Article  Google Scholar 

  41. Yang Z, Weil K, Paxton D, Stevenson J (2003) Selection and evaluation of heat-resistant alloys for SOFC interconnect applications. J Electrochem Soc 150:A1188–A1201

    Article  Google Scholar 

  42. Zhu W, Deevi S (2003) Opportunity of metallic interconnects for solid oxide fuel cells: a status on contact resistance. Mater Res Bull 38:957–972

    Article  Google Scholar 

  43. Geng S, Zhu J, Brady M, Anderson H, Zhou X, Yang Z (2007) A low-Cr metallic interconnect for intermediate-temperature solid oxide fuel cells. J Power Sources 172:775–781

    Article  Google Scholar 

  44. Geng S, Zhu J, Lu Z (2006) Evaluation of Haynes 242 alloy as SOFC interconnect material. Solid State Ionics 177:559–568

    Article  Google Scholar 

  45. Piccardo P, Gannon P, Chevalier S, Viviani M, Barbucci A, Caboche G, Amendola R, Fontana S (2007) ASR evaluation of different kinds of coatings on a FSS as SOFC interconnects. Surf Coat Technol 202:1221–1225

    Article  Google Scholar 

  46. Qu W, Jian L, Ivey D, Hill J (2006) Yttrium, cobalt and yttrium/cobalt oxide coatings on FSSs for SOFC interconnects. J Power Sources 157:335–350

    Article  Google Scholar 

  47. Antepara I, Villarreal I, Rodríguez-Martínez L, Lecanda N, Castro U, Laresgoiti A (2005) Evaluation of ferritic steels for use as interconnects and porous metal supports in IT-SOFCs. J Power Sources 151:103–107

    Article  Google Scholar 

  48. Yang Z, Walker M, Singh P, Stevenson J, Norby T (2004) Oxidation behavior of FSSs under SOFC interconnect exposure conditions. J Electrochem Soc 151:B669–B678

    Article  Google Scholar 

  49. Huang K, Hou P, Goodenough J (2000) Characterization of iron-based alloy interconnects for reduced temperature solid oxide fuel cells. Solid State Ionics 129:237–250

    Article  Google Scholar 

  50. Zhang W, Yan D, Yang J, Chen J, Chi B, Pu J, Li J (2014) A novel low Cr-containing Fe-Cr-Co alloy for metallic interconnects in planar intermediate temperature solid oxide fuel cells. J Power Sources 271:25–31

    Article  Google Scholar 

  51. Azim Safikhani A, Aminfard M (2014) Effect of W and Ti addition on oxidation behavior and area-specific resistance of Fe-22Cr-0.5Mn FSS for SOFCs interconnect. Int J Hydrog Energy 39:2286–2296

    Article  Google Scholar 

  52. Yun D, Seo H, Jun J, Kim K (2013) Evaluation of Nb- or Mo-alloyed FSS as SOFC interconnect by using button cells. Int J Hydrog Energy 38:1560–1570

    Article  Google Scholar 

  53. Chiu Y, Lin C (2012) Effects of Nb and W additions on high-temperature creep properties of FSSs for solid oxide fuel cell interconnect. J Power Sources 198:149–157

    Article  Google Scholar 

  54. Ali-Löytty H, Jussila P, Juuti T, Karjalainen L, Zakharov A, Valden M (2012) Influence of precipitation on initial high-temperature oxidation of Ti-Nb stabilized FSS SOFC interconnect alloy. Int J Hydrog Energy 37:14528–14595

    Article  Google Scholar 

  55. Kurokawa H, Oyama Y, Kawamura K (2004) Hydrogen permeation through Fe-16Cr alloy interconnect in atmosphere simulating SOFC at 1073 K. J Electrochem Soc 151:A1264–A1268

    Article  Google Scholar 

  56. Yang Z, Xia G, Stevenson J (2006) Evaluation of Ni-Cr-base alloys for SOFC interconnect applications. J Power Sources 160:1104–1110

    Article  Google Scholar 

  57. Chen L, Yang Z, Jha B, Xia G, Stevenson J (2005) Clad metals, roll bonding and their applications for SOFC interconnects. J Power Sources 152:40–45

    Article  Google Scholar 

  58. Jablonski P, Alman D (2007) Oxidation resistance and mechanical properties of experimental low coefficient of thermal expansion (CTE) Ni-base alloys. Int J Hydrog Energy 32:3705–3712

    Article  Google Scholar 

  59. Zhang W, Wang F, Wang K, Pu J, Chi B, Jian L (2012) Chemical compatibility and electrical contact between Ni-Cr-Mo alloy and LaCo0.6Ni0.4O3-δ in intermediate temperature solid oxide fuel cells. Int J Hydrog Energy 37:17253–17257

    Article  Google Scholar 

  60. Stanislowski M, Froitzheim J, Niewolak L, Quadakkers W, Hilpert K, Markus T, Singheiser L (2007) Reduction of chromium vaporization from SOFC interconnectors by highly effective coatings. J Power Sources 164:578–589

    Article  Google Scholar 

  61. Kim J, Song R, Hyun S (2004) Effect of slurry-coated LaSrMnO3 on the electrical property of Fe-Cr alloy for metallic interconnect of SOFC. Solid State Ionics 174:185–191

    Article  Google Scholar 

  62. Qu W, Jian L, Hill J, Ivey D (2006) Electrical and microstructural characterization of spinel phases as potential coatings for SOFC metallic interconnects. J Power Sources 153:114–124

    Article  Google Scholar 

  63. Shaigan N, Qu W, Ivey D, Chen W (2010) A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell FSS interconnects. J Power Sources 195:1529–1542

    Article  Google Scholar 

  64. Zhang H, Zhan Z, Liu X (2011) Electrophoretic deposition of (Mn, Co)3O4 spinel coating for solid oxide fuel cell interconnects. J Power Sources 196:8041–8047

    Article  Google Scholar 

  65. Zhang Y, Javed A, Zhou M, Liang S, Xiao P (2014) Fabrication of Mn-Co spinel coatings on crofer 22 APU stainless steel by electrophoretic deposition for interconnect applications in solid oxide fuel cells. Int J Appl Ceram Technol 11:332–341

    Article  Google Scholar 

  66. Lee S, Hong J, Kim H, Son J, Lee J, Kim B, Lee H, Yoon K (2014) Highly dense Mn-Co spinel coating for protection of metallic interconnect of solid oxide fuel cells. J Electrochem Soc 161:F1389–F1394

    Article  Google Scholar 

  67. Zeng Y, Wu J, Baker A, Liu X (2014) Magnetron-sputtered Mn/Co(40:60) coating on FSS SUS430 for solid oxide fuel cell interconnect applications. Int J Hydrog Energy 39:16061–16066

    Article  Google Scholar 

  68. Yang Z, Xia G, Wang C, Nie Z, Templeton J, Stevenson J, Singh P (2008) Investigation of iron-chromium-niobium-titanium FSS for solid oxide fuel cell interconnect applications. J Power Sources 183:660–667

    Article  Google Scholar 

  69. Stevenson J, Yang Z, Xia G, Nie Z, Templeton J (2013) Long-term oxidation behavior of spinel-coated FSS for solid oxide fuel cell interconnect applications. J Power Sources 231:256–263

    Article  Google Scholar 

  70. Magdefrau N, Chen L, Sun E, Aindow M (2014) The effect of Mn1.5Co1.5O4 coatings on the development of near surface microstructure for Haynes 230 oxidized at 800 °C in air. Surf Coat Technol 242:109–117

    Article  Google Scholar 

  71. Yang Z, Xia G, Nie Z, Templeton J, Stevenson J (2008) Ce-Modified (Mn, Co)3O4 spinel coatings on FSSs for SOFC interconnect applications. Electrochem Solid-State Lett 11:B140–B143

    Article  Google Scholar 

  72. Chou Y, Stevenson J, Choi J (2014) Long-term evaluation of solid oxide fuel cell candidate materials in a 3-cell generic stack test fixture, part III: stability and microstructure of Ce-(Mn, Co)-spinel coating, AISI441 interconnect, alumina coating, cathode and anode. J Power Sources 257:444–453

    Article  Google Scholar 

  73. Ou D, Cheng M, Wang X (2013) Development of low-temperature sintered Mn-Co spinel coatings on Fe-Cr ferritic alloys for solid oxide fuel cell interconnect applications. J Power Sources 236:200–206

    Article  Google Scholar 

  74. Ou D, Cheng M (2014) Effect of pre-oxidation on the oxidation resistance of spinel-coated Fe-Cr ferritic alloy for solid oxide fuel cell applications. J Power Sources 247:84–89

    Article  Google Scholar 

  75. Paknahad P, Askari M, Ghorbanzadeh M (2014) Application of sol-gel technique to synthesis of copper-cobalt spinel on the FSS used for solid oxide fuel cell interconnects. J Power Sources 266:79–87

    Article  Google Scholar 

  76. Jalilvand G, Faghihi-Sani M (2013) Fe doped Ni-Co spinel protective coating on FSS for SOFC interconnect application. Int J Hydrog Energy 38:12007–12014

    Article  Google Scholar 

  77. Zhang W, Hua B, Duan N, Pu J, Chi B, Li J (2012) Cu-Fe spinel coating as oxidation barrier for Fe-16Cr metallic interconnect in solid oxide fuel cells. J Electrochem Soc 159:C388–C392

    Article  Google Scholar 

  78. Hosseini N, Abbasi M, Karimzadeh F, Choi G (2015) Development of Cu1.3Mn1.7O4 spinel coating on FSS for solid oxide fuel cell interconnects. J Power Sources 273:1073–1083

    Article  Google Scholar 

  79. Waluyo N, Park B, Lee S, Lim T, Park S, Song R, Lee J (2014) (Mn, Cu)3O4-based conductive coatings as effective barriers to high-temperature oxidation of metallic interconnects for solid oxide fuel cells. J Solid State Electrochem 18:445–452

    Article  Google Scholar 

  80. Lu Z, Zhu J, Pan Y, Wu N, Ignatiev A (2008) Improved oxidation resistance of a nanocrystalline chromite-coated FSS. J Power Sources 178:282–290

    Article  Google Scholar 

  81. Yoon J, Lee J, Hwang H, Whang C, Moon J, Kim D (2008) Lanthanum oxide-coated stainless steel for bipolar plates in solid oxide fuel cells (SOFCs). J Power Sources 181:281–286

    Article  Google Scholar 

  82. Feng Z, Zeng C (2010) LaCrO3-based coatings deposited by high-energy micro-arc alloying process on a FSS interconnect material. J Power Sources 195:4242–4246

    Article  Google Scholar 

  83. Lee E, Lee S, Hwang H, Moon J (2006) Sol-gel derived (La0.8M0.2)CrO3 (M = Ca, Sr) coating layer on stainless-steel substrate for use as a separator in intermediate-temperature solid oxide fuel cell. J Power Sources 157:709–713

    Article  Google Scholar 

  84. Buscaila H, Issartel C, Riffard F, Rolland R, Perrier S, Fleurentin A, Josse C (2011) Effect of various lanthanum sol-gel coatings on the 330Cb (Fe-35Ni-18Cr-1Nb-2Si) oxidation at 900 °C. Appl Surf Sci 258:678–686

    Article  Google Scholar 

  85. Rashtchi H, Sani M, Dayaghi A (2013) Effect of Sr and Ca dopants on oxidation and electrical properties of lanthanum chromite-coated AISI 430 stainless steel for solid oxide fuel cell interconnect application. Ceram Int 39:8123–8131

    Article  Google Scholar 

  86. Park C, Baik K (2014) Improvements in oxidation resistance and conductivity of Fe-Cr metallic interconnector by (La0.8Ca0.2)(Cr0.9Co0.1)O3 Coating. Met Mater Int 20:63–67

    Article  Google Scholar 

  87. Feng Z, Xu Y, Zeng C (2013) Preparation and high temperature performances of DyCrO3-based coatings on a FSS interconnect material. J Power Sources 235:54–61

    Article  Google Scholar 

  88. da Conceição L, Dessemond L, Djurado E, Souza M (2013) La0.7Sr0.3MnO3-coated SS444 alloy by dip-coating process for metallic interconnect supported solid oxide fuel cells. J Power Sources 241:159–167

    Article  Google Scholar 

  89. Wu W, Guan W, Wang G, Liu W, Zhang Q, Chen T, Wang W (2014) Evaluation of Ni80Cr20/(La0.75Sr0.25)0.95MnO3 dual layer coating on SUS 430 stainless steel used as metallic interconnect for solid oxide fuel cells. Int J Hydrog Energy 39:996–1004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shao, Z., Tadé, M.O. (2016). Interconnect Materials for IT-SOFCs. In: Intermediate-Temperature Solid Oxide Fuel Cells. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52936-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52936-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52934-8

  • Online ISBN: 978-3-662-52936-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics