Skip to main content

Anodes for IT-SOFCs

  • Chapter
  • First Online:
Intermediate-Temperature Solid Oxide Fuel Cells

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 1335 Accesses

Abstract

This chapter presents a brief introduction to the fundamentals and requirements of anode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). First, the possible coking and sulfur poisoning mechanisms are summarized with evidence from experimental studies and theoretical calculations, and the various types of anode materials are presented. For example, Ni-based cermet anodes are the most investigated anodes for IT-SOFCs, and related modifications, such as surface decoration and alloying by Cu, Au, and selected functional oxides, replacement of the ceramic phase with a proton conductor, and deposition of an anode catalyst layer on the outer surface of Ni-based anodes, are described. In addition, certain oxide-based anodes, such as fluorite and perovskite, are also widely studied. Due to the low activity of perovskite oxides, further modifications of perovskite-based anodes are produced by the addition of active metals, ceria-based materials with oxygen storage capability, and O2− conducting materials such as yttria-stabilized zirconia (YSZ). In addition to the material development of anodes for IT-SOFCs, selected new strategies for the modification of fuels with fuel additives intended to reduce coke formation on the anode are also presented. This chapter offers useful guidelines for future research on anode materials for IT-SOFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu WZ, Deevi SC (2003) A review on the status of anode materials for solid oxide fuel cells. Mater Sci Eng A 362:228–239

    Article  Google Scholar 

  2. Wang W, Su C, Wu YZ, Ran R, Shao ZP (2013) Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chem Rev 113:8104–8151

    Article  Google Scholar 

  3. Sasaki K, Susuki K, Iyoshi A, Uchimura M, Imamura N, Kusaba H, Teraoka Y, Fuchino H, Tsujimoto K, Uchida Y, Jingod N (2006) H2S poisoning of solid oxide fuel cells. J Electrochem Soc 153:A2023–A2029

    Article  Google Scholar 

  4. Mccarty JG, Wise H (1979) Hydrogenation of surface carbon on alumina-supported nickel. J Catal 57:406–416

    Article  Google Scholar 

  5. Bartholomew CH (1982) Carbon deposition in steam reforming and methanation. Catal Rev 24:67–112

    Article  Google Scholar 

  6. Trimm DL (1999) Catalysts for the control of coking during steam reforming. Catal Today 49:3–10

    Article  Google Scholar 

  7. Guo JJ, Lou H, Zheng XM (2007) The deposition of coke from methane on a Ni/MgAl2O4 catalyst. Carbon 45:1314–1321

    Article  Google Scholar 

  8. Rostrup-Nielsen J, Trimm DL (1977) Mechanisms of carbon formation on nickel-containing catalysts. J Catal 48:155–165

    Article  Google Scholar 

  9. Kock AJHM, Debokx PK, Boellaard E, Klop W, Geus JW (1985) The formation of filamentous carbon on iron and nickel catalysts. J Catal 96:468–480

    Article  Google Scholar 

  10. Holstein WL (1995) The roles of ordinary and soret diffusion in the metal-catalyzed formation of filamentous carbon. J Catal 152:42–51

    Article  Google Scholar 

  11. Sehested J (2006) Four challenges for nickel steam-reforming catalysts. Catal Today 111:103–110

    Article  Google Scholar 

  12. Asai K, Nagayasu Y, Takane K, Iwamoto S, Yagasaki E, Ishii K, Inoue M (2008) Mechanism of methane decomposition over Ni catalysts at high temperatures. J Jpn Petrol Inst 51:42–49

    Article  Google Scholar 

  13. Inoue M, Asai K, Nagayasu Y, Takane K, Iwamoto S, Yagasaki E, Ishii K (2008) Formation of multi-walled carbon nanotubes by Ni-catalyzed decomposition of methane at 600–750 °C. Diamond Relat Mater 17:1471–1475

    Article  Google Scholar 

  14. Sasaki K, Haga K, Yoshizumi T, Minematsu D, Yuki E, Liu R, Uryu C, Oshima T, Ogura T, Shiratori Y, Ito K, Koyama M, Yokomoto K (2011) Chemical durability of solid oxide fuel cells: influence of impurities on long-term performance. J Power Sources 196:9130–9140

    Article  Google Scholar 

  15. Sasaki K, Adachi S, Haga K, Uchikawa M, Yokomoto J, Iyoshi A, Chou JT, Shiratori Y, Itoh K (2007) Fuel impurity tolerance of solid oxide fuel cells. ECS Trans 7:1675–1683

    Article  Google Scholar 

  16. Hansen JB (2008) Correlating sulfur poisoning of SOFC nickel anodes by a temkin isotherm. Electrochem Solid-State Lett 11:B178–B180

    Article  Google Scholar 

  17. Wang JH, Liu ML (2007) Computational study of sulfur-nickel interactions: a new S-Ni phase diagram. Electrochem Commun 9:2212–2217

    Article  Google Scholar 

  18. Alfonso DR (2008) First-principles studies of H2S adsorption and dissociation on metal surfaces. Surf Sci 602:2758–2768

    Article  Google Scholar 

  19. Koh JH, Yoo YS, Park JW, Lim HC (2002) Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel. Solid State Ionics 149:157–166

    Article  Google Scholar 

  20. He HP, Hill JM (2007) Carbon deposition on Ni/YSZ composites exposed to humidified methane. Appl Catal A Gen 317:284–292

    Article  Google Scholar 

  21. Ke K, Gunji A, Mori H, Tsuchida S, Takahashi H, Ukai K, Mizutani Y, Sumi H, Yokoyama M, Waki K (2006) Effect of oxide on carbon deposition behavior of CH4 fuel on Ni/ScSZ cermet anode in high temperature SOFCs. Solid State Ionics 177:541–547

    Article  Google Scholar 

  22. Sumi H, Lee YH, Muroyama H, Matsui T, Eguchi K (2010) Comparison between internal steam and CO2 reforming of methane for Ni-YSZ and Ni-ScSZ SOFC Anodes. J Electrochem Soc 157:B1118–B1125

    Article  Google Scholar 

  23. Gunjia A, Wenb C, Otomoc J, Kobayashia T, Ukaid K, Mizutanid Y, Takahashi H (2004) Carbon deposition behaviour on Ni-ScSZ anodes for internal reforming solid oxide fuel cells. J Power Sources 131:285–288

    Article  Google Scholar 

  24. Asamoto M, Miyake S, Itagaki Y, Sadaoka Y, Yahiro H (2008) Electrocatalytic performances of Ni/SDC anodes fabricated with EPD techniques for direct oxidation of CH4 in solid oxide fuel cells. Catal Today 139:77–81

    Article  Google Scholar 

  25. Hagen A, Rasmussen JFB, Thydén K (2011) Durability of solid oxide fuel cells using sulfur containing fuels. J Power Sources 196:7271–7276

    Article  Google Scholar 

  26. Gavrielatos I, Drakopoulos V, Neophytides SG (2008) Carbon tolerant Ni-Au SOFC electrodes operating under internal steam reforming conditions. J Catal 259:75–84

    Article  Google Scholar 

  27. Niakolas DK, Ouweltjes JP, Rietveld G, Dracopoulos V, Neophytides SG (2010) Au-doped Ni/GDC as a new anode for SOFCs operating under rich CH4 internal steam reforming. Int J Hydrogen Energy 35:7898–7904

    Article  Google Scholar 

  28. Wang Z, Weng W, Cheng K, Du P, Shen G, Han G (2008) Catalytic modification of Ni-Sm-doped ceria anodes with copper for direct utilization of dry methane in low-temperature solid oxide fuel cells. J Power Sources 179:541–546

    Article  Google Scholar 

  29. Park EW, Moon H, Park M, Hyun SH (2009) Fabrication and characterization of Cu–Ni–YSZ SOFC anodes for direct use of methane via Cu-electroplating. Int J Hydrogen Energy 34:5537–5545

    Article  Google Scholar 

  30. Jung S, Gross MD, Gorte RJ, Vohs JM (2006) Electrodeposition of Cu into a highly porous Ni/YSZ cermet. J Electrochem Soc 153:A1539–A1543

    Article  Google Scholar 

  31. Islam S, Hill JM (2011) Preparation of Cu–Ni/YSZ solid oxide fuel cell anodes using microwave irradiation. J Power Sources 196:5091–5094

    Article  Google Scholar 

  32. Li WY, Lü Z, Zhu XB, Guan B, Wei B, Guan CZ, Su WH (2011) Effect of adding urea on performance of Cu/CeO2/yttria-stabilized zirconia anodes for solid oxide fuel cells prepared by impregnation method. Electrochim Acta 56:2230–2236

    Article  Google Scholar 

  33. Zheng LL, Wang X, Zhang L, Wang JY, Jiang SP (2012) Effect of Pd-impregnation on performance, sulfur poisoning and tolerance of Ni/GDC anode of solid oxide fuel cells. Int J Hydrogen Energy 37:10299–10310

    Article  Google Scholar 

  34. Kim H, Lu C, Worrell WL, Vohs JM, Gorte RJ (2002) Cu-Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells. J Electrochem Soc 149:A247–A250

    Article  Google Scholar 

  35. Sin A, Kopnin E, Dubitsky Y, Zaopo A, Aricò AS, Rosa DL, Gullo LR, Antonucci V (2007) Performance and life-time behaviour of NiCu-CGO anodes for the direct electro-oxidation of methane in IT-SOFCs. J Power Sources 164:300–305

    Article  Google Scholar 

  36. Hornés A, Gamarra D, Munuera G, Conesa JC, Martínez-Arias A (2007) Catalytic properties of monometallic copper and bimetallic copper-nickel systems combined with ceria and Ce-X (X = Gd, Tb) mixed oxides applicable as SOFC anodes for direct oxidation of methane. J Power Sources 169:9–16

    Article  Google Scholar 

  37. Xie Z, Xia CR, Zhang MY, Zhu W, Wang HT (2006) Ni1-x Cu x alloy-based anodes for low-temperature solid oxide fuel cells with biomass-produced gas as fuel. J Power Sources 161:1056–1061

    Article  Google Scholar 

  38. Lee SI, Vohs JM, Gorte RJ (2004) A study of SOFC anodes based on Cu-Ni and Cu-Co bimetallics in CeO2-YSZ. J Electrochem Soc 151:A1319–A1323

    Article  Google Scholar 

  39. Kan H, Lee H (2010) Enhanced stability of Ni-Fe/GDC solid oxide fuel cell anodes for dry methane fuel. Catal Commun 12:36–39

    Article  Google Scholar 

  40. Wang SZ, Gao J (2006) High Performance Ni-Fe-lanthanum gallate composite anodes for dimethyl ether fuel cells. Electrochem Solid-State Lett 9:A395–A398

    Article  Google Scholar 

  41. Wu YZ, Su C, Wang W, Wang HT, Shao ZP (2012) Effect of fabrication method on properties and performance of bimetallic Ni0.75Fe0.25 anode catalyst for solid oxide fuel cells. Int J Hydrogen Energy 37:9287–9297

    Article  Google Scholar 

  42. Nabae Y, Yamanaka I, Hatano M, Otsuka K (2006) Catalytic behavior of Pd-Ni/composite anode for direct oxidation of methane in SOFCs. J Electrochem Soc 153:A140–A145

    Article  Google Scholar 

  43. Nabae Y, Yamanaka I, Hatano M, Otsuka K (2008) Mechanism of suppression of carbon deposition on the Pd-Ni/Ce(sm)O2-La(Sr)CrO3 anode in dry ch4 fuel. J Phys Chem C 112:10308–10315

    Article  Google Scholar 

  44. Grgicak CM, Green RG, Giorgi JB (2008) SOFC anodes for direct oxidation of hydrogen and methane fuels containing H2S. J Power Sources 179:317–328

    Article  Google Scholar 

  45. Grgicak CM, Pakulska MM, O’Brien JS, Giorgi JB (2008) Synergistic effects of Ni1-x Co x -YSZ and Ni1-xCu x -YSZ alloyed cermet SOFC anodes for oxidation of hydrogen and methane fuels containing H2S. J Power Sources 183:26–33

    Article  Google Scholar 

  46. Zhang LS, Gao JF, Liu MF, Xia CR (2009) Effect of impregnation of Sm-doped CeO2 in NiO/YSZ anode substrate prepared by gelcasting for tubular solid oxide fuel cell. J Alloys Compd 482:168–172

    Article  Google Scholar 

  47. Liu ZB, Ding D, Liu BB, Guo WW, Wang WD, Xia CR (2011) Effect of impregnation phases on the performance of Ni-based anodes for low temperature solid oxide fuel cells. J Power Sources 196:8561–8567

    Article  Google Scholar 

  48. Chen Y, Chen FL, Wang WD, Ding D, Gao JF (2011) Sm0.2(Ce1−xTix)0.8O1.9 modified Ni-yttria-stabilized zirconia anode for direct methane fuel cell. J Power Sources 196:4987–4991

    Article  Google Scholar 

  49. Jin YC, Saito H, Yamahara K, Ihara M (2009) Improvement in durability and performance of nickel cermet anode with SrZr0.95Y0.05O3-α in dry methane fuel. Electrochem Solid-State Lett 12:B8–B10

    Article  Google Scholar 

  50. Jin YC, Yasutake H, Yamahara K, Ihara M (2010) Suppressed carbon deposition behavior in nickel/yttria-stabilized zirconia anode with SrZr0.95Y0.05O3-α in dry methane fuel. J Electrochem Soc 157:B130–B134

    Article  Google Scholar 

  51. Yan A, Phongaksorn M, Nativel D, Croiset E (2012) Lanthanum promoted NiO-SDC anode for low temperature solid oxide fuel cells fueled with methane. J Power Sources 210:374–380

    Article  Google Scholar 

  52. Shiratori Y, Teraoka Y, Sasaki K (2006) Ni1-x-yMgxAlyO-ScSZ anodes for solid oxide fuel cells. Solid State Ionics 177:1371–1380

    Article  Google Scholar 

  53. Takeguchi T, Kani Y, Yano T, Kikuchi R, Eguchi K, Tsujimoto K, Uchida Y, Ueno A, Omoshiki K, Aizawa M (2002) Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets. J Power Sources 112:588–595

    Article  Google Scholar 

  54. Asamoto M, Miyake S, Sugihara K, Yahiro H (2009) Improvement of Ni/SDC anode by alkaline earth metal oxide addition for direct methane–solid oxide fuel cells. Electrochem Commun 11:1508–1511

    Article  Google Scholar 

  55. Rosaa DL, Sin A, Faro ML, Monforte G, Antonucci V, Aricò AS (2009) Mitigation of carbon deposits formation in intermediate temperature solid oxide fuel cells fed with dry methane by anode doping with barium. J Power Sources 193:160–164

    Article  Google Scholar 

  56. Yang L, Choi YM, Qin WT, Chen HY, Blinn K, Liu MF, Liu P, Bai JM, Tyson TA, Liu ML (2011) Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells. Nat Commun 2:357. doi:10.1038/ncomms1359

    Article  Google Scholar 

  57. Wang F, Wang W, Ran R, Tade MO, Shao ZP (2014) Aluminum oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operation on simulated biogas. J Power Sources 268:787–793

    Article  Google Scholar 

  58. Yoon SP, Han J, Nam SW, Lim TH, Hong SA (2004) Improvement of anode performance by surface modification for solid oxide fuel cell running on hydrocarbon fuel. J Power Sources 136:30–36

    Article  Google Scholar 

  59. Yun JW, Yoon SP, Kim HS, Han J, Nam SW (2012) Effect of Sm0.2Ce0.8O1.9 on the carbon coking in Ni-based anodes for solid oxide fuel cells running on methane fuel. Int J Hydrogen Energy 37:4356–4366

    Article  Google Scholar 

  60. Flytzani-Stephanopoulos M, Sakbodin M, Wang Z (2006) Regenerative adsorption and removal of H2S from hot fuel gas streams by rare earth oxides. Science 312:1508–1510

    Article  Google Scholar 

  61. Devianto H, Yoon SP, Nam SW, Han J, Lim TH (2006) The effect of a ceria coating on the H2S tolerance of a molten carbonate fuel cell. J Power Sources 159:1147–1152

    Article  Google Scholar 

  62. Kurokawa H, Sholklapper TZ, Jacobson CP, De Jonghe LC, Visco SJ (2007) Ceria nanocoating for sulfur tolerant Ni-based anodes of solid oxide fuel cells. Electrochem Solid-State Lett 10:B135–B138

    Article  Google Scholar 

  63. Yun JW, Yoon SP, Han J, Park S, Kim HS, Nam SW (2010) Ceria coatings effect on H2S poisoning of Ni/YSZ anodes for solid oxide fuel cells. J Electrochem Soc 157:B1825–B1830

    Article  Google Scholar 

  64. Yun JW, Yoon SP, Park S, Kim HS, Nam SW (2011) Analysis of the regenerative H2S poisoning mechanism in Ce0.8Sm0.2O2-coated Ni/YSZ anodes for intermediate temperature solid oxide fuel cells. Int J Hydrogen Energy 36:787–796

    Article  Google Scholar 

  65. Choi S, Wang J, Cheng Z, Liu ML (2008) Surface modification of Ni-YSZ using niobium oxide for sulfur-tolerant anodes in solid oxide fuel cells. J Electrochem Soc 155:B449–B454

    Article  Google Scholar 

  66. He BB, Ding D, Xia CR (2010) Ni-LnOx (Ln = La, Ce, Pr, Nd, Sm, Eu, and Gd) cermet anodes for intermediate-temperature solid oxide fuel cells. J Power Sources 195:1359–1364

    Article  Google Scholar 

  67. Zhou XL, Zhen JM, Liu LM, Li XK, Zhang NQ, Sun KN (2012) Enhanced sulfur and carbon coking tolerance of novel co-doped ceria based anode for solid oxide fuel cells. J Power Sources 201:128–135

    Article  Google Scholar 

  68. Yang L, Wang SZ, Blinn K, Liu MF, Liu Z, Cheng Z, Liu ML (2009) Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3-δ. Science 326:126–129

    Article  Google Scholar 

  69. Wang W, Su C, Ran R, Zhao BT, Shao ZP, Tade MO, Liu SM (2014) Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells. ChemSusChem 7:1719–1728

    Article  Google Scholar 

  70. Wang F, Wang W, Qu JF, Zhong YJ, Tade MO, Shao ZP (2014) Enhanced sulfur tolerance of nickel-based anodes for oxygen-ion conducting solid oxide fuel cells by incorporating a secondary water storing phase. Environ Sci Technol 48:12427–12434

    Article  Google Scholar 

  71. Zhan ZL, Barnett SA (2005) An octane-fueled solid oxide fuel cell. Science 308:844–847

    Article  Google Scholar 

  72. Sun CW, Xie Z, Xia CR, Li H, Chen LQ (2006) Investigations of mesoporous CeO2-Ru as a reforming catalyst layer for solid oxide fuel cells. Electrochem Commun 8:833–838

    Article  Google Scholar 

  73. Liao MM, Wang W, Ran R, Shao ZP (2011) Development of a Ni–Ce0.8Zr0.2O2 catalyst for solid oxide fuel cells operating on ethanol through internal reforming. J Power Sources 196:6177–6185

    Article  Google Scholar 

  74. Jin C, Yang CH, Zheng HH, Chen FL (2012) Intermediate temperature solid oxide fuel cells with Cu1.3Mn1.7O4 internal reforming layer. J Power Sources 201:66–71

    Article  Google Scholar 

  75. Wang W, Zhou W, Ran R, Cai R, Shao ZP (2009) Methane-fueled SOFC with traditional nickel-based anode by applying Ni/Al2O3 as a dual-functional layer. Electrochem Commun 11:194–197

    Article  Google Scholar 

  76. Lin YB, Zhan ZL, Barnett SA (2006) Improving the stability of direct-methane solid oxide fuel cells using anode barrier layers. J Power Sources 158:1313–1316

    Article  Google Scholar 

  77. Zhan ZL, Barnett SA (2005) Use of a catalyst layer for propane partial oxidation in solid oxide fuel cells. Solid State Ionics 176:871–879

    Article  Google Scholar 

  78. Wang W, Su C, Wu YZ, Ran R, Shao ZP (2010) A comprehensive evaluation of a Ni-Al2O3 catalyst as a functional layer of solid-oxide fuel cell anode. J Power Sources 195:402–411

    Article  Google Scholar 

  79. Wang W, Ran R, Shao ZP (2011) Combustion-synthesized Ru-Al2O3 composites as anode catalyst layer of a solid oxide fuel cell operating on methane. Int J Hydrogen Energy 36:755–764

    Article  Google Scholar 

  80. Wang W, Ran R, Shao ZP (2011) Lithium and lanthanum promoted Ni-Al2O3 as an active and highly coking resistant catalyst layer for solid-oxide fuel cells operating on methane. J Power Sources 196:90–97

    Article  Google Scholar 

  81. Wang W, Su C, Ran R, Shao ZP (2011) A new Gd-promoted nickel catalyst for methane conversion to syngas and as an anode functional layer in a solid oxide fuel cell. J Power Sources 196:3855–3862

    Article  Google Scholar 

  82. Gross MD, Vohs JM, Gorte RJ (2007) A study of thermal stability and methane tolerance of Cu-based SOFC anodes with electrodeposited Co. Electrochim Acta 52:1951–1957

    Article  Google Scholar 

  83. Wang W, Su C, Ran R, Park HJ, Kwak C, Shao ZP (2011) Physically mixed LiLaNi-Al2O3 and copper as conductive anode catalysts in a solid oxide fuel cell for methane internal reforming and partial oxidation. Int J Hydrogen Energy 36:5632–5643

    Article  Google Scholar 

  84. Jin C, Yang CH, Zhao F, Coffin A, Chen FL (2010) Direct-methane solid oxide fuel cells with Cu1.3Mn1.7O4 spinel internal reforming layer. Electrochem Commun 12:1450–1452

    Article  Google Scholar 

  85. Suzuki T, Yamaguchi T, Hamamoto K, Fujishiro Y, Awano M, Sammes N (2011) A functional layer for direct use of hydrocarbon fuel in low temperature solid-oxide fuel cells. Energy Environ Sci 4:940–943

    Article  Google Scholar 

  86. Chen XJ, Khor KA, Chan SH (2005) Suppression of carbon deposition at CeO2-modified Ni/YSZ anodes in weakly humidified CH4 at 850°C. Electrochem Solid-State Lett 8:A79–A82

    Article  Google Scholar 

  87. Pillai M, Lin YB, Zhu HY, Kee RJ, Barnett SA (2010) Stability and coking of direct-methane solid oxide fuel cells: effect of CO2 and air additions. J Power Sources 195:271–279

    Article  Google Scholar 

  88. Nikooyeh K, Clemmer R, Alzate-Restrepo V, Hill JM (2008) Effect of hydrogen on carbon formation on Ni/YSZ composites exposed to methane. Appl Catal A Gen 347:106–111

    Article  Google Scholar 

  89. Guo JJ, Lou H, Mo LY, Zheng XM (2010) The reactivity of surface active carbonaceous species with CO2 and its role on hydrocarbon conversion reactions. J Mol Catal A Chem 316:1–7

    Article  Google Scholar 

  90. Nandini A, Pant KK, Dhingra SC (2005) K-, CeO2-, and Mn-promoted Ni/Al2O3 catalysts for stable CO2 reforming of methane. Appl Catal A Gen 290:166–174

    Article  Google Scholar 

  91. Castro Luna AE, Iriarte ME (2008) Carbon dioxide reforming of methane over a metal modified Ni-Al2O3 catalyst. Appl Catal A Gen 343:10–15

    Article  Google Scholar 

  92. Wang W, Ran R, Su C, Guo YM, Farrusseng D, Shao ZP (2013) Ammonia-mediated suppression of coke formation in direct-methane solid oxide fuel cells with nickel-based anodes. J Power Sources 240:232–240

    Article  Google Scholar 

  93. Wang W, Wang F, Ran R, Park HJ, Jung DW, Kwak C, Shao ZP (2014) Coking suppression in solid oxide fuel cells operating on ethanol by applying pyridine as fuel additive. J Power Sources 265:20–29

    Article  Google Scholar 

  94. Cai G, Liu R, Zhao C, Li J, Wang S, Wen T (2011) Anode performance of Mn-doped ceria–ScSZ for solid oxide fuel cell. J Solid State Electrochem 15:147–152

    Article  Google Scholar 

  95. Song S, Fuentes R, Baker R (2010) Nanoparticulate ceria-zirconia anode materials for intermediate temperature solid oxide fuel cells using hydrocarbon fuels. J Mater Chem 20:9760–9769

    Article  Google Scholar 

  96. Ahn K, He H, Vohs J, Gorte R (2005) Enhanced thermal stability of SOFC anodes made with CeO2-ZrO2 solutions. Electrochem Solid-State Lett 8:A414–A417

    Article  Google Scholar 

  97. Lv H, Yang D, Pan X, Zheng J, Zhang C, Zhou W, Ma J, Hu K (2009) Performance of Ce/Fe oxide anodes for SOFC operating on methane fuel. Mater Res Bull 44:1244–1248

    Article  Google Scholar 

  98. Tu H, Lv H, Yu Q, Hu K, Zhu X (2008) Ce0.8M0.2O2-δ (M = Mn, Fe, Ni, Cu) as SOFC anodes for electrochemical oxidation of hydrogen and methane. J Fuel Cell. Sci Technol 5:031203

    Google Scholar 

  99. Goodenough JB, Huang YH (2007) Alternative anode materials for solid oxide fuel cells. J Power Sources 173:1–10

    Article  Google Scholar 

  100. Cowin PI, Petit C, Lan R, Irvine J, Tao S (2011) Recent progress in the development of anode materials for solid oxide fuel cells. Adv Energy Mater 1:314–332

    Article  Google Scholar 

  101. Lay E, Dessemond L, Gauthier G (2013) Ba-substituted LSCM anodes for solid oxide fuel cells. J Power Sources 221:149–156

    Article  Google Scholar 

  102. Li JH, Fu XZ, Luo JL, Chuang KT, Sanger AR (2012) Application of BaTiO3 as anode materials for H2S-containing CH4 fueled solid oxide fuel cells. J Power Sources 213:69–77

    Article  Google Scholar 

  103. Zhu XF, Zhong Q, Xu D, Yan H, Tan WY (2013) Further investigation of Ce0.9Sr0.1Cr0.5Fe0.5O3±δ as anode for solid oxide fuel cell fuelled with H2S. J Alloys Compd 555:169–175

    Article  Google Scholar 

  104. Dong XH, Ma S, Huang K, Chen FL (2012) La0.9-xCaxCe0.1CrO3-δ as potential anode materials for solid oxide fuel cells. Int J Hydrogen Energy 37:10866–10873

    Article  Google Scholar 

  105. Tao S, Irvine J (2003) A redox-stable efficient anode for solid-oxide fuel cells. Nat Mater 2:320–323

    Article  Google Scholar 

  106. Lay E, Gauthier G, Rosini S, Savaniu C, Irvine J (2008) Ce-substituted LSCM as new anode material for SOFC operating in dry methane. Solid State Ionics 179:1562–1566

    Article  Google Scholar 

  107. Jardiel T, Caldes MT, Moser F, Hamon J, Gauthier G, Joubert O (2010) New SOFC electrode materials: the Ni-substituted LSCM-based compounds (La0.75Sr0.25)(Cr0.5Mn0.5-xNix)O3-δ and (La0.75Sr0.25)(Cr0.5-xNixMn0.5)O3-δ. Solid State Ionics 181:894–901

    Article  Google Scholar 

  108. Sauvet A, Fouletier J (2001) Electrochemical properties of a new type of anode material La1-xSrxCr1-yRuyO3-δ for SOFC under hydrogen and methane at intermediate temperatures. Electrochim Acta 47:987–995

    Article  Google Scholar 

  109. Caillot T, Gauthier G, Delichère P, Cayron C, Aires F (2012) Evidence of anti-coking behavior of La0.8Sr0.2Cr0.98Ru0.02O3 as potential anode material for solid oxide fuel cells directly fed under methane. J Catal 290:158–164

    Article  Google Scholar 

  110. Sauvet A, Irvine J (2004) Catalytic activity for steam methane reforming and physical characterisation of La1-xSrxCr1-yNiyO3-δ. Solid State Ionics 167:1–8

    Article  Google Scholar 

  111. Danilovic N, Vincent A, Luo JL, Chuang K, Hui R, Sanger A (2010) Correlation of fuel cell anode electrocatalytic and ex situ catalytic activity of perovskites La0.75Sr0.25Cr0.5X0.5O3-δ (X = Ti, Mn, Fe, Co). Chem Mater 22:957–965

    Article  Google Scholar 

  112. Papazisi K, Balomenou S, Tsiplakides D (2010) Synthesis and characterization of La0.75Sr0.25Cr0.9M0.1O3 perovskites as anodes for CO-fuelled solid oxide fuel cells. J Appl Electrochem 40:1875–1881

    Article  Google Scholar 

  113. Zhou X, Yan N, Chuang K, Luo J (2014) Progress in La-doped SrTiO3 (LST)-based anode materials for solid oxide fuel cells. RSC Adv 4:118–131

    Article  Google Scholar 

  114. Marina O, Canfield N, Stevenson J (2002) Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics 149:21–28

    Article  Google Scholar 

  115. Ovalle A, Ruiz-Morales J, Canales-Vázquez J, Marrero-López D, Irvine J (2006) Mn-substituted titanates as efficient anodes for direct methane SOFCs. Solid State Ionics 177:1997–2003

    Article  Google Scholar 

  116. Ruiz-Morales J, Canales-Vázquez J, Savaniu C, Marrero-López D, Núñez P, Zhou W, Irvine J (2007) A new anode for solid oxide fuel cells with enhanced OCV under methane operation. Phys Chem Chem Phys 9:1821–1830

    Article  Google Scholar 

  117. Canales-Vázquez J, Ruiz-Morales J, Irvine J, Zhou W (2005) Sc-substituted oxygen excess titanates as fuel electrodes for SOFCs. J Electrochem Soc 152:A1458–A1465

    Article  Google Scholar 

  118. Li X, Zhao H, Gao F, Chen N, Xu N (2008) La and Sc co-doped SrTiO3 as novel anode materials for solid oxide fuel cells. Electrochem Commun 10:1567–1570

    Article  Google Scholar 

  119. Canales-Vázquez J, Ruiz-Morales J, Marrero-López D, Peña-Martínez J, Núñez P, Gómez-Romero P (2007) Fe-substituted (La, Sr)TiO3 as potential electrodes for symmetrical fuel cells (SFCs). J Power Sources 171:552–557

    Article  Google Scholar 

  120. Li X, Zhao H, Gao F, Zhu Z, Chen N, Shen W (2008) Synthesis and electrical properties of Co-doped Y0.08Sr0.92TiO3-δ as a potential SOFC anode. Solid State Ionics 179:1588–1592

    Article  Google Scholar 

  121. Fagg D, Kharton V, Kovalevsky A, Viskup A, Naumovich E, Frade J (2001) The stability and mixed conductivity in La and Fe doped SrTiO3 in the search for potential SOFC anode materials. J Eur Ceram Soc 21:1831–1835

    Article  Google Scholar 

  122. Du Z, Zhao H, Zhou X, Xie Z, Zhang C (2013) Electrical conductivity and cell performance of La0.3Sr0.7Ti1-xCrxO3-δ perovskite oxides used as anode and interconnect material for SOFCs. Int J Hydrogen Energy 38:1068–1073

    Article  Google Scholar 

  123. Vincent A, Luo JL, Chuang K, Sanger A (2010) Effect of Ba doping on performance of LST as anode in solid oxide fuel cells. J Power Sources 195:769–774

    Article  Google Scholar 

  124. Aljaberi A, Irvine J (2013) Ca-substituted, A-site deficient perovskite La0.2Sr0.7TiO3 as a potential anode material for SOFCs. J Mater Chem A 1:5868–5874

    Article  Google Scholar 

  125. Ma Q, Tietz F, Leonide A, Ivers-Tiffée E (2011) Electrochemical performances of solid oxide fuel cells based on Y-substituted SrTiO3 ceramic anode materials. J Power Sources 196:7308–7312

    Article  Google Scholar 

  126. Ma Q, Tietz F, Stöver D (2011) Nonstoichiometric Y-substituted SrTiO3 materials as anodes for solid oxide fuel cells. Solid State Ionics 192:535–539

    Article  Google Scholar 

  127. Sun X, Guo R, Li J (2008) Preparation and properties of yttrium-doped SrTiO3 anode materials. Ceram Int 34:219–223

    Article  Google Scholar 

  128. Yaremchenko A, Patrício S, Frade J (2014) Thermochemical behavior and transport properties of Pr-substituted SrTiO3 as potential solid oxide fuel cell anode. J Power Sources 245:557–569

    Article  Google Scholar 

  129. Cheng Z, Zha S, Aguilar L, Wang D, Winnick J, Liu ML (2006) A solid oxide fuel cell running on H2S/CH4 fuel mixtures. Electrochem Solid-State Lett 9:A31–A33

    Article  Google Scholar 

  130. Danilovic N, Luo J, Chuang K, Sanger A (2009) Ce0.9Sr0.1VOx (x = 3, 4) as anode materials for H2S-containing CH4 fueled solid oxide fuel cells. J Power Sources 192:247–257

    Article  Google Scholar 

  131. Aguaderoa A, de la Calle C, Alonso J, Pérez-Coll D, Escudero M, Daza L (2009) Structure, thermal stability and electrical properties of Ca(V0.5Mo0.5)O3 as solid oxide fuel cell anode. J Power Sources 192:78–83

    Article  Google Scholar 

  132. Zheng Y, Zhang C, Ran R, Cai R, Shao ZP, Farrusseng D (2009) A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3-δ perovskite oxide as both the anode and cathode. Acta Mater 57:1165–1175

    Article  Google Scholar 

  133. Gravesa C, Sudireddy B, Mogensen M (2010) Molybdate based ceramic negative-electrode materials for solid oxide cells. ECS Trans 28:173–192

    Article  Google Scholar 

  134. Zhao BC, Sun YP, Zhang SB, Song WH, Dai JM (2007) Ferromagnetism in Cr substituted SrMoO3 system. J Appl Phys 102:113903

    Article  Google Scholar 

  135. Bernuy-Lopez C, Allix M, Bridges C, Claridge J, Rosseinsky M (2007) Sr2MgMoO6-δ: structure, phase stability, and cation site order control of reduction. Chem Mater 19:1035–1043

    Article  Google Scholar 

  136. Huang YH, Dass R, Xing ZL, Goodenough J (2006) Double perovskites as anode materials for solid-oxide fuel cells. Science 312:254–257

    Article  Google Scholar 

  137. Huang YH, Dass R, Denyszyn J, Goodenough J (2006) Synthesis and characterization of Sr2MgMoO6-δ an anode material for the solid oxide fuel cell. J Electrochem Soc 153:A1266–A1272

    Article  Google Scholar 

  138. Escudero M, Gómez de Parada I, Fuerte A, Daza L (2013) Study of Sr2Mg(Mo0.8Nb0.2)O6-δ as anode material for solid oxide fuel cells using hydrocarbons as fuel. J Power Sources 243:654–660

    Article  Google Scholar 

  139. Xie Z, Zhao H, Du Z, Chen T, Chen N, Liu X, Skinner S (2012) Effects of Co doping on the electrochemical performance of double perovskite oxide Sr2MgMoO6-δ as an anode material for solid oxide fuel cells. J Phys Chem C 116:9734–9743

    Article  Google Scholar 

  140. Xiao G, Liu Q, Dong X, Huang K, Chen F (2010) Sr2Fe4/3Mo2/3O6 as anodes for solid oxide fuel cells. J Power Sources 195:8071–8074

    Article  Google Scholar 

  141. Wang Z, Tian Y, Li Y (2011) Direct CH4 fuel cell using Sr2FeMoO6 as an anode material. J Power Sources 196:6104–6109

    Article  Google Scholar 

  142. Ji Y, Huang YH, Ying JR, Goodenough J (2007) Electrochemical performance of La-doped Sr2MgMoO6-δ in natural gas. Electrochem Commun 9:1881–1885

    Article  Google Scholar 

  143. Zhang L, He T (2011) Performance of double-perovskite Sr2-xSmxMgMoO6-δ as solid-oxide fuel-cell anodes. J Power Sources 196:8352–8359

    Article  Google Scholar 

  144. ChenXJ LQL, Khor KA, Chan SH (2007) High-performance (La, Sr)(Cr, Mn)O3/(Gd, Ce)O2-δ composite anode for direct oxidation of methane. J Power Sources 165:34–40

    Article  Google Scholar 

  145. Ge XM, Chan SH (2009) Lanthanum strontium vanadate as potential anodes for solid oxide fuel cells. J Electrochem Soc 156:B386–B391

    Article  Google Scholar 

  146. Ruiz-Morales J, Canales-Vázquez J, Ballesteros-Pérez B, Peña-Martínez J, Marrero-López D, Irvine JTS, Núñez P (2007) LSCM-(YSZ-CGO) composites as improved symmetrical electrodes for solid oxide fuel cells. J Eur Ceram Soc 27:4223–4227

    Article  Google Scholar 

  147. Sin A, Kopnin E, Dubitsky Y, Zaopo A, Aricò A, Gullo L, Rosa D, Antonucci V (2005) Stabilisation of composite LSFCO-CGO based anodes for methane oxidation in solid oxide fuel cells. J Power Sources 145:68–73

    Article  Google Scholar 

  148. Jung I, Lee D, Lee S, Kim D, Kim J, Hyun S, Moon J (2013) LSCM-YSZ nanocomposites for a high performance SOFC anode. Ceram Int 399:753–9758

    Google Scholar 

  149. Xiao P, Ge X, Liu Z, Wang JY, Wang X (2014) Sr1-xCaxMoO3-Gd0.2Ce0.8O1.9 as the anode in solid oxide fuel cells: effects of Mo precipitation. J Alloys Compd 587:326–331

    Article  Google Scholar 

  150. SunX WS, Wang Z, Ye X, Wen T, Huang F (2008) Anode performance of LST-xCeO2 for solid oxide fuel cells. J Power Sources 183:114–117

    Article  Google Scholar 

  151. Sun X, Wang S, Wang Z, Qian J, Wen T, Huang F (2009) Evaluation of Sr0.88Y0.08TiO3-CeO2 as composite anode for solid oxide fuel cells running on CH4 fuel. J Power Sources 187:85–89

    Article  Google Scholar 

  152. Danilovic N, LuoJL CKT, Sanger AR (2009) Effect of substitution with Cr3+ and addition of Ni on the physical and electrochemical properties of Ce0.9Sr0.1VO3 as a H2S-active anode for solid oxide fuel cells. J Power Sources 194:252–262

    Article  Google Scholar 

  153. Madsen B, Barnett S (2007) La0.8Sr0.2Cr0.98V0.02O3-δCe0.9Gd0.1O1.95-Ni anodes for solid oxide fuel cells effect of microstructure and Ni content. J Electrochem Soc 154:B501–B507

    Article  Google Scholar 

  154. Huang T, Chen C (2011) Syngas reactivity over (LaAg)(CoFe)O3 and Ag-added (LaSr)(CoFe)O3 anodes of solid oxide fuel cells. J Power Sources 196:2545–2550

    Article  Google Scholar 

  155. Jiang S, Chen X, Chan S, Kwok J (2006) GDC-Impregnated (La0.75Sr0.25)(Cr0.5Mn0.5)O3 anodes for direct utilization of methane in solid oxide fuel cells. J Electrochem Soc 153:A850–A856

    Article  Google Scholar 

  156. Xiao P, Ge Z, Zhang L, Lee J, Wang J, Wang X (2012) H2 and CH4 oxidation on Gd0.2Ce0.8O1.9 infiltrated SrMoO3-yttria-stabilized zirconia anode for solid oxide fuel cells. Int J Hydrogen Energy 37:18349–18356

    Article  Google Scholar 

  157. Jiang SP, Ye YM, He T, Ho S (2008) Nanostructured palladium-La0.75Sr0.25Cr0.5Mn0.5O3/Y2O3-ZrO2 composite anodes for direct methane and ethanol solid oxide fuel cells. J Power Sources 185:179–182

    Article  Google Scholar 

  158. Kim G, Lee S, Shin JY, Corre G, Irvine J, Vohs JM, Gorte RJ (2009) Investigation of the structural and catalytic requirements for high-performance SOFC anodes formed by infiltration of LSCM. Electrochem Solid-State Lett 12:B48–B52

    Article  Google Scholar 

  159. Lu XC, Zhu JH (2007) Cu(Pd)-impregnated La0.75Sr0.25Cr0.5Mn0.5O3-δ anodes for direct utilization of methane in SOFC. Solid State Ionics 178:1467–1475

    Article  Google Scholar 

  160. Ye YM, He TM, Li YB, Tang EH, Reitz TL, Jiang SP (2008) Pd-Promoted La0.75Sr0.25Cr0.5Mn0.5O3/YSZ composite anodes for direct utilization of methane in SOFCs. J Electrochem Soc 155:B811–B818

    Article  Google Scholar 

  161. Huang TH, Shen XD, Chou CL (2009) Characterization of Cu, Ag and Pt added La0.6Sr0.4Co0.2Fe0.8O3-δ and gadolinia-doped ceria as solid oxide fuel cell electrodes by temperature-programmed techniques. J Power Sources 187:348–355

    Article  Google Scholar 

  162. Babaei A, Zhang L, Tan S, Jiang SP (2010) Pd-promoted (La, Ca)(Cr, Mn)O3/GDC anode for hydrogen and methane oxidation reactions of solid oxide fuel cells. Solid State Ionics 181:1221–1228

    Article  Google Scholar 

  163. Zhu X, Lü Z, Wei B, Liu M, Huang X, Su W (2010) A comparison of La0.75Sr0.25Cr0.5Mn0.5O3-δ and Ni impregnated porous YSZ anodes fabricated in two different ways for SOFCs. Electrochim Acta 55:3932–3938

    Article  Google Scholar 

  164. Zhu X, Lü Z, Wei B, Chen K, Liu M, Huang X, Su W (2010) Fabrication and performance of membrane solid oxide fuel cells with La0.75Sr0.25Cr0.5Mn0.5O3-δ impregnated anodes. J Power Sources 195:1793–1798

    Article  Google Scholar 

  165. Zhu X, Lü Z, Wei B, Chen K, Liu M, Huang X, Su W (2009) Enhanced performance of solid oxide fuel cells with Ni/CeO2 modified La0.75Sr0.25Cr0.5Mn0.5O3-δ anodes. J Power Sources 190:326–330

    Article  Google Scholar 

  166. Yoo K, Choi G (2011) LST-GDC composite anode on LaGaO3-based solid oxide fuel cell. Solid State Ionics 192:515–518

    Article  Google Scholar 

  167. He H, Huang Y, Vohs J, Gorte R (2004) Characterization of YSZ-YST composites for SOFC anodes. Solid State Ionics 175:171–176

    Article  Google Scholar 

  168. Rath M, Choi B, Lee K (2012) Properties and electrochemical performance of La0.75Sr0.25Cr0.5Mn0.5O3-δLa0.2Ce0.8O2-δ composite anodes for solid oxide fuel cells. J Power Sources 213:55–62

    Article  Google Scholar 

  169. ArrivéC DT, Joubert O, Gauthier G (2013) Exsolution of nickel nanoparticles at the surface of a conducting titanate as potential hydrogen electrode material for solid oxide electrochemical cells. J Power Sources 223:341–348

    Article  Google Scholar 

  170. Cui S, Li J, Zhou X, Wang G, Luo J, Chuang KT, Bai Y, Qiao L (2013) Cobalt doped LaSrTiO3-δ as an anode catalyst: effect of Co nanoparticle precipitation on SOFCs operating onH2S-containing hydrogen. J Mater Chem A 1:9689–9696

    Article  Google Scholar 

  171. Barison S, Fabrizio M, MortalòC AP, Modafferi V, Gerbasi R (2010) Novel Ru/La0.75Sr0.25Cr0.5Mn0.5O3-δ catalysts for propane reforming in IT-SOFCs. Solid State Ionics 181:285–291

    Article  Google Scholar 

  172. Kobsiriphat W, Madsen BD, Wang Y, Shah M, Marks LD, Barnett SA (2010) Nickel- and ruthenium-doped lanthanum chromite anodes: effects of nanoscale metal precipitation on solid oxide fuel cell performance. J Electrochem Soc 157:B279–B284

    Article  Google Scholar 

  173. Xiao G, Wang S, Lin Y, ZhangY AK, Chen F (2014) Releasing metal catalysts via phase transition: (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 as a redox stable anode material for solid oxide fuel cells. ACS Appl Mater Interfaces 6:19990–19996

    Article  Google Scholar 

  174. Yang C, Yang Z, Jin C, Xiao G, Chen F, Han M (2012) Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells. Adv Mater 24:1439–1443

    Article  Google Scholar 

  175. Yang C, Li J, Lin Y, Liu J, Chen F, Liu M (2015) In situ fabrication of CoFe alloy nanoparticles structured (Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells. Nano Energy 11:704–710

    Article  Google Scholar 

  176. Lee S, Ahn K, Vohs J, Gorte R (2005) Cu-Co bimetallic anodes for direct utilization of methane in SOFCs. Electrochem Solid-State Lett 8:A48–A51

    Article  Google Scholar 

  177. McIntosh S, Vohs J, Gorte R (2003) Role of hydrocarbon deposits in the enhanced performance of direct-oxidation SOFCs. J Electrochem Soc 150:A470–A476

    Article  Google Scholar 

  178. McIntosh S, Vohs J, Gorte R (2002) An examination of lanthanide additives on the performance of Cu-YSZ cermet anodes. Electrochim Acta 47:3815–3821

    Article  Google Scholar 

  179. Lu C, Worrell WL, Vohs J, Gorte R (2003) A comparison of Cu-ceria-SDC and Au-ceria-SDC composites for SOFC anodes. J Electrochem Soc 150:A1357–A1359

    Article  Google Scholar 

  180. Bi ZH, Zhu JH (2009) A Cu-CeO2-LDC composite anode for LSGM electrolyte-supported solid oxide fuel cells. Electrochem Solid-State Lett 12:B107–B111

    Article  Google Scholar 

  181. Gross D, Vohs J, Gorte R (2006) Enhanced thermal stability of Cu-based SOFC anodes by electrodeposition of Cr. J Electrochem Soc 153:A1386–A1390

    Article  Google Scholar 

  182. Cantos-Gómez A, Ruiz-Bustos R, van Duijn J (2011) Ag as an alternative for Ni in direct hydrocarbon SOFC anodes. Fuel Cells 11:140–143

    Article  Google Scholar 

  183. Bebelis S, Neophytides S, Kotsionopoulos N, Triantafyllopoulos N, Colomer M, Jurado J (2006) Methane oxidation on composite ruthenium electrodes in YSZ cells. Solid State Ionics 177:2087–2091

    Article  Google Scholar 

  184. Wisniewski M, Boréave A, Gélin P (2005) Catalytic CO2 reforming of methane over Ir/Ce0.9Gd0.1O2-x. Catal Commun 6:596–600

    Article  Google Scholar 

  185. Yaremchenko A, Valente A, Kharton V, Bashmakov I, Rocha J, Marques F (2003) Direct oxidation of dry methane on nanocrystalline Ce0.8Gd0.2O2-δ/Pt anodes. Catal Commun 4:477–483

    Article  Google Scholar 

  186. Itome M, Nelson A (2006) Methane oxidation over M-8YSZ and M-CeO2/8YSZ (M = Ni, Cu, Co, Ag) catalysts. Catal Lett 106:21–27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shao, Z., Tadé, M.O. (2016). Anodes for IT-SOFCs. In: Intermediate-Temperature Solid Oxide Fuel Cells. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52936-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52936-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52934-8

  • Online ISBN: 978-3-662-52936-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics