Skip to main content

Cathodes for IT-SOFCs

  • Chapter
  • First Online:
Intermediate-Temperature Solid Oxide Fuel Cells

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

The cathode in SOFCs is the location where oxygen is catalytically reduced to oxygen ions, which plays a key role in converting chemical energy into electrical energy. The sluggish oxygen reduction activity of cathodes at reduced temperatures, i.e., intermediate temperatures, is one of the critical obstacles to achieving IT-SOFCs with high performance. Moreover, the operational stability of IT-SOFCs is also closely related to the cathodes, including their phase-/microstructure stability, chemical/mechanical compatibility with other cell components, and resistance to poisonous elements (such as CO2 and Cr species) from the surrounding atmosphere. To obtain a promising cathode for IT-SOFCs, the development of proper cathode materials and optimization of the cathode microstructure are two commonly accepted strategies with high effectiveness. In this chapter, the basic requirements for cathodes, well-developed cathode materials, and various microstructure-optimized cathodes are comprehensively discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carter S, Selcuk A, Chater RJ, Kajda J, Kilner JA, Steele BCH (1992) Oxygen transport in selected nonstoichiometric perovskite-structure oxides. Solid State Ionics 53–56:597–605

    Article  Google Scholar 

  2. Nakajo A, Wuillemin Z, Van J, Favrat D (2009) Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part I: probability of failure of the cells. J Power Sources 193:203–215

    Article  Google Scholar 

  3. Mai A, Becker M, Assenmacher W, Tietz F, Hathiramani D, Ivers-Tiffée E, Stöver D, Mader W (2006) Time-dependent performance of mixed-conducting SOFC cathodes. Solid State Ionics 177:1965–1968

    Article  Google Scholar 

  4. Yan A, Cheng M, Dong Y, Yang W, Maragou V, Song S, Tsiakaras P (2006) Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ based cathode IT-SOFC: I. The effect of CO2 on the cell performance. Appl Catal B 66:64–71

    Article  Google Scholar 

  5. Zhao Z, Liu L, Zhang X, Wu W, Tu B, Cui D, Ou D, Cheng M (2013) High- and low- temperature behaviors of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode operating under CO2/H2O-containing atmosphere. Int J Hydrogen Energy 38:15361–15370

    Article  Google Scholar 

  6. Arulmozhi N, Kan WH, Thangadurai V, Karan K (2013) Kinetics and thermodynamics of carbonation of a promising SOFC cathode material La0.5Ba0.5CoO3−δ (LBC). J Mater Chem A 1:15117–15127

    Article  Google Scholar 

  7. Tucker MC, Kurokawa H, Jacobson CP, Jonghe LCD, Visco SJ (2006) A fundamental study of chromium deposition on solid oxide fuel cell cathode materials. J Power Sources 160:130–138

    Article  Google Scholar 

  8. Steele BCH (1996) Survey of materials selection for ceramic fuel cells II. Cathodes and anodes. Solid State Ionics 86–88:1223–1234

    Article  Google Scholar 

  9. Xia C, Liu M (2002) Novel cathodes for low-temperature solid oxide fuel cells. Adv Mater 14:521–523

    Article  Google Scholar 

  10. Yang T, Li F, Xia D (2010) Au@BICUVOX10 composite cathode for novel structure low-temperature solid-oxide fuel cells. J Power Sources 195:2514–2519

    Article  Google Scholar 

  11. Camaratta M, Wachsman E (2007) Silver-bismuth oxide cathodes for IT-SOFCs: part I-Microstructural instability. Solid State Ionics 178:1242–1247

    Article  Google Scholar 

  12. Camaratta M, Wachsman E (2007) Silver-bismuth oxide cathodes for IT-SOFCs: part II-Improving stability through microstructural control. Solid State Ionics 178:1411–1418

    Article  Google Scholar 

  13. Jiang SP (2008) Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J Mater Sci 43:6799–6833

    Article  Google Scholar 

  14. Yasuda I, Ogasawara K, Hishinuma M, Kawada T, Dokiya M (1996) Oxygen tracer diffusion coefficient of (La, Sr)MnO3±δ. Solid State Ionics 86–88:1197–1201

    Article  Google Scholar 

  15. Kenjo T, Nishiya M (1992) LaMnO3 air cathodes containing ZrO2 electrolyte for high temperature solid oxide fuel cells. Solid State Ionics 57:295–302

    Article  Google Scholar 

  16. Murray EP, Tsai T, Barnett SA (1998) Oxygen transfer processes in (La, Sr)MnO3/Y2O3-stabilized ZrO2 cathodes: an impedance spectroscopy study. Solid State Ionics 110:235–243

    Article  Google Scholar 

  17. Ji Y, Kilner JA, Carolan MF (2005) Electrical properties and oxygen diffusion in yttria-stabilised zirconia (YSZ)-La0.8Sr0.2MnO3±δ (LSM) composites. Solid State Ionics 176:937–943

    Article  Google Scholar 

  18. Tsai T, Barnett SA (1997) Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuel cell performance. Solid State Ionics 93:207–217

    Article  Google Scholar 

  19. Murray EP, Barnett SA (2001) (La, Sr)MnO3-(Ce, Gd)O2-x composite cathodes for solid oxide fuel cells. Solid State Ionics 143:265–273

    Article  Google Scholar 

  20. Brugnoni C, Ducati U, Scagliotti M (1995) SOFC cathode/electrolyte interface. Part I: reactivity between La0.85Sr0.15MnO3 and ZrO2-Y2O3. Solid State Ionics 76:177–182

    Article  Google Scholar 

  21. Sakaki Y, Takeda Y, Kato A, Imanishi N, Yamamoto O, Hattori M, Lio M, Esaki Y (1999) Ln1−xSrxMnO3 (Ln = Pr, Nd, Sm and Gd) as the cathode material for solid oxide fuel cells. Solid State Ionics 118:187–194

    Article  Google Scholar 

  22. Ishiham T, Kudo T, Matsuda H, Takita Y (1994) Doped perovskite oxide, PrMnO3, as a new cathode for solid-oxide fuel cells that decreases the operating temperature. J Am Ceram Soc 77:1682–1684

    Article  Google Scholar 

  23. Ishihara T, Kudo T, Matsuda H, Takita Y (1995) Doped PrMnO3 perovskite oxide as a new cathode of solid oxide fuel cells for low temperature operation. J Electrochem Soc 142:1519–1524

    Article  Google Scholar 

  24. Takeda Y, Tu HY, Sakaki H, Watanabe S, Imanishi N, Yamamoto O, Phillipps MB, Sammes NM (1997) Gd1−xAxMnO3 (A = Ca and Sr) for the electrode of solid oxide fuel cells. J Electrochem Soc 144:2810–2816

    Article  Google Scholar 

  25. Tu HY, Phillipps MB, Takeda Y, Ichikawa T, Imanishi N, Sammes NM, Yamamoto O (1999) Gd1-xAxMn1-yCoyO3-δ (A = Sr,Ca ) as a cathode for solid-oxide fuel cells. J Electrochem Soc 146:2085–2091

    Article  Google Scholar 

  26. Liu B, Jiang Z, Ding B, Chen F, Xia C (2011) Bi0.5Sr0.5MnO3 as cathode material for intermediate-temperature solid oxide fuel cells. J Power Sources 196:999–1005

    Article  Google Scholar 

  27. Yue X, Yan A, Zhang M, Liu L, Dong Y, Cheng M (2008) Investigation on scandium-doped manganate La0.8Sr0.2Mn1−xScxO3−δ cathode for intermediate temperature solid oxide fuel cells. J Power Sources 185:691–697

    Article  Google Scholar 

  28. Jung HG, Sun YK, Jung HY, Park JS, Kim HR, Kim GH, Lee HW, Lee JH (2008) Investigation of anode-supported SOFC with cobalt-containing cathode and GDC interlayer. Solid State Ionics 179:1535–1539

    Article  Google Scholar 

  29. Chen W, Wen T, Nie H, Zheng R (2003) Study of Ln0.6Sr0.4Co0.8Mn0.2O3−δ (Ln = La, Gd, Sm or Nd) as the cathode materials for intermediate temperature SOFC. Mater Res Bull 38:1319–1328

    Article  Google Scholar 

  30. Stevenson JW, Armstrong TR, Carneim RD, Pederson LR, Weber WJ (1996) Electrochemical properties of mixed conducting perovskites La1−xMxCo1−yFeyO3−δ (M = Sr, Ba, Ca). J Electrochem Soc 143:2722–2729

    Article  Google Scholar 

  31. Ishihara T, Honda M, Shibayama T, Minami H, Nishiguchi H, Takita Y (1998) Intermediate temperature solid oxide fuel cells using a new LaGaO3 based oxide ion conductor I. Doped formula as a new cathode material. J Electrochem Soc 145:3177–3183

    Article  Google Scholar 

  32. Xia C, Rauch W, Chen F, Liu M (2002) Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ionics 149:11–19

    Article  Google Scholar 

  33. Duong AT, Mumm DR (2013) On the interaction of SSC and LSGM in composite SOFC electrodes. J Power Sources 241:281–287

    Article  Google Scholar 

  34. Tu HY, Takeda Y, Imanishi N, Yamamoto O (1999) Ln0.4Sr0.6Co0.8Fe0.2O3−δ (Ln = La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells. Solid State Ionics 117:277–281

    Article  Google Scholar 

  35. Wang S, Katsuki M, Dokiya M, Hashimoto T (2003) High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3−δ phase structure and electrical conductivity. Solid State Ionics 159:71–78

    Article  Google Scholar 

  36. Simner SP, Shelton JP, Anderson MD, Stevenson JW (2003) Interaction between La(Sr)FeO3 SOFC cathode and YSZ electrolyte. Solid State Ionics 161:11–18

    Article  Google Scholar 

  37. Jordan N, Assenmacher W, Uhlenbruck S, Haanappel VAC, Buchkremer HP, Stover D, Mader W (2008) Ce0.8Gd0.2O2−δ protecting layers manufactured by physical vapor deposition for IT-SOFC. Solid State Ionics 179:919–923

    Article  Google Scholar 

  38. Lu Z, Zhou X, Fisher D, Templeton J, Stevenson J, Wu N, Ignatiev A (2010) Enhanced performance of an anode-supported YSZ thin electrolyte fuel cell with a laser-deposited Sm0.2Ce0.8O1.9 interlayer. Electrochem Commun 12:179–182

    Article  Google Scholar 

  39. Zhou W, Shao Z, Ran R, Gu H, Jin W, Xu N (2008) LSCF Nanopowder from cellulose-glycine-nitrate process and its application in intermediate-temperature solid-oxide fuel cells. J Am Ceram Soc 91:1155–1162

    Article  Google Scholar 

  40. Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 2. The system La1−xSrxCo0.2Fe0.8O3. Solid State Ionics 76:273–283

    Article  Google Scholar 

  41. Leng Y, Chan SH, Liu Q (2008) Development of LSCF-GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte. Int J Hydrogen Energy 33:3808–3817

    Article  Google Scholar 

  42. Qiu L, Ichikawa T, Hirano A, Imanishi N, Takeda Y (2003) Ln1−xSrxCo1−yFeyO3−δ (Ln = Pr, Nd, Gd; x = 0.2, 0.3) for the electrodes of solid oxide fuel cells. Solid State Ionics 158:55–65

    Article  Google Scholar 

  43. Lv H, Wu Y, Huang B, Zhao B, Hu K (2006) Structure and electrochemical properties of Sm0.5Sr0.5Co1−xFexO3−δ cathodes for solid oxide fuel cells. Solid State Ionics 177:901–906

    Article  Google Scholar 

  44. Wediq A, Merkle R, Stuhlhofer B, Habermeier H, Maier J, Heifets E (2011) Fast oxygen exchange kinetics of pore-free Bi1−xSrxFeO3−δ thin films. Phys Chem Chem Phys 13:16530–16533

    Article  Google Scholar 

  45. Niu Y, Sunarso J, Liang F, Zhou W, Zhu Z, Shao Z (2011) A comparative study of oxygen reduction reaction on Bi- and La-Doped SrFeO3−δ perovskite cathodes. J Electrochem Soc 158:B132–B138

    Article  Google Scholar 

  46. Niu Y, Zhou W, Sunarso J, Ge L, Zhu Z, Shao Z (2010) High performance cobalt-free perovskite cathode for intermediate temperature solid oxide fuel cells. J Mater Chem 20:9619–9622

    Article  Google Scholar 

  47. Niwa E, Chie U, Miyashita E, Ohzeki T, Hashimoto T (2011) Conductivity and sintering property of LaNi1−xFexO3 ceramics prepared by Pechini method. Solid State Ionics 201:87–93

    Article  Google Scholar 

  48. Drennan J, Tavares CP, Steele BCH (1982) An electron microscope investigation of phases in the system La-Ni-O. Mater Res Bull 17:621–626

    Article  Google Scholar 

  49. Crumlin EJ, Mutoro E, Liu Z, Grass ME, Biegalski MD, Lee YL, Morgan D, Christen HM, Bluhm H, Shao-Horn Y (2012) Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells. Energy Environ Sci 5:6081–6088

    Article  Google Scholar 

  50. Kim YM, Chen X, Jiang SP, Bae J (2011) Chromium deposition and poisoning at Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode of solid oxide fuel cells. Electrochem Solid-State Lett 14:B41–B45

    Article  Google Scholar 

  51. Komatsu T, Chiba R, Arai H, Kazunori S (2008) Chemical compatibility and electrochemical property of intermediate-temperature SOFC cathodes under Cr poisoning condition. J Power Sources 176:132–137

    Article  Google Scholar 

  52. Zhen Y, Tok AIY, Boey FYC, Jiang SP (2008) Development of Cr-tolerant cathodes of solid oxide fuel cells. Electrochem Solid-State Lett 11:B42–B46

    Article  Google Scholar 

  53. Chen JY, Rebello J, Vashook V, Trots DM, Wang SR, Wen TL, Zosel J, Guth U (2011) Thermal stability, oxygen non-stoichiometry and transport properties of LaNi0.6Fe0.4O3. Solid State Ionics 192:424–430

    Article  Google Scholar 

  54. Bevilacqua M, Montini T, Tavagnacco C, Fonda E, Fornasiero P, Graziani M (2007) Preparation, characterization, and electrochemical properties of pure and composite LaNi0.6Fe0.4O3-based cathodes for IT-SOFC. Chem Mater 19:5926–5936

    Article  Google Scholar 

  55. Orui H, Watanabe K, Chiba R, Arakawa M (2004) Application of LaNi(Fe)O3 as SOFC cathode. J Electrochem Soc 151:A1412–A1417

    Article  Google Scholar 

  56. Zhen YD, Tok AIY, Jiang SP, Boey FYC (2007) La(Ni, Fe)O3 as a cathode material with high tolerance to chromium poisoning for solid oxide fuel cells. J Power Sources 170:61–66

    Article  Google Scholar 

  57. Chiba R, Orui H, Komatsu T, Tabata Y, Nozawa K, Arakawa M, Sato K, Arai H (2008) LaNi0.6Fe0.4O3-ceria composite cathode for SOFCs operating at intermediate temperatures. J Electrochem Soc 155:B575–B580

    Article  Google Scholar 

  58. Knudsen J, Friehling PB, Bonanos N (2005) Effect of A-site stoichiometry on phase stability and electrical conductivity of the perovskite Las(Ni0.59Fe0.41)O3−δ and its compatibility with (La0.85Sr0.15)0.91MnO3−δ and Zr0.85Y0.15O2.925. Solid State Ionics 176:1563–1569

    Article  Google Scholar 

  59. Kammer K, Mikkelsen L, Bilde-sorensen JB (2006) Electrical and electro-chemical characterization of La0.99Fe1−xNixO3−δ perovskites. J Solid State Electrochem 10:934–940

    Article  Google Scholar 

  60. Hansen KK (2010) The effect of A-site deficiency on the performance of La1−sFe0.4Ni0.6O3−δ cathodes. Mater Res Bull 45:197–199

    Article  Google Scholar 

  61. Konysheva E, Suard E, Irvine JTS (2009) Effect of oxygen non stoichiometry and oxidation state of transition elements on high-temperature phase transition in A-site deficient La0.95Ni0.6Fe0.4O3−δ perovskite. Chem Mater 21:5307–5318

    Article  Google Scholar 

  62. Konysheva EY, Xu X, Irvine JTS (2012) On the existence of A-site deficiency in perovskites and its relation to the electrochemical performance. Adv Mater 24:532

    Article  Google Scholar 

  63. Niwa E, Uematsu C, Hashimoto T (2013) Sintering temperature dependence of conductivity, porosity and specific surface area of LaNi0.6Fe0.4O3 ceramics as cathode material for solid oxide fuel cells-Superiority of Pechini method among various solution mixing processes. Mater Res Bull 48:1–6

    Article  Google Scholar 

  64. Ohzeki T, Hashimoto T, Shozugawa K, Matsuo M (2010) Preparation of LaNi1−xFexO3 single phase and characterization of their phase transition behaviors. Solid State Ionics 181:1771–1782

    Article  Google Scholar 

  65. Hjalmarsson P, Mogensen M (2011) La0.99Co0.4Ni0.6O3−δ-Ce0.8Gd0.2O1.95 as composite cathode for solid oxide fuel cells. J Power Sources 196:7237–7244

    Article  Google Scholar 

  66. Hjalmarsson P, Sogaard M, Hagen A, Mogensen M (2008) Structural properties and electrochemical performance of strontium- and nickel-substituted lanthanum cobaltite. Solid State Ionics 179:636–646

    Article  Google Scholar 

  67. Hou S, Alonso JA, Rajasekhara S, Martinez-Lope MJ, Fernandez-Diaz MT, Goodenough JB (2009) Defective Ni perovskites as cathode materials in intermediate-temperature solid-oxide fuel cells: a structure-properties correlation. Chem Mater 22:1071–1079

    Article  Google Scholar 

  68. Hashimoto S, Kammer K, Poulsen FW, Mogensen M (2007) Conductivity and electrochemical characterization of PrFe1−xNixO3−δ at high temperature. J Alloys Compd 428:256–261

    Article  Google Scholar 

  69. Rebello J, Vashook V, Trots D, Guth U (2011) Thermal stability, oxygen non-stoichiometry, electrical conductivity and diffusion characteristics of PrNi0.4Fe0.6O3−δ, a potential cathode material for IT-SOFCs. J Power Sources 196:3705–3712

    Article  Google Scholar 

  70. Huang S, Lu Q, Feng S, Li G, Wang C (2012) PrNi0.6Co0.4O3-Ce0.8Sm0.2O1.9 composite cathodes for intermediate temperature solid oxide fuel cells. J Power Sources 199:150–154

    Article  Google Scholar 

  71. Kumar R, Choudhary RJ, Ikram M, Shukla DK, Mollah S, Thakur P, Chae KH, Angadi B, Choi WK (2007) Structural, electrical, magnetic, and electronic structure studies of PrFe1−xNixO3 (x⩽0.5). J Appl Phys 102:073707

    Article  Google Scholar 

  72. Nagai T, Ito W, Sakon T (2007) Relationship between cation substitution and stability of perovskite structure in SrCoO3−δ-based mixed conductors. Solid State Ionics 177:3433–3444

    Article  Google Scholar 

  73. Zhou W, Shao Z, Ran R, Jin W, Xu N (2008) A novel efficient oxide electrode for electrocatalytic oxygen reduction at 400–600 °C. Chem Commun 44:5791–5793

    Article  Google Scholar 

  74. Zhu Y, Chen ZG, Zhou W, Jiang S, Zou J, Shao Z (2013) An A-site-deficient perovskite offers high activity and stability for low-temperature solid-oxide fuel cells. ChemSusChem 6:2249–2254

    Article  Google Scholar 

  75. Zhou W, Sunarso J, Zhao M, Liang F, Klande T, Feldhoff A (2013) A highly active perovskite electrode for the oxygen reduction reaction below 600 °C. Angew Chem Int Ed 52:14036–14040

    Article  Google Scholar 

  76. Aguadero A, Perez-coll D, Calle C, Alonso JA, Escudero MJ, Daza L (2009) SrCo1−xSbxO3−δ perovskite oxides as cathode materials in solid oxide fuel cells. J Power Sources 192:132–137

    Article  Google Scholar 

  77. Qu B, Long W, Jin F, Wang S, He T (2014) SrCo0.7Fe0.2Ta0.1O3−δ perovskite as a cathode material for intermediate-temperature solid oxide fuel cells. Int J Hydrogen Energy 39:12074–12082

    Article  Google Scholar 

  78. Huang K, Wan JH, Goodenough JB (2001) Increasing power density of LSGM-based solid oxide fuel cells using new anode materials. J Electrochem Soc 148:A788–A794

    Article  Google Scholar 

  79. Huang K, Wan J, Goodenough JB (2001) Oxide-ion conducting ceramics for solid oxide fuel cells. J Mater Sci 36:1093–1098

    Article  Google Scholar 

  80. Liu H, Zhu X, Cong Y, Zhang T, Yang W (2012) Remarkable dependence of electrochemical performance of SrCo0.8Fe0.2O3−δ on A-site nonstoichiometry. Phys Chem Chem Phys 14:7234–7239

    Article  Google Scholar 

  81. Mcintosh S, Vente JF, Haije WG, Blank DHA, Bouwmeester HJM (2006) Oxygen stoichiometry and chemical expansion of Ba0.5Sr0.5Co0.8Fe0.2O3−δ measured by in situ neutron diffraction. Chem Mater 18:2187–2193

    Article  Google Scholar 

  82. Shao Z, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–173

    Article  Google Scholar 

  83. Baumann FS, Fleig J, Habermeier HU, Maier J (2006) Ba0.5Sr0.5Co0.8Fe0.2O3−δ thin film microelectrodes investigated by impedance spectroscopy. Solid State Ionics 177:3187–3191

    Article  Google Scholar 

  84. Baumann FS, Fleig J, Habermeier HU, Maier J (2006) Impedance spectroscopic study on well-defined (La, Sr)(Co, Fe)O3−δ model electrodes. Solid State Ionics 177:1071–1081

    Article  Google Scholar 

  85. Chen D, Shao Z (2011) Surface exchange and bulk diffusion properties of Ba0.5Sr0.5Co0.8Fe0.2O3−δ mixed conductor. Int J Hydrogen Energy 36:6948–6956

    Article  Google Scholar 

  86. Zhou W, Ran R, Shao Z, Jin W, Xu N (2008) Evaluation of A-site cation-deficient (Ba0.5Sr0.5)1−xCo0.8Fe0.2O3−δ (x > 0) perovskite as a solid-oxide fuel cell cathode. J Power Sources 182:24–31

    Article  Google Scholar 

  87. Zhou W, Ran R, Shao Z, Zhuang W, Jia J, Gu H, Jin W, Xu N (2008) Barium- and strontium-enriched (Ba0.5Sr0.5)1+xCo0.8Fe0.2O3−δ oxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells. Acta Mater 56:2687–2698

    Article  Google Scholar 

  88. Wang K, Ran R, Zhou W, Gu H, Shao Z, Ahn J (2008) Properties and performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ + Sm0.2Ce0.8O1.9 composite cathode. J Power Sources 179:60–68

    Article  Google Scholar 

  89. Chen Y, Chen D, Ran R, Park HJ, Kwak C, Ahn SJ, Moon KS, Shao Z (2012) A new way to increase performance of oxide electrode for oxygen reduction using grain growth inhibitor. Electrochem Commun 14:36–38

    Article  Google Scholar 

  90. Svarcova S, Wiik K, Tolchard J, Bouwmeester HJM, Grande T (2008) Structural instability of cubic perovskite BaxSr1−xCo1−yFeyO3−δ. Solid State Ionics 178:1787–1791

    Article  Google Scholar 

  91. Arnold M, Xu Q, Tichelaar FD, Feldhoff A (2009) Local charge disproportion in a high-performance perovskite. Chem Mater 21:635–640

    Article  Google Scholar 

  92. Chen Y, Wang F, Chen D, Dong F, Park HJ, Kwak C, Shao Z (2012) Role of silver current collector on the operational stability of selected cobalt-containing oxide electrodes for oxygen reduction reaction. J Power Sources 210:146–153

    Article  Google Scholar 

  93. Chen Y, Qian B, Li S, Jiao Y, Tade MO, Shao Z (2014) The influence of impurity ions on the permeation and oxygen reduction properties of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite. J Membr Sci 449:86–96

    Article  Google Scholar 

  94. Qian B, Chen Y, Tade MO, Shao Z (2014) BaCo0.6Fe0.3Sn0.1O3−δ perovskite as a new superior oxygen reduction electrode for intermediate-to-low temperature solid oxide fuel cells. J Mater Chem A 2:15078–15086

    Article  Google Scholar 

  95. Lv S, Yu B, Meng X, Zhao X, Ji Y, Fu C, Zhang Y, Yang L, Fan H, Yang J (2015) Characterization of SrCo0.7Fe0.2Nb0.1O3−δ cathode materials for intermediate-temperature solid oxide fuel cells. J Power Sources 273:244–254

    Article  Google Scholar 

  96. Li M, Zhou W, Xu X, Zhu Z (2013) SrCo0.85Fe0.1P0.05O3−δ perovskite as a cathode for intermediate-temperature solid oxide fuel cells. J Mater Chem A 1:13632–13639

    Article  Google Scholar 

  97. Kruidhof H, Bouwmeester HJM, Doorn RHE, Burggraaf AJ (1993) Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides. Solid State Ionics 63–65:816–822

    Article  Google Scholar 

  98. Tong J, Yang W, Cai R, Zhu B, Xiong G, Lin L (2003) Investigation on the structure stability and oxygen permeability of titanium-doped perovskite-type oxides of BaTi0.2CoxFe0.8−xO3−δ (x = 0.2–0.6). Sep Purif Technol 32:289–299

    Article  Google Scholar 

  99. Cheng Y, Zhao H, Teng D, Li F, Lu X, Ding W (2008) Investigation of Ba fully occupied A-site BaCo0.7Fe0.3−xNbxO3−δ perovskite stabilized by low concentration of Nb for oxygen permeation membrane. J Membr Sci 322:484–490

    Article  Google Scholar 

  100. Li Q, Zhu X, He Y, Yang W (2010) Partial oxidation of methane in BaCe0.1Co0.4Fe0.5O3−δ membrane reactor. Catal Today 149:185–190

    Article  Google Scholar 

  101. Zhu C, Liu X, Yi C, Pei L, Yan D, Niu J, Wang D, Su W (2009) Novel BaCo0.7Fe0.3−yNbyO3−δ (y = 0–0.12) as a cathode for intermediate temperature solid oxide fuel cell. Electrochem Commun 11:958–961

    Article  Google Scholar 

  102. Wang F, Chen D, Shao Z (2013) Composition and microstructure optimization and operation stability of barium deficient Ba1−xCo0.7Fe0.2Nb0.1O3−δ perovskite oxide electrodes. Electrochim Acta 103:23–31

    Article  Google Scholar 

  103. Watanabe K, Yuasa M, Kida T, Teraoka Y, Yamazoe N, Shimanoe K (2010) High-performance oxygen-permeable membranes with an asymmetric structure using Ba0.95La0.05FeO3−δ perovskite-type oxide. Adv Mater 22:2367–2370

    Article  Google Scholar 

  104. Dong F, Chen D, Chen Y, Zhao Q, Shao Z (2012) La-doped BaFeO3−δ perovskite as a cobalt-free oxygen reduction electrode for solid oxide fuel cells with oxygen-ion conducting electrolyte. J Mater Chem 22:15071–15079

    Article  Google Scholar 

  105. Kim JH, Manthiram A (2008) LnBaCo2O5+δ oxides as cathodes for intermediate-temperature solid oxide fuel cells. J Electrochem Soc 155:B385–B390

    Article  Google Scholar 

  106. Taskin AA, Lavrov AN, Ando Y (2005) Achieving fast oxygen diffusion in perovskites by cation ordering. Appl Phys Lett 86:091910

    Article  Google Scholar 

  107. Parfitt D, Chroneos A, Tarancon A, Kilner JA (2011) Oxygen ion diffusion in cation ordered/disordered GdBaCo2O5+δ. J Mater Chem 21:2183–2186

    Article  Google Scholar 

  108. Zhang K, Ge L, Ran R, Shao Z, Liu S (2008) Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Mater 56:4876–4889

    Article  Google Scholar 

  109. Chen D, Ran R, Zhang K, Wang J, Shao Z (2009) Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+δ cathode on samarium-doped ceria electrolyte. J Power Sources 188:96–105

    Article  Google Scholar 

  110. Zhao L, Shen J, He B, Chen F, Xia C (2011) Synthesis, characterization and evaluation of PrBaCo2−xFexO5+δ as cathodes for intermediate-temperature solid oxide fuel cells. Int J Hydrogen Energy 36:3658–3665

    Article  Google Scholar 

  111. Chen D, Wang F, Shi H, Ran R, Shao Z (2012) Systematic evaluation of Co-free LnBaFe2O5+δ (Ln = Lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells. Electrochim Acta 78:466–474

    Article  Google Scholar 

  112. Pang S, Jiang X, Li X, Wang Q, Su Z (2012) Characterization of Ba-deficient PrBa1−xCo2O5+δ as cathode material for intermediate temperature solid oxide fuel cells. J Power Sources 204:53–59

    Article  Google Scholar 

  113. Park S, Choi S, Kim J, Shin J, Kim G (2012) Strontium doping effect on high-performance PrBa1−xSrxCo2O5+δ as a cathode material for IT-SOFCs. ECS Electrochem Lett 1:F29–F32

    Article  Google Scholar 

  114. Yoo S, Jun A, Ju Y, Odkhuu D, Hyodo J, Jeong HY, Park N, Shin J, Ishihara T, Kim G (2014) Development of double-perovskite compounds as cathode materials for low-temperature solid oxide fuel cells. Angew Chem Int Ed 53:13064–13067

    Article  Google Scholar 

  115. Anderson MT, Greenwood KB, Taylor GA, Poeppelmeier KR (1993) B-cation arrangements in double perovskites. Prog Solid State Chem 22:197–233

    Article  Google Scholar 

  116. Deng ZQ, Smit JP, Niu HJ, Evans G, Li MR, Xu ZL, Claridge JB, Rosseinsky MJ (2009) B cation ordered double perovskite Ba2CoMo0.5Nb0.5O6−δ as a potential SOFC cathode. Chem Mater 21:5154–5162

    Article  Google Scholar 

  117. Zhou W, Sunarso J, Chen Z, Ge L, Motuzas J, Zou J, Wang G, Julbe A, Zhu Z (2011) Novel B-site ordered double perovskite Ba2Bi0.1Sc0.2Co1.7O6−x for highly efficient oxygen reduction reaction. Energy Environ Sci 4:872–875

    Article  Google Scholar 

  118. Zhou W, Sunarso J, Motuzas J, Liang F, Chen Z, Ge L, Liu S, Julbe A, Zhu Z (2011) Deactivation and regeneration of oxygen reduction reactivity on double perovskite Ba2Bi0.1Sc0.2Co1.7O6−x cathode for intermediate-temperature solid oxide fuel cells. Chem Mater 23:1618–1624

    Article  Google Scholar 

  119. Liu Q, Dong X, Xiao G, Zhao F, Chen F (2010) A novel electrode material for symmetrical SOFCs. Adv Mater 22:5478–5482

    Article  Google Scholar 

  120. Xiao G, Liu Q, Zhao F, Zhang L, Xia C, Chen F (2011) Sr2Fe1.5Mo0.5O6 as cathodes for intermediate-temperature solid oxide fuel cells with La0.8Sr0.2Ga0.87Mg0.13O3 electrolyte. J Electrochem Soc 158:B455–B460

    Article  Google Scholar 

  121. Dai N, Feng J, Wang Z, Jiang T, Sun W, Qiao J, Sun K (2013) Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.5−xNixMo0.5O6−δ (x = 0, 0.05, 0.1, 0.2, 0.4) as cathodes for SOFCs. J Mater Chem A 1:14147–14153

    Article  Google Scholar 

  122. Yoo S, Choi S, Shin J, Liu M, Kim G (2012) Electrical properties, thermodynamic behavior, and defect analysis of Lan+1NinO3n+1+δ infiltrated into YSZ scaffolds as cathodes for intermediate-temperature SOFCs. RSC Adv 2:4648–4655

    Article  Google Scholar 

  123. Kharton VV, Kovalevsky AV, Avdeev M, Tsipis EV, Patrakeev MV, Yaremchenko AA, Naumovich EN, Frade JR (2007) Chemically induced expansion of La2NiO4+δ-based materials. Chem Mater 19:2027–2033

    Article  Google Scholar 

  124. Aguadero A, Alonso JA, Martinez-lope MJ, Fernandez-Diaz MT, Escudero MJ, Daza L (2006) In situ high temperature neutron powder diffraction study of oxygen-rich La2NiO4+δ in air: correlation with the electrical behavior. J Mater Chem 16:3402–3408

    Article  Google Scholar 

  125. Tarancon A, Burriel M, Santiso J, Skinner SJ, Kilner JA (2010) Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. J Mater Chem 20:3799–3813

    Article  Google Scholar 

  126. Escudero MJ, Fuerte A, Daza L (2011) La2NiO4+δ potential cathode material on La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte for intermediate temperature solid oxide fuel cell. J Power Sources 196:7245–7250

    Article  Google Scholar 

  127. Sayers R, Rieu M, Lenormand P, Ansart F, Kilner JA, Skinner SJ (2011) Development of lanthanum nickelate as a cathode for use in intermediate temperature solid oxide fuel cells. Solid State Ionics 192:531–534

    Article  Google Scholar 

  128. Perez-coll D, Aguadero A, Escudero MJ, Nunez P, Daza L (2008) Optimization of the interface polarization of the La2NiO4-based cathode working with the Ce1−xSmxO2−δ electrolyte system. J Power Sources 178:151–162

    Article  Google Scholar 

  129. Chen Y, Qian B, Yang G, Chen D, Shao Z (2015) Insight into an unusual lanthanum effect on the oxygen reduction reaction activity of Ruddlesden-Popper-type cation-nonstoichiometric La2−xNiO4+δ (x = 0–0.1) oxides. J Mater Chem A 3:6501–6508

    Article  Google Scholar 

  130. Boehm E, Basst JM, Dordor P, Mauvy F, Grenier JC, Stevens P (2005) Oxygen diffusion and transport properties in non-stoichiometric Ln2−xNiO4+δ oxides. Solid State Ionics 176:2717–2725

    Article  Google Scholar 

  131. Niwa E, Wakai K, Hori T, Yashiro K, Mizusaki J, Hashimoto T (2014) Thermodynamic analyses of structural phase transition of Pr2NiO4+δ involving variation of oxygen content. Thermochim Acta 575:129–134

    Article  Google Scholar 

  132. Egger A, Sitte W, Klauser F, Bertel E (2010) Long-term oxygen exchange kinetics of Nd2NiO4+δ in H2O- and CO2-containing atmospheres. J Electrochem Soc 157:B1537–B1541

    Article  Google Scholar 

  133. Egger A, Bucher E, Sitte W (2011) Oxygen exchange kinetics of the IT-SOFC cathode material Nd2NiO4+δ and comparison with La0.6Sr0.4CoO3−δ. J Electrochem Soc 158:B573–B579

    Article  Google Scholar 

  134. Mauvy F, Basst JM, Boehm E, Manaud JP, Dordor P, Grenier JC (2003) Oxygen electrode reaction on Nd2NiO4+δ cathode materials: impedance spectroscopy study. Solid State Ionics 158:17–28

    Article  Google Scholar 

  135. Montenegro-Hernándeza A, Vega-Castillo J, Mogni L, Caneiro A (2011) Thermal stability of Ln2NiO4+δ (Ln: La, Pr, Nd) and their chemical compatibility with YSZ and CGO solid electrolytes. Int J Hydrogen Energy 36:15704–15714

    Article  Google Scholar 

  136. Boehm E, Bassat JM, Steil MC, Dordor P, Mauvy F, Grenier JC (2003) Oxygen transport properties of La2Ni1−xCuxO4+δ mixed conducting oxides. Solid State Sci 5:973–981

    Article  Google Scholar 

  137. Miyoshi S, Furuno T, Sangoanruang O, Matsumoto H, Ishihara T (2007) Mixed conductivity and oxygen permeability of doped Pr2NiO4-based oxides. J Electrochem Soc 154:B57–B62

    Article  Google Scholar 

  138. Aguadero A, Alonso JA, Escudero MJ, Daza L (2008) Evaluation of the La2Ni1−xCuxO4+δ system as SOFC cathode material with 8YSZ and LSGM as electrolytes. Solid State Ionics 179:393–400

    Article  Google Scholar 

  139. Wang Y, Cheng J, Jiang Q, Yang J, Gao J (2011) Preparation and electrochemical performance of Pr2Ni0.6Cu0.4O4 cathode materials for intermediate-temperature solid oxide fuel cells. J Power Sources 196:3104–3108

    Article  Google Scholar 

  140. Yashima M, Sirikanda N, Ishihara T (2010) Crystal structure, diffusion path, and oxygen permeability of a Pr2NiO4-Based mixed conductor (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ. J Am Chem Soc 132:2385–2392

    Article  Google Scholar 

  141. Peng S, Wei Y, Xue J, Chen Y, Wang H (2013) Pr1.8La0.2Ni0.74Cu0.21Ga0.05O4+δ as a potential cathode material with CO2 resistance for intermediate temperature solid oxide fuel cell. Int J Hydrogen Energy 38:10552–10558

    Article  Google Scholar 

  142. Wang Y, Zhao X, Lv S, Yu B, Meng X, Zhang Y, Yang J, Fu C, Ji Y (2014) (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ as cathode material for CeO2-based intermediate-temperature solid-oxide fuel cell. Ceram Int 40:7321–7327

    Article  Google Scholar 

  143. Yashima M, Yamada H, Nuansaeng S, Ishihara T (2012) Role of Ga3+ and Cu2+ in the high interstitial oxide-ion diffusivity of Pr2NiO4-based oxides: design concept of interstitial ion conductors through the higher-valence d10dopant and Jahn-Teller effect. Chem Mater 24:4100–4113

    Article  Google Scholar 

  144. Kilner JA, Shaw CKM (2002) Mass transport in La2Ni1−xCoxO4+δ oxides with the K2NiF4 structure. Solid State Ionics 154–155:523–527

    Article  Google Scholar 

  145. Bringley JF, Trail SS, Scott BA (1990) An ionic model of the crystal chemistry in the superconducting copper oxides of stoichiometry (RE)2CuO4. J Solid State Chem 86:310–322

    Article  Google Scholar 

  146. Zhou XD, Templeton JW, Nie Z, Chen H, Stevenson JW, Pederson LR (2012) Electrochemical performance and stability of the cathode for solid oxide fuel cells: V. high performance and stable Pr2NiO4 as the cathode for solid oxide fuel cells. Electrochim Acta 71:44–49

    Article  Google Scholar 

  147. Sun LP, Zhao H, Li Q, Huo LH, Viricelle JP, Pijolat C (2011) Study on Sm1.8Ce0.2CuO-Ce0.9Gd0.1O1.95 composite cathode materials for intermediate temperature solid oxide fuel cell. Int J Hydrogen Energy 36:12555–12560

    Article  Google Scholar 

  148. Woolley RJ, Ryan MP, Skinner SJ (2013) In situ measurements on solid oxide fuel cell cathodes-simultaneous X-ray absorption and AC impedance spectroscopy on symmetrical cells. Fuel Cells 13:1080–1087

    Article  Google Scholar 

  149. Amow G, Davidson IJ, Skinner SJ (2006) A comparative study of the Ruddlesden-Popper series, Lan+1NinO3n+1 (n = 1, 2 and 3), for solid-oxide fuel-cell cathode applications. Solid State Ionics 177:1205–1210

    Article  Google Scholar 

  150. Amow G, Skinner SJ (2006) Recent developments in Ruddlesden-Popper nickelate systems for solid oxide fuel cell cathodes. J Solid State Electrochem 10:538–546

    Article  Google Scholar 

  151. Burriel M, Garcia G, Rossell MD, Figueras A, Tendeloo GV, Santiso J (2007) Enhanced high-temperature electronic transport properties in nanostructured epitaxial thin films of the Lan+1NinO3n+1 Ruddlesden-Popper series (n = 1, 2, 3, ∞). Chem Mater 19:4056–4062

    Article  Google Scholar 

  152. Takahashi S, Nishimoto S, Matsuda M, Miyake M (2010) Electrode properties of the Ruddlesden-Popper series, Lan+1NinO3n+1 (n = 1, 2, and 3), as intermediate-temperature solid oxide fuel cells. J Am Ceram Soc 93:2329–2333

    Article  Google Scholar 

  153. Lou Z, Peng J, Dai N, Qiao J, Yan Y, Wang Z, Wang J, Sun K (2012) High performance La3Ni2O7 cathode prepared by a facile sol-gel method for intermediate temperature solid oxide fuel cells. Electrochem Commun 22:97–100

    Article  Google Scholar 

  154. Fjellvag H, Hansteen OH, Hauback BC, Fischer P (2000) Structural deformation and non-stoichiometry of La4Co3O10+δ. J Mater Chem 10:749–754

    Article  Google Scholar 

  155. Amow G, Au J, Davidson I (2006) Synthesis and characterization of La4Ni3−xCoxO10±δ (0.0 ≤ x ≤ 3.0, Δx = 0.2) for solid oxide fuel cell cathodes. Solid State Ionics 177:1837–1841

    Article  Google Scholar 

  156. Woolley R, N.llly B, Ryan M, Skinner S (2011) In situ determination of the nickel oxidation state in La2NiO4+δ and La4Ni3O10−δ using X-ray absorption near-edge structure. J Mater Chem 21:18592–18596

    Article  Google Scholar 

  157. Zinkevich M, Aldinger F (2004) Thermodynamic analysis of the ternary La-Ni-O system. J Alloys Compd 375:147–161

    Article  Google Scholar 

  158. Carvalho M, Costa FMA, Pereira IS, Wattiaux A, Bassat JM, Grenier JC, Pouchard M (1997) New preparation method of Lan+1NinO3n+1−δ (n = 2, 3). J Mater Chem 7:2107–2111

    Article  Google Scholar 

  159. Weng X, Boldrin P, Abrahams I, Skinner SJ, Darr JA (2007) Direct syntheses of mixed ion and electronic conductors La4Ni3O10 and La3Ni2O7 from nanosized coprecipitates. Chem Mater 19:4382–4384

    Article  Google Scholar 

  160. Weng X, Boldrin P, Abrahams I, Skinner SJ, Kellici S, Darr JA (2008) Direct syntheses of Lan+1NinO3n+1 phases (n = 1, 2, 3 and ∞) from nanosized co-crystallites. J Solid State Chem 181:1123–1132

    Article  Google Scholar 

  161. Yang Z, Xia G, Stevenson JW (2005) Mn1.5Co1.5O4 spinel protection layers on ferritic stainless steels for SOFC interconnect applications. Electrochem Solid-State Lett 8:A168–A170

    Article  Google Scholar 

  162. Liu H, Zhu X, Cheng M, Cong Y, Yang W (2011) Novel Mn1.5Co1.5O4 spinel cathodes for intermediate temperature solid oxide fuel cells. Chem Commun 47:2378–2380

    Article  Google Scholar 

  163. Rao Y, Wang Z, Chen L, Wu R, Peng R, Lu Y (2013) Structural, electrical, and electrochemical properties of cobalt-doped NiFe2O4 as a potential cathode material for solid oxide fuel cells. Int J Hydrogen Energy 38:14329–14336

    Article  Google Scholar 

  164. Takamura H, Koshino Y, Kamegawa A, Okada M (2006) Electrode and oxygen permeation properties of (Ce, Sm)O2-MFe2O4 composite thin films (M = Co and Mn). Solid State Ionics 177:2185–2189

    Article  Google Scholar 

  165. Liu H, Zhu X, Cheng M, Cong Y, Yang W (2013) Electrochemical performances of spinel oxides as cathodes for intermediate temperature solid oxide fuel cells. Int J Hydrogen Energy 38:1052–1057

    Article  Google Scholar 

  166. Jacobson AJ (2010) Materials for solid oxide fuel cells. Chem Mater 22:660–674

    Article  Google Scholar 

  167. Pound BG (1992) The characterization of doped CeO2 electrodes in solid oxide fuel cells. Solid State Ionics 52:183–188

    Article  Google Scholar 

  168. Takasu Y, Sugino T, Matsuda Y (1984) Electrical conductivity of praseodymia doped ceria. J Appl Electrochem 14:79–81

    Article  Google Scholar 

  169. Balaguer M, Solis C, Serra JM (2012) Structural-transport properties relationships on Ce1−xLnxO2−δ system (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and effect of cobalt addition. J Phys Chem C 116:7975–7982

    Article  Google Scholar 

  170. Chen D, Bishop SR, Tuller HL (2012) Praseodymium-cerium oxide thin film cathodes: study of oxygen reduction reaction kinetics. J Electroceram 28:69

    Article  Google Scholar 

  171. Bishop SR, Kim JJ, Thompson N, Chen D, Kuru Y, Stefanik T, Tuller HL (2011) Mechanical, electrical, and optical properties of (Pr, Ce)O2 solid solutions: kinetic studies. ECS Trans 35:1137–1144

    Article  Google Scholar 

  172. Chiba R, Taguchi H, Komatsu T, Orui H, Nozawa K, Arai H (2011) High temperature properties of Ce1−xPrxO2−δ as an active layer material for SOFC cathodes. Solid State Ionics 197:42–48

    Article  Google Scholar 

  173. Bishop SR, Stefanik TS, Tuller HL (2012) Defects and transport in PrxCe1−xO2−δ: composition trends. J Mater Res 27:2009–2016

    Article  Google Scholar 

  174. Nauer M, Ftikos C, Steele BCH (1994) An evaluation of Ce-Pr oxides and Ce-Pr-Nb oxides mixed conductors for cathodes of solid oxide fuel cells: structure, thermal expansion and electrical conductivity. J Eur Ceram Soc 14:493–499

    Article  Google Scholar 

  175. Bishop SR, Chen D, Kuru Y, Kim JJ, Stefanik T, Tuller HL (2011) Measurement and modeling of electrical, mechanical, and chemical properties of a model mixed ionic electronic conductor: Pr Doped Ceria. ECS Trans 33:51–57

    Article  Google Scholar 

  176. Balaguer M, Solis C, Roitsch S, Serra JM (2014) Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2−δ + Co 2 mol%. Dalton Trans 43:4305–4312

    Article  Google Scholar 

  177. Bishop SR, Tuller HL, Kuru Y, Yildiz B (2011) Chemical expansion of nonstoichiometric Pr0.1Ce0.9O2−δ: correlation with defect equilibrium model. J Eur Ceram Soc 31:2351–2356

    Article  Google Scholar 

  178. Chockalingam R, Ganguli AK, Basu S (2014) Praseodymium and gadolinium doped ceria as a cathode material for low temperature solid oxide fuel cells. J Power Sources 250:80–89

    Article  Google Scholar 

  179. Iwahara H, Yajima T, Hibino T, Ushida H (1993) Performance of solid oxide fuel cell using proton and oxide ion mixed conductors based on BaCe1−xSmxO3−α. J Electrochem Soc 140:1687–1691

    Article  Google Scholar 

  180. Hibino T, Hashimoto A, Suzuki M, Sano M (2002) A solid oxide fuel cell using Y-doped BaCeO3 with Pd-loaded FeO anode and Ba0.5Pr0.5CoO3 cathode at low temperatures. J Electrochem Soc 149:A1503–A1508

    Article  Google Scholar 

  181. Lin Y, Ran R, Zheng Y, Shao Z, Jin W, Xu N, Ahn J (2008) Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell. J Power Sources 180:15–22

    Article  Google Scholar 

  182. Wu T, Peng R, Xia C (2008) Sm0.5Sr0.5CoO3−δ-BaCe0.8Sm0.2O3−δ composite cathodes for proton-conducting solid oxide fuel cells. Solid State Ionics 179:1505–1508

    Article  Google Scholar 

  183. Yang L, Zuo C, Wang S, Cheng Z, Liu M (2008) A novel composite cathode for low-temperature SOFCs based on oxide proton conductors. Adv Mater 20:3280–3283

    Article  Google Scholar 

  184. Wu T, Zhao Y, Peng R, Xia C (2009) Nano-sized Sm0.5Sr0.5CoO3−δ as the cathode for solid oxide fuel cells with proton-conducting electrolytes of BaCe0.8Sm0.2O2.9. Electrochim Acta 54:4888–4892

    Article  Google Scholar 

  185. Fabbri E, Bi L, Pergolesi D, Traversa E (2011) High-performance composite cathodes with tailored mixed conductivity for intermediate temperature solid oxide fuel cells using proton conducting electrolytes. Energy Environ Sci 4:4984–4993

    Article  Google Scholar 

  186. Mukundan R, Davies PK, Worrell WL (2001) Electrochemical characterization of mixed conducting Ba(Ce0.8−yPryGd0.2)O2.9 cathodes. J Electrochem Soc 148:A82–A86

    Article  Google Scholar 

  187. Hui Z, Michele P (2002) Preparation, chemical stability, and electrical properties of Ba(Ce1−xBix)O3 (x = 0.0–0.5). J Mater Chem 12:3787–3791

    Article  Google Scholar 

  188. Tao Z, Bi L, Yan L, Sun W, Zhu Z, Peng R, Liu W (2009) A novel single phase cathode material for a proton-conducting SOFC. Electrochem Commun 11:688–690

    Article  Google Scholar 

  189. Tao Z, Bi L, Zhu Z, Liu W (2009) Novel cobalt-free cathode materials BaCexFe1−xO3−δ for proton-conducting solid oxide fuel cells. J Power Sources 194:801–804

    Article  Google Scholar 

  190. Fabbri E, Oh T, Licoccia S, Traversa E, Wachsman ED (2009) Mixed protonic/electronic conductor cathodes for intermediate temperature SOFCs based on proton conducting electrolytes. J Electrochem Soc 156:B38–B45

    Article  Google Scholar 

  191. Fabbri E, Licoccia S, Traversa E, Wachsman ED (2009) Composite cathodes for proton conducting electrolytes. Fuel Cells 9:128–138

    Article  Google Scholar 

  192. Wang Z, Liu M, Sun W, Ding D, Lv Z, Liu M (2013) A mixed-conducting BaPr0.8In0.2O3−δ cathode for proton-conducting solid oxide fuel cells. Electrochem Commun 27:19–21

    Article  Google Scholar 

  193. Lin B, Zhang S, Zhang L, Bi L, Ding H, Liu X, Gao J, Meng G (2008) Prontonic ceramic membrane fuel cells with layered GdBaCo2O5+x cathode prepared by gel-casting and suspension spray. J Power Sources 177:330–333

    Article  Google Scholar 

  194. Lin B, Dong Y, Yan R, Zhang S, Hu M, Zhou Y, Meng G (2009) In situ screen-printed BaZr0.1Ce0.7Y0.2O3−δ electrolyte-based protonic ceramic membrane fuel cells with layered SmBaCo2O5+x cathode. J Power Sources 186:446–449

    Article  Google Scholar 

  195. Zhao L, He B, Lin B, Ding H, Wang S, Ling Y, Peng R, Meng G, Liu X (2009) High performance of proton-conducting solid oxide fuel cell with a layered PrBaCo2O5+δ cathode. J Power Sources 194:835–837

    Article  Google Scholar 

  196. Lin Y, Ran R, Zhang C, Cai R, Shao Z (2010) Performance of PrBaCo2O5+δ as a proton-conducting solid-oxide fuel cell cathode. J Phys Chem A 114:3764–3772

    Article  Google Scholar 

  197. Grimaud A, Bassat JM, Mauvy F, Pollet M, Wattiaux A, Marrony M, Grenier JC (2014) Oxygen reduction reaction of PrBaCo2−xFexO5+δ compounds as H+-SOFC cathodes: correlation with physical properties. J Mater Chem A 2:3594–3604

    Article  Google Scholar 

  198. Ding H, Xue X (2010) Proton conducting solid oxide fuel cells with layered PrBa0.5Sr0.5Co2O5+δ perovskite cathode. Int J Hydrogen Energy 35:2486–2490

    Article  Google Scholar 

  199. Zhao F, Wang S, Brinkman K, Chen F (2010) Layered perovskite PrBa0.5Sr0.5Co2O5+δ as high performance cathode for solid oxide fuel cells using oxide proton-conducting electrolyte. J Power Sources 195:5468–5473

    Article  Google Scholar 

  200. Kim J, Sengodan S, Kwon G, Ding D, Shin J, Liu M, Kim G (2014) Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells. ChemSusChem 7:2811–2815

    Article  Google Scholar 

  201. Dailly J, Fourcade S, Largeteau A, Mauvy F, Grenier JC, Marrony M (2010) Perovskite and A2MO4-type oxides as new cathode materials for protonic solid oxide fuel cells. Electrochim Acta 55:5847–5853

    Article  Google Scholar 

  202. Grimaud A, Mauvy F, Bassat JM, Fourcade S, Rocheron L, Marrony M, Grenier JC (2012) Hydration properties and rate determining steps of the oxygen reduction reaction of perovskite-related oxides as H+-SOFC cathodes. J Electrochem Soc 159:B683–B694

    Article  Google Scholar 

  203. Taillades G, Dailly J, Taillades-Jacquin M, Mauvy F, Essouhmi A, Marrony M, Lalanne C, Fourcade S, Jones DJ, Grenier JC, Roziere J (2010) Intermediate temperature anode-supported fuel cell based on BaCe0.9Y0.1O3 electrolyte with novel Pr2NiO4 cathode. Fuel Cells 10:166–173

    Google Scholar 

  204. Wang Z, Yang W, Shafi SP, Bi L, Wang Z, Peng R, Xia C, Liu W, Lu Y (2015) A high performance cathode for proton conducting solid oxide fuel cells. J Mater Chem A 3:8405–8412

    Article  Google Scholar 

  205. Xia C, Zhang Y, Liu M (2003) LSM-GDC composite cathodes derived from a sol-gel process. Electrochem Solid-State Lett 6:A290–A292

    Article  Google Scholar 

  206. Deganello F, Esposito V, Miyayama M, Traversa E (2007) Cathode performance of nanostructured La1−aSraCo1−bFebO3 on a Ce0.8Sm0.2O2 electrolyte prepared by citrate-nitrate autocombustion. J Electrochem Soc 154:A89–A96

    Article  Google Scholar 

  207. Zhang Y, Zha S, Liu M (2005) Dual-scale porous electrodes for solid oxide fuel cells from polymer foams. Adv Mater 17:487–491

    Article  Google Scholar 

  208. Zhang N, Li J, Ni D, Sun K (2011) Preparation of honeycomb porous La0.6Sr0.4Co0.2Fe0.8O3−δ-Gd0.2Ce0.8O2−δ composite cathodes by breath figures method for solid oxide fuel cells. Appl Surf Sci 258:50–57

    Article  Google Scholar 

  209. Lee JG, Park JH, Shul YG (2014) Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 Wcm−2 at 550 oC. Nat Commun 5:4045

    Google Scholar 

  210. Jiang SP (2012) Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges. Int J Hydrogen Energy 37:449–470

    Article  Google Scholar 

  211. Wang W, Gross MD, Vohs JM, Gorte RJ (2007) The stability of LSF-YSZ electrodes prepared by infiltration. J Electrochem Soc 154:B439–B445

    Article  Google Scholar 

  212. Sholklapper TZ, Lu C, Jacobson CP, Visco SJ, De Jonghe LC (2006) LSM-infiltrated solid oxide fuel cell cathodes. Electrochem Solid-State Lett 9:A376–A378

    Article  Google Scholar 

  213. Jiang Z, Lei Z, Ding B, Xia C, Zhao F, Chen F (2010) Electrochemical characteristics of solid oxide fuel cell cathodes prepared by infiltrating (La, Sr)MnO3 nanoparticles into yttria-stabilized bismuth oxide backbones. Int J Hydrogen Energy 35:8322–8330

    Article  Google Scholar 

  214. Lou X, Liu Z, Wang S, Xiu Y, Wong CP, Liu M (2010) Controlling the morphology and uniformity of a catalyst-infiltrated cathode for solid oxide fuel cells by tuning wetting property. J Power Sources 195:419–424

    Article  Google Scholar 

  215. Wang F, Chen D, Shao Z (2012) Sm0.5Sr0.5CoO3−δ-infiltrated cathodes for solid oxide fuel cells with improved oxygen reduction activity and stability. J Power Sources 216:208–215

    Article  Google Scholar 

  216. Huang Y, Vohs JM, Gorte RJ (2005) Characterization of LSM-YSZ composites prepared by impregnation methods. J Electrochem Soc 152:A1347–A1353

    Article  Google Scholar 

  217. Huang Y, Ahn K, Vohs JM, Gorte RJ (2004) Characterization of Sr-doped LaCoO3-YSZ composites prepared by impregnation methods. J Electrochem Soc 151:A1592–A1597

    Article  Google Scholar 

  218. Shah M, Barnett S (2008) Solid oxide fuel cell cathodes by infiltration of La0.6Sr0.4Co0.2Fe0.8O3−δ into Gd-doped ceria. Solid State Ionics 179:2059–2064

    Article  Google Scholar 

  219. Zhao F, Wang Z, Liu M, Zhang L, Xia C, Chen F (2008) Novel nano-network cathodes for solid oxide fuel cells. J Power Sources 185:13–18

    Article  Google Scholar 

  220. Lee S, Bevilacqua M, Fornasiero P, Vohs JM, Gorte RJ (2009) Solid oxide fuel cell cathodes prepared by infiltration of LaNi0.6Fe0.4O3 and La0.91Sr0.09Ni0.6Fe0.4O3 in porous yttria-stabilized zirconia. J Power Sources 193:747–753

    Article  Google Scholar 

  221. Choi S, Yoo S, Shin JY, Kim G (2011) High performance SOFC cathode prepared by infiltration of Lan + 1NinO3n + 1 (n = 1, 2, and 3) in porous YSZ. J Electrochem Soc 158:B995–B999

    Article  Google Scholar 

  222. Liang F, Chen J, Cheng J, Jiang SP, He T, Pu J, Li J (2008) Novel nano-structured Pd + yttrium doped ZrO2 cathodes for intermediate temperature solid oxide fuel cells. Electrochem Commun 10:42–46

    Article  Google Scholar 

  223. Liang F, Zhou W, Chi B, Pu J, Jiang SP, Jian L (2011) Pd-YSZ composite cathodes for oxygen reduction reaction of intermediate-temperature solid oxide fuel cells. Int J Hydrogen Energy 36:7670–7676

    Article  Google Scholar 

  224. Lin Y, Su C, Huang C, Kim JS, Kwak C, Shao Z (2012) A new symmetric solid oxide fuel cell with a samaria-doped ceria framework and a silver-infiltrated electrocatalyst. J Power Sources 197:57–64

    Article  Google Scholar 

  225. Zhang Q, Martin BE, Petric A (2008) Solid oxide fuel cell composite cathodes prepared by infiltration of copper manganese spinel into porous yttria stabilized zirconia. J Mater Chem 18:4341–4346

    Article  Google Scholar 

  226. Liu X, Han D, Wu H, Meng X, Zeng F, Zhan Z (2013) Mn1.5Co1.5O4−δ infiltrated yttria stabilized zirconia composite cathodes for intermediate-temperature solid oxide fuel cells. Int J Hydrogen Energy 38:16563–16568

    Article  Google Scholar 

  227. Samson AJ, Sogaard M, Bonanos N (2012) Electrodes for solid oxide fuel cells based on infiltration of co-based materials. Electrochem Solid-State Lett 15:B54–B56

    Article  Google Scholar 

  228. Jung S, Lu C, He H, Ahn K, Gorte RJ, Vohs JM (2006) Influence of composition and Cu impregnation method on the performance of Cu/CeO2/YSZ SOFC anodes. J Power Sources 154:42–50

    Article  Google Scholar 

  229. Xu N, Li X, Zhao X, Zhao H, Huang K (2012) One-step infiltration of mixed conducting electrocatalysts for reducing cathode polarization of a commercial cathode-supported SOFC. Electrochem Solid-State Lett 15:B1–B4

    Article  Google Scholar 

  230. Huang Y, Vohs JM, Gorte RJ (2006) SOFC cathodes prepared by infiltration with various LSM precursors. Electrochem Solid-State Lett 9:A237–A240

    Article  Google Scholar 

  231. Zhi M, Mariani N, Gemmen R, Gerdes K, Wu N (2011) Nanofiber scaffold for cathode of solid oxide fuel cell. Energy Environ Sci 4:417–420

    Article  Google Scholar 

  232. Ai N, Jiang SP, Lü Z, Chen K, Su W (2010) Nanostructured (Ba, Sr)(Co, Fe)O3−δ impregnated (La, Sr)MnO3 cathode for intermediate-temperature solid oxide fuel cells. J Electrochem Soc 157:B1033–B1039

    Article  Google Scholar 

  233. Huang Y, Vohs JM, Gorte RJ (2006) An examination of LSM-LSCo mixtures for use in SOFC cathodes. J Electrochem Soc 153:A951–A955

    Article  Google Scholar 

  234. Zhang X, Zhang H, Liu X (2014) High performance La2NiO4+δ-infiltrated (La0.6Sr0.4)0.995Co0.2Fe0.8O3−δ cathode for solid oxide fuel cells. J Power Sources 269:412–417

    Article  Google Scholar 

  235. Lee S, Miller N, Staruch M, Gerdes K, Jain M, Manivannan A (2011) Pr0.6Sr0.4CoO3−δ electrocatalyst for solid oxide fuel cell cathode introduced via infiltration. Electrochim Acta 56:9904–9909

    Article  Google Scholar 

  236. Huang B, Zhu X, Lv Y, Liu H (2012) High-performance Gd0.2Ce0.8O2-impregnated LaNi0.6Fe0.4O3−δ cathodes for intermediate temperature solid oxide fuel cell. J Power Sources 209:209–219

    Article  Google Scholar 

  237. Huang B, Zhu X, Nie H, Niu Y, Li Y, Cheng N (2013) Comparison of the electrochemical properties of impregnated and functionally gradient LaNi0.6Fe0.4O3-Gd0.2Ce0.8O2 composite cathodes for solid oxide fuel cell. J Power Sources 235:20–28

    Article  Google Scholar 

  238. Nie L, Liu M, Zhang Y, Liu M (2010) La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes infiltrated with samarium-doped cerium oxide for solid oxide fuel cells. J Power Sources 195:4704–4708

    Article  Google Scholar 

  239. Zhao E, Ma C, Yang W, Xiong Y, Li J, Sun C (2013) Electrospinning La0.8Sr0.2Co0.2Fe0.8O3−δ tubes impregnated with Ce0.8Gd0.2O1.9 nanoparticles for an intermediate temperature solid oxide fuel cell cathode. Int J Hydrogen Energy 38:6821–6829

    Article  Google Scholar 

  240. Zhi M, Lee S, Miller N, Menzler NH, Wu N (2012) An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode. Energy Environ Sci 5:7066–7071

    Article  Google Scholar 

  241. Ding D, Li X, Lai SY, Gerdes K, Liu M (2014) Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ Sci 7:552–575

    Article  Google Scholar 

  242. Liu L, Zhao Z, Zhang X, Cui D, Tu B, Ou D, Cheng M (2013) A ternary cathode composed of LSM, YSZ and Ce0.9Mn0.1O2 for the intermediate temperature solid oxide fuel cells. Chem Commun 49:777–779

    Article  Google Scholar 

  243. Ren Y, Ma J, Ai D, Zan Q, Lin X, Deng C (2012) Fabrication and performance of pr-doped CeO2 nanorods-impregnated Sr-doped LaMnO3-Y2O3-stabilized ZrO2 composite cathodes for intermediate temperature solid oxide fuel cells. J Mater Chem 22:25042–25049

    Article  Google Scholar 

  244. Chiba R (2004) A study of cathode materials for intermediate temperature SOFCs prepared by the sol-gel method. Solid State Ionics 175:23–27

    Article  Google Scholar 

  245. Lu C, Sholklapper TZ, Jacobson CP, Visco SJ, De Jonghe LC (2006) LSM-YSZ cathodes with reaction-infiltrated nanoparticles. J Electrochem Soc 153:A1115–A1119

    Article  Google Scholar 

  246. Kiebach R, Knöfel C, Bozza F, Klemensø T, Chatzichristodoulou C (2013) Infiltration of ionic-, electronic- and mixed-conducting nano particles into La0.75Sr0.25MnO3-Y0.16Zr0.84O2 cathodes: a comparative study of performance enhancement and stability at different temperatures. J Power Sources 228:170–177

    Article  Google Scholar 

  247. Lee S, Miller N, Abernathy H, Gerdes K, Manivannan A (2011) Effect of Sr-doped LaCoO3 and LaZrO3 infiltration on the performance of SDC-LSCF cathode. J Electrochem Soc 158:B735–B742

    Article  Google Scholar 

  248. Lee S, Miller N, Gerdes K (2012) Long-term stability of SOFC composite cathode activated by electrocatalyst infiltration. J Electrochem Soc 159:F301–F308

    Article  Google Scholar 

  249. Uchida H, Arisaka S, Watanabe M (2002) High performance electrode for medium-temperature solid oxide fuel cells: control of microstructure of La(Sr)CoO3 cathodes with highly dispersed Pt electrocatalysts. J Electrochem Soc 149:A13–A18

    Article  Google Scholar 

  250. Sahibzada M, Benson SJ, Rudkin RA, Kilner JA (1998) Pd-promoted La0.6Sr0.4Co0.2Fe0.8O3 cathodes. Solid State Ionics 113–115:285–290

    Article  Google Scholar 

  251. Chen J, Liang F, Chi B, Pu J, Jiang SP, Jian L (2009) Palladium and ceria infiltrated La0.8Sr0.2Co0.5Fe0.5O3−δ cathodes of solid oxide fuel cells. J Power Sources 194:275–280

    Article  Google Scholar 

  252. Wang LS, Barnett SA (1995) Ag-perovskite cermets for thin film solid oxide fuel cell air-electrode applications. Solid State Ionics 76:103–113

    Article  Google Scholar 

  253. Wang S, Kato T, Nagata S, Honda T, Kaneko T, Iwashita N, Dokiya M (2002) Performance of a La0.6Sr0.4Co0.8Fe0.2O3-Ce0.8Gd0.2O1.9-Ag cathode for ceria electrolyte SOFCs. Solid State Ionics 146:203–210

    Article  Google Scholar 

  254. Zeng P, Chen Z, Zhou W, Gu H, Shao Z, Liu S (2007) Re-evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite as oxygen semi-permeable membrane. J Membr Sci 291:148–156

    Article  Google Scholar 

  255. Zhou W, Ran R, Shao Z, Cai R, Jin W, Xu N, Ahn J (2008) Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathodes prepared via electroless deposition. Electrochim Acta 53:4370–4380

    Article  Google Scholar 

  256. Liang F, Zhou W, Li J, Zhu Z (2013) Microwave-plasma induced reconstruction of silver catalysts for highly efficient oxygen reduction. J Mater Chem A 1:13746–13749

    Article  Google Scholar 

  257. Huang S, Feng S, Wang H, Li Y, Wang C (2011) LaNi0.6Fe0.4O3-Ce0.8Sm0.2O1.9-Ag composite cathode for intermediate temperature solid oxide fuel cells. Int J Hydrogen Energy 36:10968–10974

    Article  Google Scholar 

  258. Gong Y, Li X, Zhang L, Tharp W, Qin C, Huang K (2013) Molten carbonates as an effective oxygen reduction catalyst for 550–650 oC solid oxide fuel cells. J Electrochem Soc 160:F958–F964

    Article  Google Scholar 

  259. Gong Y, Li X, Zhang L, Tharp W, Qin C, Huang K (2013) Promoting electrocatalytic activity of a composite SOFC cathode La0.8Sr0.2MnO3/Ce0.8Gd0.2O2 with molten carbonates. J Electrochem Soc 161:F226–F232

    Article  Google Scholar 

  260. Hong T, Chen F, Xia C (2015) Barium carbonate nanoparticle to enhance oxygen reduction activity of strontium doped lanthanum ferrite for solid oxide fuel cell. J Power Sources 278:741–750

    Article  Google Scholar 

  261. Shah M, Voorhees PW, Barnett SA (2011) Time-dependent performance changes in LSCF-infiltrated SOFC cathodes: the role of nano-particle coarsening. Solid State Ionics 187:64–67

    Article  Google Scholar 

  262. Lynch ME, Yang L, Qin W, Choi JJ, Liu M, Blinn K, Liu M (2011) Enhancement of La0.6Sr0.4Co0.2Fe0.8O3−δ durability and surface electrocatalytic activity by La0.85Sr0.15MnO3±δ investigated using a new test electrode platform. Energy Environ Sci 4:2249–2258

    Article  Google Scholar 

  263. Lou X, Wang S, Liu Z, Yang L, Liu M (2009) Improving La0.6Sr0.4Co0.2Fe0.8O3−δ cathode performance by infiltration of a Sm0.5Sr0.5CoO3−δ coating. Solid State Ionics 180:1285–1289

    Article  Google Scholar 

  264. Liu M, Ding D, Blinn K, Li X, Nie L, Liu M (2012) Enhanced performance of LSCF cathode through surface modification. Int J Hydrogen Energy 37:8613–8620

    Article  Google Scholar 

  265. Ding D, Liu M, Liu Z, Li X, Blinn K, Zhu X, Liu M (2013) Efficient electro-catalysts for enhancing surface activity and stability of SOFC cathodes. Adv Energy Mater 3:1149–1154

    Article  Google Scholar 

  266. Zhou W, Liang F, Shao Z, Zhu Z (2012) Hierarchical CO2-protective shell for highly efficient oxygen reduction reaction. Sci Rep 2:327

    Google Scholar 

  267. Zhu X, Xia H, Li Y, Lü Z (2015) A (La, Sr)MnO3 nano-film embedded into (Ba, Sr)(Co, Fe)O3 porous cathode for stability enhancement. Mater Lett 161:549–553

    Article  Google Scholar 

  268. Chen D, Yang G, Ciucci F, Tadé MO, Shao Z (2014) 3d core-shell architecture from infiltration and beneficial reactive sintering as highly efficient and thermally stable oxygen reduction electrode. J Mater Chem A 2:1284–1293

    Article  Google Scholar 

  269. Zhou W, Shao Z, Liang F, Chen ZG, Zhu Z, Jin W, Xu N (2011) A new cathode for solid oxide fuel cells capable of in situ electrochemical regeneration. J Mater Chem 21:15343–15351

    Article  Google Scholar 

  270. Ding H, Xue X (2014) An interfacial nanospike-structured cathode for low temperature solid oxide fuel cells. Adv Mater Interfaces. doi:10.1002/admi.201400008

    Google Scholar 

  271. Zhou W, Liang F, Shao Z, Chen J, Zhu Z (2011) Heterostructured electrode with concentration gradient shell for highly efficient oxygen reduction at low temperature. Sci Rep 1:155

    Google Scholar 

  272. Gong Y, Patel RL, Liang X, Palacio D, Song X, Goodenough JB, Huang K (2013) Atomic layer deposition functionalized composite SOFC cathode La0.6Sr0.4Fe0.8Co0.2O3-δ-Gd0.2Ce0.8O1.9: enhanced long-term stability. Chem Mater 25:4224–4231

    Article  Google Scholar 

  273. Gong Y, Palacio D, Song X, Patel RL, Liang X, Zhao X, Goodenough JB, Huang K (2013) Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition. Nano Lett 13:4340–4345

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shao, Z., Tadé, M.O. (2016). Cathodes for IT-SOFCs. In: Intermediate-Temperature Solid Oxide Fuel Cells. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52936-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52936-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52934-8

  • Online ISBN: 978-3-662-52936-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics