Skip to main content

Different Approaches to the Global Periodicity Problem

  • Conference paper
  • First Online:
Book cover Difference Equations, Discrete Dynamical Systems and Applications (ICDEA 2012)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 180))

Included in the following conference series:

Abstract

Let F be a real or complex n-dimensional map. It is said that F is globally periodic if there exists some \(p\in \mathbb {N}^+\) such that \(F^p(x)=x\) for all x,  where \(F^k=F\circ F^{k-1}\), \(k\ge 2.\) The minimal p satisfying this property is called the period of F. Given a m-dimensional parametric family of maps, say \(F_\lambda \), a problem of current interest is to determine all the values of \(\lambda \) such that \(F_\lambda \) is globally periodic, together with their corresponding periods. The aim of this paper is to show some techniques that we use to face this question, as well as some recent results that we have obtained. We will focus on proving the equivalence of the problem with the complete integrability of the dynamical system induced by the map F, and related issues; on the use of the local linearization given by the Bochner Theorem; and on the use the Normal Form theory. We also present some open questions in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balibrea F., Linero-Bas A.: Some new results and open problems on periodicity of difference equations. In: Iteration theory (ECIT 04), Grazer Math. Ber. 350, 15–38 (2006)

    Google Scholar 

  2. Grove, E.A., Ladas, G.: Periodicities in Nonlinear Difference Equations. Advances in discrete mathematics and applications, vol. 4. Chapman & Hall/CRC Press, Boca Raton (2005)

    MATH  Google Scholar 

  3. Linero-Bas, A.: Some results on periodicity of difference equations. In: Liz, E., Mañosa, V. (eds.) Proceedings of the Workshop Future Directions in Difference Equations, pp. 121–143. Universidade de Vigo, Vigo (2011)

    Google Scholar 

  4. Csörnyei, M., Laczkovich, M.: Some periodic and non-periodic recursions. Monatshefte für Mathematik 132, 215–236 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ochiai, T., Nacher, J.C.: Inversible Max–Plus algebras and integrable systems. J. Math. Phys. 46, 063507 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cima, A., Gasull, A., Mañosas, F.: On coxeter recurrences. J. Differ. Equ. Appl. 18, 1457–1465 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coxeter, H.S.M.: Frieze patterns. Acta Arith. 18, 297–310 (1971)

    MathSciNet  MATH  Google Scholar 

  8. Montgomery, D.: Pointwise periodic homeomorphisms. Am. J. Math. 59, 118–120 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kurshan, R.P., Gopinath, B.: Recursively generated periodic sequences. Canad. J. Math. 26, 1356–1371 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bellon, M.P.: Algebraic entropy of birational maps with invariant curves. Lett. Math. Phys. 50, 79–90 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Diller, J., Favre, C.: Dynamics of bimeromorphic maps of surfaces. Am. J. Math. 123, 1135–1169 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cima, A., Gasull, A., Mañosas, F.: On periodicity rational difference equations of order \(k\). J. Differ. Equ. Appl. 10, 549–559 (2004)

    Article  MATH  Google Scholar 

  13. Bedford, E., Kim, K.: Periodicities in linear fractional recurrences: degree growth of birational surface maps. Mich. Math. J. 54, 647–670 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bedford, E., Kim, K.: Linear fractional recurrences: periodicities and integrability. Ann. Fac. Sci. Toulouse Math. 20, 33–56 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rubió-Massegú, J.: On the global periodicity of discrete dynamical systems and application to rational difference equations. J. Math. Anal. Appl. 343, 182–189 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rubió-Massegú, J., Mañosa, V.: Normal forms for rational difference equations with applications to the global periodicity problem. J. Math. Anal. Appl. 332, 896–918 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cima, A., Gasull, A., Mañosas, F.: New periodic recurrences with applications. J. Math. Anal. Appl. 382, 418–425 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bochner, S.: Compact groups of differentiable transformations. Ann. Math. 46, 372–381 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  19. Montgomery, D., Zippin, L.: Topological Transformation Groups. Interscience, New York (1955)

    MATH  Google Scholar 

  20. Constantin, A., Kolev, B.: The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere. Enseign. Math. 40, 373–413 (1994)

    MathSciNet  MATH  Google Scholar 

  21. Bing, R.H.: A homeomorphism between the \(3\)-sphere and the sum of two solid horned spheres. Ann. Math. 80, 78–93 (1964)

    Article  MathSciNet  Google Scholar 

  22. Bing, R.H.: Inequivalent families of periodic homeomorphisms of E3. Ann. Math. 56, 354–362 (1952)

    Article  MathSciNet  Google Scholar 

  23. Hayes, R., Kwasik, S., Mast, J., Schultz, R.: Periodic maps \(\mathbb{R}^7\) without fixed points. Math. Proc. Camb. Philos. Soc. 132, 131–136 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Kister, J.M.: Differentiable periodic actions on \(E^8\) without fixed points. Am. J. Math. 85, 316–319 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cima, A., Gasull, A., Mañosas, F.: Global linearization of periodic difference equations. Discret. Contin. Dyn. Syst. 32, 1575–1595 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Cima, A., Gasull, A., Mañosas, F.: Simple examples of planar involutions with non-global Montgomery–Bochner linearizations. Appl. Math. Lett. 25, 2086–2088 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pires B., Teixeira M.A.: On global linearization of planar involutions. Bull. Braz. Math. Soc. (N.S.) 43, 637–653 (2012)

    Google Scholar 

  28. Cima, A., Gasull, A., Mañosa, V.: Global periodicity and complete integrability of discrete dynamical systems. J. Differ. Equ. Appl. 12, 697–716 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Conder, M.: Hurwitz groups with given centre. Bull. Lond. Math. Soc. 34, 725–728 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Conder, M.: An update on Hurwitz groups. Groups Complex. Cryptol. 2, 35–49 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jogia, D., Roberts, J.A.G., Vivaldi, F.: An algebraic geometric approach to integrable maps of the plane. J. Phys. A: Math. Gen. 39, 1133–1149 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Haggar, F., Byrnes, G.B., Quispel, G.R.W., Capel, H.W.: \(k\)-integrals and \(k\)-Lie symmetries in discrete dynamical systems. Phys. A 233, 379–394 (1996)

    Article  MATH  Google Scholar 

  33. Cima, A., Gasull, A., Mañosa, V.: Studying discrete dynamical systems through differential equations. J. Differ. Equ. 244, 630–648 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Guillemin, V., Pollack, A.: Differential Topology. Prentice Hall, New Jersey (1974)

    MATH  Google Scholar 

  35. Maksymenko, S.I.: Period functions for \(\fancyscript {C}^{0}\) – and \(\fancyscript {C}^{1}\) flows. Ukr. Math. J. 62, 1109–1125 (2010)

    Google Scholar 

  36. Epstein, D.B.A.: Periodic flows on three-manifolds. Ann. Math. 95, 66–82 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  37. Reeb G.: Sur certaines proprietes topologiques des varietes feuilletees. Actual. Sci. Ind. 1183, Hermann, Paris (1952)

    Google Scholar 

  38. Sullivan, D.: A counterexample to the periodic orbit conjecture. Inst. Hautes Etudes Sci. Publ. Math. 46, 5–14 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vogt, E.: A periodic flow with infinite Epstein hierarchy. Manuscr. Math. 22, 403–412 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  40. Peralta-Salas D.: Private Communication (2009)

    Google Scholar 

  41. Cima A., Gasull A., Mañosa V.: Some properties of the k–dimensional Lyness’ map. J. Phys. A: Math. Theor. 41, 285205, 18 pp. (2008)

    Google Scholar 

  42. Arrowsmith, D.K., Place, C.M.: An Introduction to Dynamical Systems. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  43. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

  44. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1990)

    Book  MATH  Google Scholar 

  45. Cima A., Gasull A., Mañosa V.: Global periodicity conditions for maps and recurrences via Normal Forms. Int. J. Bifur. Chaos Appl. Sci. Eng. 23, 1350182, 18 pp. (2013)

    Google Scholar 

  46. Chow, S.-N., Li, C., Wang, D.: Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  47. Farr, W.W., Li, C., Labouriau, I.S., Langford, W.F.: Degenerate Hopf bifurcation formulas and Hilbert’s 16th problem. SIAM J. Math. Anal. 20, 13–30 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hassard, B., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of the Hopf Bifurcations. Cambridge University Press, Cambridge (1980)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors are partially supported by Spanish Ministry of Economy and Competitiveness through grants MTM2008-03437 (first and second authors); DPI2011-25822 and DPI2016-77407-P (third author); and MTM2011-26995-C02-01 (fourth author). Both CoDALab and GSD-UAB groups are supported by Generalitat de Catalunya through the SGR program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armengol Gasull .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cima, A., Gasull, A., Mañosa, V., Mañosas, F. (2016). Different Approaches to the Global Periodicity Problem. In: Alsedà i Soler, L., Cushing, J., Elaydi, S., Pinto, A. (eds) Difference Equations, Discrete Dynamical Systems and Applications. ICDEA 2012. Springer Proceedings in Mathematics & Statistics, vol 180. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52927-0_7

Download citation

Publish with us

Policies and ethics