Skip to main content

Extraction of Natural Phenolic Compounds with ABS

  • Chapter
  • First Online:
Ionic-Liquid-Based Aqueous Biphasic Systems

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 769 Accesses

Abstract

Amongst natural compounds, phenolic compounds – the most abundant class of secondary plant metabolites – are commonly employed as additives in the manufacturing of various human commodities, such as dietary supplements, food and pharmaceutical and cosmetic products, and hence can be considered of high importance from an industrial standpoint. The extraction of these compounds proceeds according to well-established procedures, which are multistage, laborious and time and energy consuming and use organic solvents which are often flammable, volatile and toxic. Accordingly, there is the need to develop novel and sustainable procedures, so that the production of such value-added chemicals can be achieved in a more efficient and environmentally friendly manner. This chapter represents a comprehensive overview on the recent achievements in the extraction of natural compounds, and mainly phenolic compounds, by means of ionic-liquid-based aqueous biphasic systems (IL-based ABS). It considers factors that influence the extraction efficiency, such as inorganic salt type and concentration, IL type and concentration, pH value and temperature, and provides some clues towards the extraction yield improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352

    Article  CAS  Google Scholar 

  2. Mansfield JW (2000) The role of phytoalexins and phytoanticipins. In: Slusarenko AJ, Fraser RSS, van Loon LC (eds) Mechanisms of resistance to plant diseases. Kluwer Academic Publishers, Dordrecht, pp 325–370

    Chapter  Google Scholar 

  3. Fresco P, Borges F, Diniz C et al (2006) New insights on the anticancer properties of dietary polyphenols. Med Res Rev 26:747–766

    Article  CAS  Google Scholar 

  4. Kamat CD, Gadal S, Mhatre M et al (2008) Antioxidants in central nervous system diseases: preclinical promise and translational challenges. J Alzheimers Dis 15:473–493

    CAS  Google Scholar 

  5. Zhao B (2009) Natural antioxidants protect neurons in Alzheimer’s disease and Parkinson’s disease. Neurochem Res 34:630–638

    Article  CAS  Google Scholar 

  6. Fresco P, Borges F, Marques MP et al (2010) The anticancer properties of dietary polyphenols and its relation with apoptosis. Curr Pharm Des 16:114–134

    Article  CAS  Google Scholar 

  7. Benfeito S, Oliveira C, Soares P et al (2013) Antioxidant therapy: still in search of the ‘magic bullet’. Mitochondrion 13:427–435

    Article  CAS  Google Scholar 

  8. Fais A, Corda M, Era B et al (2009) Tyrosinase inhibitor activity of coumarin-resveratrol hybrids. Molecules 14:2514–2520

    Article  CAS  Google Scholar 

  9. Serafim TL, Carvalho FS, Marques MP et al (2011) Lipophilic caffeic and ferulic acid derivatives presenting cytotoxicity against human breast cancer cells. Chem Res Toxicol 24:763–774

    Article  CAS  Google Scholar 

  10. Viña D, Matos MJ, Ferino G et al (2012) 8-Substituted 3-arylcoumarins as potent and selective MAO-B inhibitors: synthesis, pharmacological evaluation, and docking studies. Chem Med Chem 7:464–470

    Article  Google Scholar 

  11. Garrido J, Gaspar A, Garrido EM et al (2012) Alkyl esters of hydroxycinnamic acids with improved antioxidant activity and lipophilicity protect PC12 cells against oxidative stress. Biochimie 94:961–967

    Article  CAS  Google Scholar 

  12. Teixeira J, Silva T, Benfeito S et al (2013) Exploring nature profits: development of novel and potent lipophilic antioxidants based on galloyl-cinnamic hybrids. Eur J Med Chem 62:289–296

    Article  CAS  Google Scholar 

  13. Miliovsky M, Svinyarov I, Mitrev Y et al (2013) A novel one-pot synthesis and preliminary biological activity evaluation of cis-restricted polyhydroxy stilbenes incorporating protocatechuic acid and cinnamic acid fragments. Eur J Med Chem 66:185–192

    Article  CAS  Google Scholar 

  14. Catto M, Pisani L, Leonetti F et al (2013) Design, synthesis and biological evaluation of coumarin alkylamines as potent and selective dual binding site inhibitors of acetylcholinesterase. Bioorg Med Chem 21:146–152

    Article  CAS  Google Scholar 

  15. Mura F, Silva T, Castro C et al (2014) New insights into the antioxidant activity of hydroxycinnamic and hydroxybenzoic systems: spectroscopic, electrochemistry, and cellular studies. Free Radic Res 48:1473–1484

    Article  CAS  Google Scholar 

  16. Azmir J, Zaidul ISM, Rahman MM et al (2013) Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117:426–436

    Article  CAS  Google Scholar 

  17. Bucar F, Wube A, Schmid M (2013) Natural product isolation – how to get from biological material to pure compounds. Nat Prod Rep 30:525–545

    Article  CAS  Google Scholar 

  18. Anastas PT, Kirchhoff MM (2002) Origins, current status, and future challenges of green chemistry. Acc Chem Res 35:686–694

    Article  CAS  Google Scholar 

  19. Bogdanov MG (2014) Ionic liquids as alternative solvents for extraction of natural products. In: Chemat F, AbertVian M (eds) Alternative solvents for natural products extraction, green chemistry and sustainable technology. Springer, Berlin/Heidelberg, pp 127–166. doi:10.1007/978-3-662-43628-8__7

    Google Scholar 

  20. Passos H, Freire MG, Coutinho JAP (2014) Ionic liquid solutions as extractive solvents for value-added compounds from biomass. Green Chem 16:4786–4815

    Article  CAS  Google Scholar 

  21. Freemantle M (2009) An introduction to ionic liquids. RSC Publishing, Cambridge

    Google Scholar 

  22. Smiglak M, Pringle JM, Lu X et al (2014) Ionic liquids for energy, materials, and medicine. Chem Commun 50:9228–9250

    Article  CAS  Google Scholar 

  23. Bogdanov MG, Kantlehner W (2009) Simple prediction of some physical properties of ionic liquids: the residual volume approach. Z Naturforsch B 64:215–222

    CAS  Google Scholar 

  24. Bogdanov MG, Iliev B, Kantlehner W (2009) The residual volume approach II: simple prediction of ionic conductivity of ionic liquids. Z Naturforsch B 64:756–764

    CAS  Google Scholar 

  25. Bogdanov MG, Petkova D, Hristeva S et al (2010) New guanidinium-based room-temperature ionic liquids. Substituent and anion effect on density and solubility in water. Z Naturforsch B 65:37–48

    CAS  Google Scholar 

  26. Bogdanov MG, Svinyarov I, Kunkel H et al (2010) Empirical polarity parameters for hexaalkylguanidinium-based room-temperature ionic liquids. Z Naturforsch B 65:791–797

    CAS  Google Scholar 

  27. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576

    Article  CAS  Google Scholar 

  28. Parvulescu VI, Hardacre C (2007) Catalysis in ionic liquids. Chem Rev 107:2615–2665

    Article  CAS  Google Scholar 

  29. Opallo M, Lesniewski A (2011) A review on electrodes modified with ionic liquids. J Electroanal Chem 656:2–16

    Article  CAS  Google Scholar 

  30. Ho TD, Zhang C, Hantao LW et al (2014) Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives. Anal Chem 86:262–285

    Article  CAS  Google Scholar 

  31. Bogdanov MG, Svinyarov I (2013) Ionic liquid-supported solid–liquid extraction of bioactive alkaloids. II. Kinetics, modeling and mechanism of glaucine extraction from Glauciumflavum Cr. (Papaveraceae). Sep Purif Technol 103:279–288

    Article  CAS  Google Scholar 

  32. Carneiro AP, Rodriguez O, Macedo EA (2014) Separation of carbohydrates and sugar alcohols from ionic liquids using antisolvents. Sep Purif Technol 132:496–504

    Article  CAS  Google Scholar 

  33. Jiao J, Gai QY, Fu YJ et al (2013) Microwave-assisted ionic liquids treatment followed by hydro-distillation for the efficient isolation of essential oil from Fructusforsythiae seed. Sep Purif Technol 107:228–237

    Article  CAS  Google Scholar 

  34. Bogdanov MG, Svinyarov I, Keremedchieva R et al (2012) Ionic liquid-supported solid–liquid extraction of bioactive alkaloids. I. New HPLC method for quantitative determination of glaucine in Glauciumflavum Cr. (Papaveraceae). Sep Purif Technol 97:221–227

    Article  CAS  Google Scholar 

  35. Cláudio AFM, Ferreira AM, Freire MG et al (2013) Enhanced extraction of caffeine from Guaraná seeds using aqueous solutions of ionic liquids. Green Chem 15:2002–2010

    Article  Google Scholar 

  36. Ressmann AK, Zirbs R, Pressler M et al (2013) Surface-active ionic liquids for micellar extraction of piperine from black pepper. Z Naturforsch B 68:1129–1137

    Article  CAS  Google Scholar 

  37. Zirbs R, Strassl K, Gaertner P et al (2013) Exploring ionic liquid–biomass interactions: towards the improved isolation of shikimic acid from star anise pods. RSC Adv 3:26010–26016

    Article  CAS  Google Scholar 

  38. Zhu S, Ma C, Fu Q et al (2013) Application of ionic liquids in an online ultrasonic assisted extraction and solid-phase trapping of rhodiosin and rhodionin from Rhodiolarosea for UPLC. Chromatographia 76:195–200

    Article  CAS  Google Scholar 

  39. Tan Z, Li F, Xu X (2012) Isolation and purification of aloe anthraquinones based on an ionic liquid/salt aqueous two-phase system. Sep Purif Technol 98:150–157

    Article  CAS  Google Scholar 

  40. Cláudio AFM, Marques CFC, Boal-Palheiros I et al (2014) Development of back-extraction and recyclability routes for ionic-liquid-based aqueous two-phase systems. Green Chem 16:259–268

    Article  Google Scholar 

  41. Tonova K, Svinyarov I, Bogdanov MG (2014) Hydrophobic 3-alkyl-1-methylimidazolium saccharinates as extractants for L-lactic acid recovery. Sep Purif Technol 125:239–246

    Article  CAS  Google Scholar 

  42. Gutowski KE, Broker GA, Willauer HD et al (2003) Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J Am Chem Soc 125:6632–6633

    Article  CAS  Google Scholar 

  43. Tan ZJ, Li FF, Xu XL et al (2012) Simultaneous extraction and purification of aloe polysaccharides and proteins using ionic liquid based aqueous two-phase system coupled with dialysis membrane. Desalination 286:389–393

    Article  CAS  Google Scholar 

  44. Tonova K (2012) Separation of poly- and disaccharides by biphasic systems based on ionic liquids. Sep Purif Technol 89:57–65

    Article  CAS  Google Scholar 

  45. Deive FJ, Rodríguez A, Pereiro AB et al (2011) Ionic liquid-based aqueous biphasic system for lipase extraction. Green Chem 13:390–396

    Article  CAS  Google Scholar 

  46. Marques CFC, Mourão T, Neves CMSS et al (2013) Aqueous biphasic systems composed of ionic liquids and sodium carbonate as enhanced routes for the extraction of tetracycline. Biotechnol Prog 29:645–654

    Article  CAS  Google Scholar 

  47. Freire MG, Neves CMSS, Marrucho IM et al (2010) High-performance extraction of alkaloids using aqueous two-phase systems with ionic liquids. Green Chem 12:1715–1718

    Article  CAS  Google Scholar 

  48. Freire MG, Teles ARR, Canongia Lopes JN et al (2012) Partition coefficients of alkaloids in biphasic ionic-liquid-aqueous systems and their dependence on the Hofmeister series. Sep Sci Technol 47:284–291

    Google Scholar 

  49. Zhang D, Deng Y, Chen J (2010) Enrichment of aromatic compounds using ionic liquid and ionic liquid-based aqueous biphasic systems. Sep Sci Technol 45:663–669

    Article  CAS  Google Scholar 

  50. Chen Y, Meng Y, Yang J et al (2012) Phenol distribution behavior in aqueous biphasic systems composed of ionic liquid-carbohydrate-water. J Chem Eng Data 57:1910–1914

    Article  CAS  Google Scholar 

  51. Wang L, Zhu H, Sun YT et al (2011) Determination of trace chlorophenols endocrine disrupting chemicals in water sample using [Bmim]BF4- NaH2PO4 aqueous two-phase extraction system coupled with high performance liquid chromatography. Chin J Anal Chem 39:709–712

    Article  CAS  Google Scholar 

  52. Passos H, Sousa ACA, Pastorinho M et al (2012) Ionic-liquid-based aqueous biphasic systems for improved detection of bisphenol A in human fluids. Anal Methods 4:2664–2667

    Article  CAS  Google Scholar 

  53. Cláudio AFM, Freire MG, Freire CSR et al (2010) Extraction of vanillin using ionic-liquid-based aqueous two-phase systems. Sep Purif Technol 75:39–47

    Article  Google Scholar 

  54. e Silva FA, Sintra T, Ventura SPM et al (2014) Recovery of paracetamol from pharmaceutical wastes. Sep Purif Technol 122:315–322

    Article  CAS  Google Scholar 

  55. Noorashikin MS, Mohamad S, Abas MR (2014) Extraction and determination of parabens in water samples using an aqueous two-phase system of ionic liquid and salts with beta-cyclodextrin as the modifier coupled with high performance liquid chromatography. Anal Methods 6:419–425

    Article  CAS  Google Scholar 

  56. Santos JH, e Silva FA, Ventura SPM et al (2014) Ionic liquid-based aqueous biphasic systems as a versatile tool for the recovery of antioxidant compounds. Biotechnol Prog 31:70–77

    Google Scholar 

  57. Cláudio AFM, Ferreira AM, Freire CSR et al (2012) Optimization of the gallic acid extraction using ionic-liquid-based aqueous two-phase systems. Sep Purif Technol 97:142–149

    Article  Google Scholar 

  58. Sánchez-Rangel JC, Jacobo-Velázquez DA, Cisneros-Zevallos L et al (2014) Primary recovery of bioactive compounds from stressed carrot tissue using aqueous two-phase systems strategies. J Chem Technol Biotechnol 91:144–154

    Google Scholar 

  59. Fan JP, Cao J, Zhang XH et al (2012) Extraction of puerarin using ionic liquid based aqueous two-phase systems. Sep Sci Technol 47:1740–1747

    Article  CAS  Google Scholar 

  60. Sheikhian L, Akhond M, Absalan G (2014) Partitioning of reactive red-120, 4-(2-pyridylazo)-resorcinol, and methyl orange in ionic liquid-based aqueous biphasic systems. J Environ Chem Eng 2:137–142

    Article  CAS  Google Scholar 

  61. Ribeiro BD, Coelho MAZ, Rebelo LPN et al (2013) Ionic liquids as additives for extraction of saponins and polyphenols from mate (Ilex paraguariensis) and tea (Camellia sinensis). Ind Eng Chem Res 52:12146–12153

    Google Scholar 

  62. Yu YY, Zhang W, Cao SW (2007) Extraction of ferulic acid and caffeic acid with ionic liquids. Chin J Anal Chem 35:1726–1730

    Article  CAS  Google Scholar 

  63. Fan J, Fan Y, Pei Y et al (2008) Solvent extraction of selected endocrine-disrupting phenols using ionic liquids. Sep Purif Technol 61:324–331

    Article  CAS  Google Scholar 

  64. Shahriari S, Neves CMSS, Freire MG et al (2012) Role of the Hofmeister series in the formation of ionic-liquid-based aqueous biphasic systems. J Phys Chem B 116:7252–7258

    Article  CAS  Google Scholar 

  65. Cammarata L, Kazarian SG, Salter PA et al (2001) Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys 3:5192–5200

    Article  CAS  Google Scholar 

  66. Gaillon L, Sirieix-Plénet J, Letellier P (2004) Volumetric study of binary solvent mixtures constituted by amphiphilic ionic liquids at room temperature (1-alkyl-3-methylimidazolium bromide) and water. J Solut Chem 33:1333–1347

    Article  CAS  Google Scholar 

  67. Sirieix-Plénet J, Gaillon L, Letellier P (2004) Behaviour of a binary solvent mixture constituted by an amphiphilic ionic liquid, 1-decyl-3-methylimidazolium bromide and water: potentiometric and conductimetric studies. Talanta 63:979–986

    Article  Google Scholar 

  68. Inoue T, Dong B, Zheng L-Q (2007) Phase behavior of binary mixture of 1-dodecyl-3-methylimidazolium bromide and water revealed by differential scanning calorimetry and polarized optical microscopy. J Colloid Interface Sci 307:578–581

    Article  CAS  Google Scholar 

  69. Bhargava BL, Klein ML (2009) Formation of micelles in aqueous solutions of a room temperature ionic liquid: a study using coarse grained molecular dynamics. Mol Phys 107:393–401

    Article  CAS  Google Scholar 

  70. Bhargava BL, Yasaka Y, Klein ML (2011) Computational studies of room temperature ionic liquid–water mixtures. Chem Commun 47:6228–6241

    Article  CAS  Google Scholar 

  71. Neves CMSS, Ventura SPM, Freire MG et al (2009) Evaluation of cation influence on the formation and extraction capability of ionic-liquid-based aqueous biphasic systems. J Phys Chem B 113:5194–5199

    Article  CAS  Google Scholar 

  72. Cláudio AFM, Swift L, Hallett JP et al (2014) Extended scale for the hydrogen-bond basicity of ionic liquids. Phys Chem Chem Phys 16:6593–6601

    Article  Google Scholar 

  73. Angelov T, Vlasenko A, Tashkov W (2007) HPLC determination of pKa of parabens and investigation on their lipophilicity parameters. J Liq Chromatogr Relat Technol 31:188–197

    Article  Google Scholar 

  74. He C, Li S, Liu H et al (2005) Extraction of testosterone and epitestosterone in human urine using aqueous two-phase systems of ionic liquid and salt. J Chromatogr A 1082:143–149

    Article  CAS  Google Scholar 

  75. Pei Y, Wang J, Wu K et al (2009) Ionic liquid-based aqueous two-phase extraction of selected proteins. Sep Purif Technol 64:288–295

    Article  CAS  Google Scholar 

  76. Zafarani-Moattar MT, Hamzehzadeh S (2009) Phase diagrams for the aqueous two phase ternary system containing the ionic liquid 1-butyl-3-methylimidazolium bromide and tri-potassium citrate at T = (278.15, 298.15, and 318.15) K. J Chem Eng Data 54:833–841

    Article  CAS  Google Scholar 

  77. Liazid A, Palma M, Brigui J et al (2007) Investigation on phenolic compounds stability during microwave-assisted extraction. J Chromatogr A 1140:29–34

    Article  CAS  Google Scholar 

  78. Freire MG, Neves CMSS, Marrucho IM et al (2010) Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liquids. J Phys Chem A 114:3744–3749

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the National Science Fund of Bulgaria at the Ministry of Education and Science (Project DFNI T02/23) and the contribution of COST Action CM1206-Exchange on Ionic Liquids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milen G. Bogdanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bogdanov, M.G., Svinyarov, I. (2016). Extraction of Natural Phenolic Compounds with ABS. In: Freire, M. (eds) Ionic-Liquid-Based Aqueous Biphasic Systems. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52875-4_8

Download citation

Publish with us

Policies and ethics