Skip to main content

Extraction of Alcohols, Phenols, and Aromatic Compounds with ABS

  • Chapter
  • First Online:

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Ionic-liquid-based aqueous biphasic systems (IL-based ABS) combine the advantages of both ionic liquids (ILs) and aqueous biphasic systems (ABS) in extraction approaches. Most ILs are liquid solvents exclusively composed of ions, characterized for low to negligible vapor pressures at ambient conditions, extraordinary chemical and thermal stabilities, and impressive solvation abilities for polar to nonpolar compounds, among many other properties. ABS permit the development of extraction methods without the need of using toxic and volatile organic solvents, while both immiscible phases involved in the extraction procedure are aqueous rich. Thus, the combination of hydrophilic ILs with ABS has implied numerous effective applications for different target compounds. In this chapter, attention is focused on applications of IL-based ABS for the extraction of alcohols, phenols, aromatic dyes, and other aromatic compounds. The discussion is centered on the nature of the IL-based ABS, their characterization, and the performance of the extraction procedure, among other features.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABS:

Aqueous biphasic systems

CCC:

Countercurrent chromatography

EECA :

Extraction efficiency of chloranilic acid

EU:

European Union

HPLC:

High-performance liquid chromatography

IL:

Ionic liquid

KCA :

Partition coefficient of chloranilic acid

KOW :

Octanol–water partition coefficient

PEG:

Polyethylene glycol

RID:

Refractive index detection

RTIL:

Room temperature ionic liquid

TLL:

Tie-line length

US EPA:

Environmental Protection Agency of United States

UVD:

Ultraviolet detection

VOC:

Volatile organic compound

β-CD:

β-Cyclodextrin

References

  1. Welton T (1999) Room–temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    Article  CAS  Google Scholar 

  2. Rogers RD, Seddon KR (2003) Ionic liquids–solvents of the future? Science 302:792–793

    Article  Google Scholar 

  3. Hallett JP, Welton T (2011) Room–temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev 111:3508–3576

    Article  CAS  Google Scholar 

  4. Ho TD, Zhang C, Hantao LW, Anderson JL (2014) Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives. Anal Chem 86:262–285

    Article  CAS  Google Scholar 

  5. Müller K, Albert J (2014) Contribution of the individual ions to the heat capacity of ionic liquids. Ind Eng Chem Res 53:10343–10346

    Article  Google Scholar 

  6. Karunanithi AT, Mehrkesh A (2013) Computer−aided design of tailor−made ionic liquids. AICHE J 59:4627–4640

    Article  CAS  Google Scholar 

  7. Davis JH (2004) Task–specific ionic liquids. Chem Lett 33:1072–1077

    Article  CAS  Google Scholar 

  8. Swatloski RP, Holbrey JD, Rogers RD (2003) Ionic liquids are not always green: hydrolysis of 1–butyl–3–methylimidazolium hexafluorophosphate. Green Chem 5:361–363

    Article  CAS  Google Scholar 

  9. Pham TPT, Cho CW, Yun YS (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44:352–372

    Article  CAS  Google Scholar 

  10. Cevasco G, Chiappe C (2014) Are ionic liquids a proper solution to current environmental challenges? Green Chem 16:2375–2385

    Article  CAS  Google Scholar 

  11. Welton T (2011) Ionic liquids in green chemistry. Green Chem 13:225

    Article  CAS  Google Scholar 

  12. Bubalo MC, Radošević K, Redovniković IR, Halambek J, Srček VG (2014) A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicol Environ Saf 99:1–12

    Article  Google Scholar 

  13. MacFarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliott GD, Davis JH, Watanabe M, Simon P, Angell CA (2014) Energy applications of ionic liquids. Energy Environ Sci 7:232–250

    Article  CAS  Google Scholar 

  14. Smiglak M, Pringle JM, Lu X, Han L, Zhang S, Gao H, MacFarlane DR, Rogers RD (2014) Ionic liquids for energy, materials, and medicine. Chem Commun 50:9228–9250

    Article  CAS  Google Scholar 

  15. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic–liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629

    Article  CAS  Google Scholar 

  16. Nevagi RJ, Dighe SN, Dighe SN, Chaskar PK, Srinivasan KV, Jain KS (2014) Use of ionic liquids as neoteric solvents in the synthesis of fused heterocycles. Arch Pharm Chem Life Sci 347:540–551

    Article  CAS  Google Scholar 

  17. Díaz M, Ortiz A, Ortiz I (2014) Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J Membr Sci 469:379–396

    Article  Google Scholar 

  18. Kar M, Simons TJ, Forsyth M, MacFarlane DR (2014) Ionic liquid electrolytes as a platform for rechargeable metal–air batteries: a perspective. Phys Chem Chem Phys 16:18658–18674

    Article  CAS  Google Scholar 

  19. Werner S, Haumann M, Wasserscheid P (2010) Ionic liquids in chemical engineering. Annu Rev Chem Biomol Eng 1:203–230

    Article  CAS  Google Scholar 

  20. Tan Z-Q, Liu J-F, Pang L (2012) Advances in analytical chemistry using the unique properties of ionic liquids. Trends Anal Chem 39:218–227

    Article  CAS  Google Scholar 

  21. Joshi MD, Anderson JL (2012) Recent advances of ionic liquids in separation science and mass spectrometry. RSC Adv 2:5470–5484

    Article  CAS  Google Scholar 

  22. Marrucho IM, Branco LC, Rebelo LPN (2014) Ionic liquids in pharmaceutical applications. Annu Rev Chem Biomol Eng 5:527–546

    Article  CAS  Google Scholar 

  23. Fontanals N, Borrull F, Marcé RM (2012) Ionic liquids in solid–phase extraction. Trends Anal Chem 41:15–26

    Article  CAS  Google Scholar 

  24. Trujillo–Rodríguez MJ, Rocío–Bautista P, Pino V, Afonso AM (2013) Ionic liquids in dispersive liquid–liquid microextraction. Trends Anal Chem 51:87–106

    Article  Google Scholar 

  25. Liu R, Liu J-F, Yin Y-G, Hu X-L, Jiang G-B (2009) Ionic liquids in sample preparation. Anal Bioanal Chem 393:871–883

    Article  CAS  Google Scholar 

  26. Poole CF, Poole SK (2010) Extraction of organic compounds with room temperature ionic liquids. J Chromatogr A 1217:2268–2286

    Article  CAS  Google Scholar 

  27. Freire MG, Cláudio AFM, Araújo JMM, Coutinho JAP, Marrucho IM, Canongia Lopes JN, Rebelo LPN (2012) Aqueous biphasic systems: a boost brought about by using ionic liquids. Chem Soc Rev 41:4966–4995

    Article  CAS  Google Scholar 

  28. Pereira JBF, Ventura SPM, e Silva FA, Shahriari S, Freire MG, Coutinho JAP (2013) Aqueous biphasic systems composed of ionic liquids and polymers: a platform for the purification of biomolecules. Sep Purif Technol 113:83–89

    Article  CAS  Google Scholar 

  29. Gutowski KE, Broker GA, Willauer HD, Huddleston JG, Swatloski RP, Holbrey JD, Rogers RD (2003) Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water–miscible ionic liquids and water–structuring salts for recycle, metathesis, and separations. J Am Chem Soc 125:6632–6633

    Article  CAS  Google Scholar 

  30. Li Z, Pei Y, Wang H, Fan J, Wang J (2010) Ionic liquid–based aqueous two-phase systems and their applications in green separation processes. Trends Anal Chem 29:1336–1346

    Article  CAS  Google Scholar 

  31. Pereira JBF, Rebelo LPN, Rogers RD, Coutinho JAP, Freire MG (2013) Combining ionic liquids and polyethylene glycols to boost the hydrophobic–hydrophilic range of aqueous biphasic systems. Phys Chem Chem Phys 15:19580–19583

    Article  CAS  Google Scholar 

  32. de Souza RL, Campos VC, Ventura SPM, Soares CMF, Coutinho JAP, Lima AS (2014) Effect of ionic liquids as adjuvants on PEG–based ABS formation and the extraction of two probe dyes. Fluid Phase Equilib 375:30–36

    Article  Google Scholar 

  33. Passos H, Sousa ACA, Pastorinho MR, Nogueira AJA, Rebelo LPN, Coutinho JAP, Freire MG (2012) Ionic–liquid–based aqueous biphasic systems for improved detection of bisphenol A in human fluids. Anal Methods 4:2664–2667

    Article  CAS  Google Scholar 

  34. Ferreira AM, Coutinho JAP, Fernandes AM, Freire MG (2014) Complete removal of textile dyes from aqueous media using ionic–liquid–based aqueous two–phase systems. Sep Purif Technol 128:58–66

    Article  CAS  Google Scholar 

  35. Müller A, Górak A (2012) Extraction of 1,3–propanediol from aqueous solutions using different ionic liquid–based aqueous two-phase systems. Sep Purif Technol 97:130–136

    Article  Google Scholar 

  36. Moscoso F, Deive FJ, Esperança JMSS, Rodríguez A (2013) Pesticide removal from aqueous solutions by adding salting out agents. Int J Mol Sci 14:20954–20965

    Article  Google Scholar 

  37. Chen Y, Meng Y, Yang J, Li H, Liu X (2012) Phenol distribution behavior in aqueous biphasic systems composed of ionic liquids–carbohydrate–water. J Chem Eng Data 57:1910–1914

    Article  CAS  Google Scholar 

  38. Hirayama N, Higo T, Imura H (2012) Evaluation of a hydrophilic ionic liquid as a salting–out phase separation agent to a water–tetrahydrofuran homogeneous system for aqueous biphasic extraction separation. Anal Sci 28:541–543

    Article  CAS  Google Scholar 

  39. Zhang D, Deng Y, Chen J (2010) Enrichment of aromatic compounds using ionic liquid and ionic liquid–based aqueous biphasic systems. Sep Sci Technol 45:663–669

    Article  CAS  Google Scholar 

  40. Noorashikin MS, Mohamad S, Abas MR (2014) Extraction and determination of parabens in water samples using an aqueous two–phase system of ionic liquid and salts with beta–cyclodextrin as the modifier coupled with high performance liquid chromatography. Anal Methods 6:419–425

    Article  CAS  Google Scholar 

  41. Ruiz–Angel MJ, Pino V, Carda–Broch S, Berthod A (2007) Solvent systems for countercurrent chromatography: an aqueous two phase liquid system based on a room temperature ionic liquid. J Chromatogr A 1151:65–73

    Article  Google Scholar 

  42. Sheikhian L, Akhond M, Absalan G (2014) Partitioning of reactive red–120, 4– (2–pyridylazo) –resorcinol, and methyl orange in ionic liquid–based aqueous biphasic systems. J Environ Chem Eng 2:137–142

    Article  CAS  Google Scholar 

  43. Amini M, Arami M, Mahmoodi NM, Akbari A (2011) Dye removal from colored textile wastewater using acrylic grafted nanomembrane. Desalination 267:107–113

    Article  CAS  Google Scholar 

  44. Harrelkas F, Azizi A, Yaacoubi A, Benhammou A, Pons MN (2009) Treatment of textile dye effluents using coagulation–flocculation coupled with membrane processes or adsorption on powdered activated carbon. Desalination 235:330–339

    Article  CAS  Google Scholar 

  45. Charumathi D, Das N (2012) Packed bed column studies for the removal of synthetic dyes from textile wastewater using immobilised dead C. tropicalis. Desalination 285:22–30

    Article  CAS  Google Scholar 

  46. Aksu Z, Tezer S (2005) Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochem 40:1347–1361

    Article  CAS  Google Scholar 

  47. Kiran I, Akar T, Ozcan AS, Ozcan A, Tunali S (2006) Biosorption kinetics and isotherm studies of Acid Red 57 by dried Cephalosporium aphidicola cells from aqueous solutions. Biochem Eng J 31:197–203

    Article  CAS  Google Scholar 

  48. Taylor P, Gagan M (eds) (2002) Alkenes and aromatics. In: The molecular word. The Open University, Cambridge

    Google Scholar 

  49. Ortiz de García S, Pinto Pinto G, García Encina P, Irusta Mata R (2013) Consumption and occurrence of pharmaceutical and personal care products in the aquatic environment in Spain. Sci Total Environ 444:451–465

    Article  Google Scholar 

  50. Etschmann MMW, Bluemke W, Sell D, Schrader J (2002) Biotechnological production of 2–phenylethanol. Appl Microbiol Biotechnol 59:1–8

    Article  CAS  Google Scholar 

  51. Flint S, Markle T, Thompson S, Wallace E (2012) Bisphenol a exposure, effects, and policy: a wildlife perspective. J Environ Manag 104:19–34

    Article  CAS  Google Scholar 

  52. Feng Y, Su G, Zhao H, Cai Y, Cui C, Sun-Waterhouse D, Zhao M (2015) Characterisation of aroma profiles of commercial soy sauce by odour activity value and omission test. Food Chem 167:220–228

    Google Scholar 

  53. Pal A, He Y, Jekel M, Reinhard M, Gin KY-H (2014) Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle. Environ Int 71:46–62

    Article  CAS  Google Scholar 

  54. Kovacic P, Somanathan R (2014) Nitroaromatic compounds: environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism. J Appl Toxicol 34:810–824

    Article  CAS  Google Scholar 

  55. Banat FA, Al–Bailey B, Al–Asheh S, Hayajneh O (2000) Adsorption of phenol by bentonite. Environ Pollut 107:391–398

    Article  CAS  Google Scholar 

  56. Dutta NN, Brothakur S, Baruaha R (1998) A novel process for recovery of phenol from alkaline wastewater: laboratory study and predesign cost estimate. Water Environ Res 70:4–9

    Article  CAS  Google Scholar 

  57. United States Environmental Protection Agency EPA (2013) Alphabetical list of national primary and secondary drinking water standards. http://water.epa.gov/lawsregs/rulesregs/regulatingcontaminants/basicinformation.cfm. Accessed 6 Jul 2016

  58. Roger MS (eds) (2001) Handbook of analytical separations, Vol 3. Environmental analysis. Elsevier. Amsterdam

    Google Scholar 

  59. Kraus G (2008) Synthetic methods for the preparation of 1,3–propanediol. Clean–Soil Air Water 36:648–651

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica Pino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trujillo-Rodríguez, M.J., Pino, V., Ayala, J.H. (2016). Extraction of Alcohols, Phenols, and Aromatic Compounds with ABS. In: Freire, M. (eds) Ionic-Liquid-Based Aqueous Biphasic Systems. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52875-4_7

Download citation

Publish with us

Policies and ethics