Skip to main content

ABS Composed of Ionic Liquids and Polymers

  • Chapter
  • First Online:
Book cover Ionic-Liquid-Based Aqueous Biphasic Systems

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Polymer–ionic liquid aqueous biphasic systems (polymer–IL ABS) can be formed by the combination of distinct pairs of polymers and ionic liquids (ILs) in aqueous media. These ABS have a series of advantages relative to the conventional polymer–polymer or polymer–salt ABS. Depending on the structural features of polymers and ILs, both species seem to display the ability to act as salting-out agents. Based on a compilation and analysis of the data hitherto reported, the main issues which govern the phase behaviour of these systems are here discussed. In this respect, the effects of the chemical structure and molecular weight of polymer and IL and temperature on the liquid–liquid equilibria are addressed. The molecular-level mechanisms behind the formation of these ABS are further highlighted and discussed based on liquid–liquid and vapour–liquid equilibria behaviour of ternary polymer–IL–water systems. It is shown that the salting-in/salting-out effects in these systems are controlled by a complex interplay of polymer–IL, polymer–water and IL–water interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the case of polymer-salt ABS, two types of temperature dependency behaviour of binodal curves have been observed. For some polymer-salt ABS such as PPG-salts [2], PEGDME2000-(NH4)2HPO4, PEG6000-Na3Cit, PVP-Na3Cit, etc., an increase in temperature enhances the immiscibility region in the whole polymer and salt concentration range. However, for some else polymer-salt ABS, such as PEG400-Na2CO3 [2], PEG1000-Na2HPO4, PEGDME250-Na2CO3, PVP-Na2HPO4, etc., the crossing of binodal curves at different temperatures has been observed. In the polymer-rich region an increase in temperature caused the expansion of the one-phase area, while for the salt-rich region the expansion of the two-phase area occurs with an increase in temperature

References

  1. Moradian T, Sadeghi R (2013) Isopiestic investigations of the interactions of water-soluble polymers with imidazolium-based ionic liquids in aqueous solutions. J Phys Chem B 117:7710–7717

    Article  CAS  Google Scholar 

  2. Sadeghi R, Jahani F (2012) Salting-in and salting-out of water-soluble polymers in aqueous salt solutions. J Phys Chem B 116:5234–5241

    Article  CAS  Google Scholar 

  3. Rodriguez H, Francisco M, Rahman M, Sun N, Rogers RD (2009) Biphasic liquid mixtures of ionic liquids and polyethylene glycols. Phys Chem Chem Phys 11:10916–10922

    Article  CAS  Google Scholar 

  4. Sadeghi R, Shekaari H, Hosseini R (2009) Effect of alkyl chain length and temperature on the thermodynamic properties of ionic liquids 1-alkyl-3-methylimidazolium bromide in aqueous and non-aqueous solutions at different temperatures. J Chem Thermodyn 41:273–289

    Article  CAS  Google Scholar 

  5. Clarke ECW, Glew DN (1985) Evaluation of the thermodynamic functions for aqueous sodium chloride from equilibrium and calorimetric measurement below 154 °C. J Phys Chem Ref Data 14:489–610

    Article  CAS  Google Scholar 

  6. Sadeghi R, Shahebrahimi Y (2011) Vapor-liquid equilibria of aqueous polymer solutions from vapor pressure osmometry and isopiestic measurements. J Chem Eng Data 56:789–799

    Article  CAS  Google Scholar 

  7. Pitzer KS, Mayorga G (1973) Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J Phys Chem 77:2300–2308

    Article  CAS  Google Scholar 

  8. Sadeghi R, Golabiazar R, Shekaari H (2010) The salting-out effect and phase separation in aqueous solutions of tri-sodium citrate and 1-butyl-3-methylimidazolium bromide. J Chem Thermodyn 42:441–453

    Article  CAS  Google Scholar 

  9. Sadeghi R, Ziamajidi F (2007) Apparent molar volume and isentropic compressibility of trisodium citrate in water and in aqueous solutions of polyvinylpyrrolidone at T = (283.15 to 308.15) K. J Chem Eng Data 52:1037–1044

    Article  CAS  Google Scholar 

  10. Sadeghi R, Ziamajidi F (2007) Thermodynamic properties of tripotassium citrate in water and in aqueous solutions of polypropylene oxide 400 over a range of temperatures. J Chem Eng Data 52:1753–1759

    Article  CAS  Google Scholar 

  11. Millero FJ (1971) Molal volumes of electrolytes. Chem Rev 71:147–176

    Article  CAS  Google Scholar 

  12. Millero FJ, Knox JH (1973) Apparent molal volumes of aqueous NaF, Na2SO4, KCl, K2SO4, MgCl2, and MgSO4 solutions at 0° and 50°C. J Phys Chem 18:407–411

    CAS  Google Scholar 

  13. Sadeghi R, Hosseini R, Jamehbozorg B (2008) Effect of sodium phosphate salts on the thermodynamic properties of aqueous solutions of poly(ethylene oxide) 6000 at different temperatures. J Chem Thermodyn 40:1364–1377

    Article  CAS  Google Scholar 

  14. Sadeghi R, Mostafa B, Parsi E, Shahebrahimi Y (2010) Toward an understanding of the salting-out effects in aqueous ionic liquid solutions: vapor-liquid equilibria, liquid-liquid equilibria, volumetric, compressibility, and conductivity behavior. J Phys Chem B 114:16528–16541

    Article  CAS  Google Scholar 

  15. Freire MG, Pereira JFB, Francisco M, Rodriguez H, Rebelo LPN, Rogers RD, Coutinho JAP (2012) Insight into the interactions that control the phase behaviour of new aqueous biphasic systems composed of polyethylene glycol polymers and ionic liquids. Chem Eur J 18:1831–1839

    Article  CAS  Google Scholar 

  16. Pereira JFB, Rebelo LPN, Rogers RD, Coutinho JAP, Freire MG (2013) Combining ionic liquids and polyethylene glycols to boost the hydrophobic-hydrophilic range of aqueous biphasic systems. Phys Chem Chem Phys 15:19580–19583

    Article  CAS  Google Scholar 

  17. Upfal J, MacFarlane DR, Forsyth SA (2005) Solvents for use in the treatment of lignin-containing materials. WO 2005/017252 A1

    Google Scholar 

  18. Dreyer S, Kragl U (2007) Verfahren zur extraktion von biomolekulen. DE102007001347 A1

    Google Scholar 

  19. Visak ZP, Lopes JNC, Rebelo LPN (2007) Ionic liquids in polyethylene glycol aqueous solutions: salting-in and salting-out effects. Monatsh Chem 138:1153–1157

    Article  CAS  Google Scholar 

  20. Canongia Lopes JN, Rebelo LPN (2007) From aqueous biphasic system formation to salting agent precipitation. Chim Oggi 25:37–39

    Google Scholar 

  21. Wu C, Wang J, Pei Y, Wang H, Li Z (2010) Salting-out effect of ionic liquids on poly(propylene glycol) (PPG): formation of PPG + ionic liquid aqueous two-phase systems. J Chem Eng Data 55:5004–5008

    Article  CAS  Google Scholar 

  22. Zafarani-Moattar MT, Hamzehzadeh S, Nasiri S (2012) A new aqueous biphasic system containing polypropylene glycol and a water-miscible ionic liquid. Biotechnol Prog 28:146–156

    Article  CAS  Google Scholar 

  23. Li Z, Liu X, Pei Y, Wang J, He M (2012) Design of environmentally friendly ionic liquid aqueous two-phase systems for the efficient and high activity extraction of proteins. Green Chem 14:2941–2950

    Article  CAS  Google Scholar 

  24. Liu X, Li Z, Pei Y, Wang H, Wang J (2013) Liquid-liquid equilibria for cholinium-based ionic liquids + polymers aqueous two-phase systems. J Chem Thermodyn 60:1–8

    Article  Google Scholar 

  25. Mourao T, Tome LC, Florindo C, Rebelo LPN, Marrucho IM (2014) Understanding the role of cholinium carboxylate ionic liquids in peg-based aqueous biphasic systems. ACS Sustain Chem Eng 2:2426–2434

    Article  CAS  Google Scholar 

  26. Pereira JFB, Kurnia KA, Cojocaru A, Gurau G, Rebelo LPN, Rogers RD, Freire MG, Coutinho JAP (2014) Molecular interactions in aqueous biphasic systems composed of polyethylene glycol and crystalline vs liquid cholinium-based salts. Phys Chem Chem Phys 16:5723–5731

    Article  CAS  Google Scholar 

  27. Tome LIN, Pereira JFB, Rogers RD, Freire MG, Gomes JRB, Coutinho JAP (2014) “Washing-out” ionic liquids from polyethylene glycol to form aqueous biphasic systems. Phys Chem Chem Phys 16:2271–2274

    Article  CAS  Google Scholar 

  28. Zdanovskii AB (1936) Regularities in the property variations of mixed solutions. Tr Solyanoi Lab Akad Nauk SSSR 6:5–70

    Google Scholar 

  29. Stokes RH, Robinson RA (1966) Interactions in aqueous nonelectrolyte solutions. I. Solute-solvent equilibria. J Phys Chem 70:2126–2131

    Article  CAS  Google Scholar 

  30. Sadeghi R, Hamidi B, Ebrahimi N (2014) Investigation of amino acid-polymer aqueous biphasic systems. J Phys Chem B 118:10285–10296

    Article  CAS  Google Scholar 

  31. Tome LIN, Pereira JFB, Rogers RD, Freire MG, Gomes JRB, Coutinho JAP (2014) Evidence for the interactions occurring between ionic liquids and tetraethylene glycol in binary mixtures and aqueous biphasic systems. J Phys Chem B 118:4615–4629

    Article  CAS  Google Scholar 

  32. Rodriguez H, Rogers RD (2010) Liquid mixtures of ionic liquids and polymers as solvent systems. Fluid Phase Equilib 294:7–14

    Article  CAS  Google Scholar 

  33. Freire MG, Claudio AFM, Araujo JMM, Coutinho JAP, Marrucho IM, Lopes JNC, Rebelo LPN (2012) Aqueous biphasic systems: a boost brought about by using ionic liquids. Chem Soc Rev 41:4966–4995

    Article  CAS  Google Scholar 

  34. Freire MG, Neves CMSS, Carvalho PJ, Gardas RL, Fernandes AM, Marrucho IM, Santos LMNBF, Coutinho JAP (2007) Mutual solubilities of water and hydrophobic ionic liquids. J Phys Chem B 111:13082–13089

    Article  CAS  Google Scholar 

  35. Ventura SPM, Neves CMSS, Freire MG, Marrucho IM, Oliveira J, Coutinho JAP (2009) Evaluation of anion influence on the formation and extraction capacity of ionic-liquid-based aqueous biphasic systems. J Phys Chem B 113:9304–9310

    Article  CAS  Google Scholar 

  36. Marcus Y (1997) Ion properties. Marcel Dekker, New York

    Google Scholar 

  37. Kodama K, Tsuda R, Niitsuma K, Tamura T, Ueki T, Kokubo H, Watanabe M (2011) Structural effects of polyethers and ionic liquids in their binary mixtures on lower critical solution temperature liquid-liquid phase separation. Polym J 43:242–248

    Article  CAS  Google Scholar 

  38. Glusker JP (1980) Citrate conformation and chelation: enzymatic applications. Acc Chem Res 13:345–352

    Article  CAS  Google Scholar 

  39. Blesic M, Marques MH, Plechkova NV, Seddon KR, Rebelo LPN, Lopes A (2007) Self-aggregation of ionic liquids: micelle formation in aqueous solution. Green Chem 9:481–490

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahmat Sadeghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sadeghi, R. (2016). ABS Composed of Ionic Liquids and Polymers. In: Freire, M. (eds) Ionic-Liquid-Based Aqueous Biphasic Systems. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52875-4_4

Download citation

Publish with us

Policies and ethics