Advertisement

A Brief Review of Relativistic Gravitational Collapse

  • Daniele MalafarinaEmail author
Chapter
  • 1.5k Downloads
Part of the Astrophysics and Space Science Library book series (ASSL, volume 440)

Abstract

We review here the basic setup to describe complete gravitational collapse of massive bodies within the general theory of relativity. We derive Einstein’s equations describing collapse and solve them in some simple well-known toy models. We study the final outcome of collapse and the quantities that describe the formation of trapped surfaces and of the central singularity.

Keywords

Black Hole Event Horizon Apparent Horizon Energy Momentum Tensor Trap Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Bambi, Phys. Rev. D 87, 023007 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    C. Bambi, D. Malafarina, Phys. Rev. D 88, 064022 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    C. Bambi, D. Malafarina, L. Modesto, Phys. Rev. D 88, 044009 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    M. Bojowald, R. Goswami, R. Maartens, P. Singh, Phys. Rev. Lett. 95, 091302 (2005)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    K. Bolejko, A. Krasiński, C. Hellaby, M.N. Celerier, Structures in the Universe by Exact Methods: Formation, Evolution, Interactions, sect. 18 (Cambridge University Press, Cambridge, 2010)Google Scholar
  6. 6.
    H. Bondi, Mon. Not. Astron. Soc. 107, 343 (1947)MathSciNetGoogle Scholar
  7. 7.
    I. Booth, Can. J. Phys. 83, 1073 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    S. Chandrasekhar, Asrophys. J. 74, 81 (1931)ADSCrossRefGoogle Scholar
  9. 9.
    D. Christodoulou, Commun. Math. Phys. 93, 171 (1984)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Colpi, S.L. Shapiro, I. Wasserman, Phys. Rev. Lett. 57, 2485–2488 (1986)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    S. Datt, Zs. F. Phys. 108, 314 (1938)ADSCrossRefGoogle Scholar
  12. 12.
    D.M. Eardley, L. Smarr, Phys. Rev. D 19, 2239 (1979)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    F. Fayos, X. Jaen, E. Llanta, J.M.M. Senovilla, Phys. Rev. D 45, 2732 (1992)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    F. Fayos, J.M.M. Senovilla, R. Torres, Phys. Rev. D 54, 4862 (1996)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    D. Finkelstein, Phys. Rev. 110, 965 (1958)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    B. Freedman, L.D. McLerran, Phys. Rev. D 17, 11091122 (1978)CrossRefGoogle Scholar
  17. 17.
    R. Goswami, P.S. Joshi, P. Singh, Phys. Rev. Lett. 96, 031302 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-time (Cambridge University Press, Cambridge, 1973)Google Scholar
  19. 19.
    S.W. Hawking, R. Penrose, Proc. R. Soc. Lond. A 314, 529 (1970)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    S.A. Hayward, Phys. Rev. D 49, 6467 (1994)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    C. Hellaby, K. Lake, Astrophys. J. 290, 381 (1985)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    C. Hellaby, K. Lake, Astrophys. J. 300, 461 (1986)ADSCrossRefGoogle Scholar
  23. 23.
    W. Israel, Nuovo Cimento B 44, 1 (1966); Nuovo Cimento B 48, 463 (1966)Google Scholar
  24. 24.
    H.T. Janka, Annu. Rev. Nucl. Part. Sci. 62(1), 407 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    H.T. Janka, F. Hanke, L. Hdepohl, A. Marek, B. Mller, M. Obergaulinger, Prog. Theor. Exp. Phys. 2012(1), id.01A309 (2012)Google Scholar
  26. 26.
    P.S. Joshi, I.H. Dwivedi, Phys. Rev. D 47, 5357 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    P.S. Joshi, I.H. Dwivedi, Class. Quantum Gravity 16, 41 (1999)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    P.S. Joshi, D. Malafarina, Int. J. Mod. Phys. D 20(14), 2641 (2011)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    P.S. Joshi, D. Malafarina, R. Narayan, Class. Quantum Gravity 28, 235018 (2011)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    P.S. Joshi, D. Malafarina, R. Narayan, Class. Quantum Gravity 31, 015002 (2014)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    A. Krasinski, Inhomogeneous Cosmological Models (Cambridge University Press, Cambridge, 1997)Google Scholar
  32. 32.
    A. Krasinski, J. Plebanski, Introduction to General Relativity and Cosmology, sect. 18.15 (Cambridge University Press, Cambridge, 2006), pp. 301Google Scholar
  33. 33.
    G. Lemaìtre, Ann. Soc. Sci. Bruxelles I, A 53, 51 (1933)Google Scholar
  34. 34.
    P.O. Mazur, E. Mottola (2001), arXiv:0109035 [gr-qc]
  35. 35.
    C. Misner, D. Sharp, Phys. Rev. 136, B571 (1964)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W. H Freeman, San Francisco, 1973)Google Scholar
  37. 37.
    R.P.A.C. Newman, Class. Quantum Gravity 3, 527 (1986)ADSCrossRefGoogle Scholar
  38. 38.
    J.R. Oppenheimer, H. Snyder, Phys. Rev. 56, 455 (1939)ADSCrossRefGoogle Scholar
  39. 39.
    J.R. Oppenheimer, G.M. Volkov, Phys. Rev. 56, 374 (1939)ADSCrossRefGoogle Scholar
  40. 40.
    R. Penrose, Phys. Rev. Lett. 14, 57 (1965)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    R. Penrose, Rivista del Nuovo Cimento 1, 257 (1969)ADSGoogle Scholar
  42. 42.
    L. Rezzolla, B. Giacomazzo, L. Baiotti, J. Granot, C. Kouveliotou, M.A. Aloy, Astrophys. J. Lett. 732, L6 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    R.C. Tolman, Proc. Natl. Acad. Sci. USA 20, 410 (1934)Google Scholar
  44. 44.
    R.C. Tolman, Phys. Rev. 55, 364 (1939)ADSCrossRefGoogle Scholar
  45. 45.
    D.F. Torres, S. Capozziello, G. Lambiase, Phys. Rev. D 62, 104012 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    M. Visser, C. Barcelo, S. Liberati, S. Sonego (2009), arXiv:0902.0346 [gr-qc]
  47. 47.
    R.M. Wald, General Relavitity, sect. 6.2 (University of Chicago Press, Chicago, 1984), p. 125Google Scholar
  48. 48.
    B. Waugh, K. Lake, Phys. Rev. D 38, 1315 (1988)ADSCrossRefGoogle Scholar
  49. 49.
    P. Yodzis, H.-J. Seifert, H. Muller zum Hagen, Commun. Math. Phys. 34, 135 (1973)Google Scholar
  50. 50.
    J.B. Zeldovich, L.F. Grishchuk, Mon. Not. R. Astron. Soc. 2(07), 23 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Physics and Center for Field Theory and Particle PhysicsFudan UniversityShanghaiChina
  2. 2.Physics Department, SSTNazarbayev UniversityAstanaKazakhstan

Personalised recommendations