Advertisement

Winds from Black Hole Accretion Flows: Formation and Their Interaction with ISM

  • Feng YuanEmail author
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 440)

Abstract

Black hole hot accretion flows occur in the regime of relatively low accretion rates and are operating in the nuclei of most of the galaxies in the universe. In this chapter, I will review one of the most important progresses in recent years in this field, which is about the wind or outflow. This progress is mainly attributed to the rapid development of numerical simulations of accretion flows, combined with observations on, e.g., Sgr A*, the supermassive black hole in the Galactic center. The following topics will be covered: theoretically why do we believe strong winds exist; where and how are they produced and accelerated; what are their main properties such as mass flux and terminal velocity; the comparison of the properties between wind and “disk-jet”; the main observational evidences for wind in Sgr A*; and one observational manifestation of the interaction between wind and interstellar medium, namely the formation of the Fermi bubbles in the Galactic center.

Keywords

Black Hole Mass Flux Accretion Rate Outflow Rate Black Hole Horizon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This project was supported in part by the National Basic Research Program of China (973 Program, grant 2014CB845800), the Strategic Priority Research Program The Emergence of Cosmological Structures of CAS (grant XDB09000000), the Natural Science Foundation of China (grants 11133005 and 11573051), and the CAS/SAFEA International Partnership Program for Creative Research Teams.

References

  1. 1.
    M.A. Abramowicz, P.C. Fragile, Living Reviews in Relativity 16, 1 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    M.A. Abramowicz, X. Chen, S. Kato, J.P. Lasota, O. Regev, ApJ 438, L37 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    M.A. Abramowicz, I.V. Igumenshchev, E. Quataert, R. Narayan, ApJ 565, 1101 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    M. Ackermann, A. Albert, W.B. Atwood, et al., ApJ 793, 64 (2014)Google Scholar
  5. 5.
    D.K. Aitken, J. Greaves, A. Chrysostomou et al., ApJ 534, L173 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    O. Blaes, Spac. Sci. Rev. 183, 21 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    R.D. Blandford, M.C. Begelman, MNRAS 303, L1 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    R.D. Blandford, M.C. Begelman, MNRAS 349, 66 (2004)CrossRefGoogle Scholar
  9. 9.
    R.D. Blandford, D.G. Payne, MNRAS 199, 883 (1982)ADSCrossRefGoogle Scholar
  10. 10.
    R.D. Blandford, R.L. Znajek, MNRAS 179, 433 (1977)ADSCrossRefGoogle Scholar
  11. 11.
    M.C. Begelman, MNRAS 420, 2912 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    G.C. Bower, M.C.H. Wright, H. Falcke, D.C. Backer, ApJ 588, 331 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    D.F. Bu, M.C. Wu, Y.F. Yuan, MNRAS 459, 746 (2016)Google Scholar
  14. 14.
    D.F. Bu, F. Yuan, Z. Gan, X.H. Yang, ApJ 813, 83 (2016a)Google Scholar
  15. 15.
    D.F. Bu, F. Yuan, Z. Gan, X.H. Yang, ApJ 823, 90 (2016b)Google Scholar
  16. 16.
    L. Ciotti, J.P. Ostriker, D. Proga, ApJ 717, 708 (2010)Google Scholar
  17. 17.
    R.M. Crocker, F. Aharonian, PhRvL 106, 101102 (2011)ADSGoogle Scholar
  18. 18.
    A.C. Fabian, ARA&A 50, 455 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    T. Fang, X. Jiang, ApJL 785, L24 (2014)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    J. Frank, A. King, D.J. Raine, Accretion Power in Astrophysics (Cambridge University Press, Cambridge, 2002)CrossRefGoogle Scholar
  21. 21.
    W.M. Gu, ApJ 799, 71 (2015)Google Scholar
  22. 22.
    F. Guo, W.G. Mathews, ApJ 756, 181 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    I.V. Igumenshchev, M.A. Aramowicz, ApJ 537, L27 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    I.V. Igumenshchev, M.A. Aramowicz, ApJS 130, 463 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    I.V. Igumenshchev, ApJ 577, L31 (2002)Google Scholar
  26. 26.
    I.V. Igumenshchev, R. Narayan, M.A. Abramowicz, ApJ 592, 1042 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    A. King, K. Pounds, ARA&A 53, 115 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    J. Kormendy, L.C. Ho, ARA&A 51, 511 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    J. Li, J. Ostriker, R. Sunyaev, ApJ 767, 105 (2013)Google Scholar
  30. 30.
    D. Lynden-Bell, MNRAS 341, 1360 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    D.P. Marrone, J.M. Moran, J.H. Zhao, R. Rao, ApJ 654, 57 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    A. Moller, A. Sadowski (2015) ApJ submitted (arXiv:1509.06644)
  33. 33.
    G. Mou, F. Yuan, D. Bu et al., ApJ 790, 109 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    G. Mou, F. Yuan, Z. Gan, M. Sun, ApJ 811, 37 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    R. Narayan, I.V. Igumenshchev, M.A. Abramowicz, ApJ 539, 798 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    R. Narayan, A. Sädowski, R.F. Penna, A.K. Kulkarni, MNRAS 426, 3241 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    R. Narayan, I. Yi, ApJ 428, L13 (1994)ADSCrossRefGoogle Scholar
  38. 38.
    R. Narayan, I. Yi, ApJ 452, 710 (1995)ADSCrossRefGoogle Scholar
  39. 39.
    U.L. Pen, C.D. Matzner, S. Wong, ApJ 596, L207 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    J.E. Pringle, ARA&A 19, 137 (1981)ADSCrossRefGoogle Scholar
  41. 41.
    D. Proga, ASP Conference Series, in proceedings of the conference held 16-21 October, 2006 by L.C. Ho, J,-M. Wang. vol. 373 (Xi’an Jioatong University, Xi’an, China, 2007), p. 267Google Scholar
  42. 42.
    E. Quataert, A. Gruzinov, ApJ 539, 809 (2000)Google Scholar
  43. 43.
    E. Quataert, A. Gruzinov, ApJ 545, 842 (2000)Google Scholar
  44. 44.
    A. Sadowski, R. Narayan, R. Penna, Y. Zhu, MNRAS 436, 3856 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    N.I. Shakura, R.A. Sunyaev, A&A 24, 337 (1973)ADSGoogle Scholar
  46. 46.
    J.M. Stone, J.E. Pringle, MNRAS 322, 461 (2001)ADSCrossRefGoogle Scholar
  47. 47.
    J.M. Stone, J.E. Pringle, M.C. Begelman, MNRAS 310, 1002 (1999)ADSCrossRefGoogle Scholar
  48. 48.
    M. Su, T.R. Slatyer, D.P. Finkbeiner, ApJ 724, 1044 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    M. Tahara, J. Kataoka, Y. Takeuchi et al., ApJ 802, 91 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    T. Totani, PASJ 58, 965 (2006)ADSGoogle Scholar
  51. 51.
    J.C. Vernaleo, C.S. Reynolds, ApJ 645, 83 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    Q.D. Wang et al., Science 341, 981 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    F.G. Xie, F. Yuan, MNRAS 427, 1580 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    F. Yuan, MNRAS 324, 119 (2001)ADSCrossRefGoogle Scholar
  55. 55.
    F. Yuan, J. Lin, K. Wu, L. Ho, MNRAS 395, 2183 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    F. Yuan, D. Bu, M. Wu, ApJ 761, 130 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    F. Yuan, M. Wu, D. Bu, ApJ 761, 129 (2012)ADSCrossRefGoogle Scholar
  58. 58.
    F. Yuan, R. Narayan, ARA&A 52, 529 (2014)ADSCrossRefGoogle Scholar
  59. 59.
    F. Yuan, Z. Gan, R. Narayan, A. Sädowski, D. Bu, X. Bai, ApJ 804, 101 (2015)ADSCrossRefGoogle Scholar
  60. 60.
    K. Zubovas, S. Nayakshin, MNRAS 424, 666 (2012)Google Scholar
  61. 61.
    K. Zubovas, A.R. King, S. Nayakshin, MNRAS 415, L21 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Shanghai Astronomical Observatory, Chinese Academy of SciencesShanghaiChina

Personalised recommendations