Skip to main content

Black Hole Accretion Discs

  • Chapter
  • First Online:
Astrophysics of Black Holes

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 440))

Abstract

This is an introduction to the models of accretion discs around black holes. After a presentation of the nonrelativistic equations describing the structure and evolution of geometrically thin accretion discs, we discuss their steady-state solutions and compare them to observation. Next, we describe in detail the thermal–viscous disc instability model and its application to dwarf novae for which it was designed and its X-ray irradiated disc version which explains the soft X-ray transients, i.e. outbursting black hole low-mass X-ray binaries. We then turn to the role of advection in accretion flows onto black holes illustrating its action and importance with a toy model describing both ADAFs and slim discs. We conclude with a presentation of the general-relativistic formalism describing accretion discs in the Kerr spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    X-ray transient outbursts are always of inside-out type. In dwarf novae, both inside-out and outside-in outbursts are observed and result from calculations [31].

  2. 2.

    The peak luminosity is \({\sim }3\dot{M}_\mathrm{irr}^{+}(R_d)\), and for the disc to be unstable, the mass-transfer rate must be lower than the critical rate: \(\dot{M}_\mathrm{tr}< \dot{M}_\mathrm{irr}^{+}(R_d)\).

References

  1. M.A. Abramowicz, Growing Black Holes: Accretion in a Cosmological Context, ESO Astrophysics Symposia (Berlin, Springer, 2005)

    Google Scholar 

  2. M.A. Abramowicz, W. Kluźniak, Ap&SS 300, 127 (2005)

    Article  ADS  Google Scholar 

  3. M.A. Abramowicz, B. Czerny, J.P. Lasota, E. Szuszkiewicz, ApJ 332, 646 (1988)

    Article  ADS  Google Scholar 

  4. M.A. Abramowicz, X. Chen, S. Kato, J.-P. Lasota, O. Regev, ApJ 438, L37 (1995)

    Article  ADS  Google Scholar 

  5. M.A. Abramowicz, X.-M. Chen, M. Granath, J.-P. Lasota, ApJ 471, 762 (1996)

    Article  ADS  Google Scholar 

  6. N. Afshordi, B. Paczyński, ApJ 592, 354 (2003)

    Article  ADS  Google Scholar 

  7. S.A. Balbus, in Physical Processes in Circumstellar Disks around Young Stars, ed. by P.J.V. Garcia (University of Chicago Press, Chicago, 2011), p. 237. arXiv:0906.0854

  8. S.A. Balbus, J.F. Hawley, ApJ 376, 214 (1991)

    Article  ADS  Google Scholar 

  9. O. Blaes, Space Sci. Rev. 183, 21 (2014)

    Article  ADS  Google Scholar 

  10. A.E. Broderick, T. Johannsen, A. Loeb, D. Psaltis, ApJ 784, 7 (2014)

    Article  ADS  Google Scholar 

  11. M.S.B. Coleman, I. Kotko, O. Blaes, J.-P. Lasota, MNRAS, submitted (2015)

    Google Scholar 

  12. S. Collin, J.-P. Zahn, A&A 477, 419 (2008)

    Article  ADS  Google Scholar 

  13. M. Coriat, R.P. Fender, G. Dubus, MNRAS 424, 1991 (2012)

    Article  ADS  Google Scholar 

  14. J.P. Cox, R.T. Giuli, Principles of Stellar Structure (Gordon & Breach, New York, 1968)

    Google Scholar 

  15. G. Dubus, J.-P. Lasota, J.-M. Hameury, P. Charles, MNRAS 303, 139 (1999)

    Article  ADS  Google Scholar 

  16. G. Dubus, J.-M. Hameury, J.-P. Lasota, A&A 373, 251 (2001)

    Article  ADS  Google Scholar 

  17. A.A. Esin, J.-P. Lasota, R.I. Hynes, A&A 354, 987 (2000)

    ADS  Google Scholar 

  18. J. Frank, A. King, D.J. Raine, Accretion Power in Astrophysics (Cambridge University Press, Cambridge, 2002)

    Book  Google Scholar 

  19. C.F. Gammie, ApJ 553, 174 (2001)

    Article  ADS  Google Scholar 

  20. J. Goodman, MNRAS 339, 937 (2003)

    Article  ADS  Google Scholar 

  21. J.-M. Hameury, K. Menou, G. Dubus, J.-P. Lasota, J.-M. Hure, MNRAS 298, 1048 (1998)

    Google Scholar 

  22. S. Hirose, O. Blaes, J.H. Krolik, M.S.B. Coleman, T. Sano, ApJ 787, 1 (2014)

    Article  ADS  Google Scholar 

  23. K. Horne, M.C. Cook, MNRAS 214, 307 (1985)

    Article  ADS  Google Scholar 

  24. Y.-F. Jiang, J.M. Stone, S.W. Davis, ApJ 778, 65 (2014)

    Article  ADS  Google Scholar 

  25. Y.-F. Jiang, J.M. Stone, S.W. Davis, ApJ 796, 106 (2014)

    Article  ADS  Google Scholar 

  26. S. Kato, J. Fukue, S. Mineshige, Black-Hole Accretion Disks – Towards a New Paradigm (Kyoto University Press, Kyoto, 2008)

    Google Scholar 

  27. A.R. King, MNRAS 393, L41 (2009)

    Article  ADS  Google Scholar 

  28. A. King, C. Nixon, Class. Quantum Gravity 30, 244006 (2013)

    Article  ADS  Google Scholar 

  29. I. Kotko, J.-P. Lasota, A&A 545, 115 (2012)

    Article  ADS  Google Scholar 

  30. J.-P. Lasota, in Theory of Accretion Disks - 2, vol. 417, NATO Advanced Science Institutes (ASI) Series C, ed. by W.J. Duschl (Kluwer, Dordrecht, 1994), p. 341

    Google Scholar 

  31. J.-P. Lasota, New Astron. Rev. 45, 449 (2001)

    Article  ADS  Google Scholar 

  32. J.-P. Lasota, G. Dubus, K. Kruk, A&A 486, 523 (2008)

    Article  ADS  Google Scholar 

  33. J.-P. Lasota, A.R. King, G. Dubus, ApJL 801, L4 (2015)

    Article  ADS  Google Scholar 

  34. L.D. Landau, E.M. Lifshitz, Fluid Mechanics; Course of Theoretical Physics (Pergamon Press, Oxford, 1987)

    Google Scholar 

  35. D.N.C. Lin, J.E. Pringle, MNRAS 225, 607 (1987)

    Article  ADS  Google Scholar 

  36. K. Menou, J.-M. Hameury, R. Stehle, MNRAS 305, 79 (1999)

    Article  ADS  Google Scholar 

  37. F. Meyer, E. Meyer-Hofmeister, A&A 104, L10 (1981)

    ADS  Google Scholar 

  38. R. Narayan, I. Yi, ApJ 428, L13 (1994)

    Article  ADS  Google Scholar 

  39. I.D. Novikov, K.S. Thorne, in Black holes (Les astres occlus), École de Houches, ed. by C. DeWitt, B.S. DeWitt (Gordon & Breach, 1972), p. 343

    Google Scholar 

  40. G.I. Ogilvie, MNRAS 304, 557 (1999)

    Article  ADS  Google Scholar 

  41. B. Paczyński, AcA 19, 1 (1969)

    ADS  Google Scholar 

  42. B. Paczyński, ApJ 216, 822 (1977)

    Article  ADS  Google Scholar 

  43. B. Paczyński, AcA 28, 91 (1978)

    ADS  Google Scholar 

  44. B. Paczyński (2000). arXiv:astro-ph/0004129

  45. J.C.B. Papaloizou, J.E. Pringle, MNRAS 202, 118 (1983)

    Article  ADS  Google Scholar 

  46. Partnership ALMA, C.L. Brogan, L.M. Perez et al. ApJL, 808, L3 (2015). arXiv:1503.02649

  47. J. Poutanen, G. Lipunova, S. Fabrika, A.G. Butkevich, P. Abolmasov, MNRAS 377, 1187 (2007)

    Article  ADS  Google Scholar 

  48. D. Prialnik, An Introduction to the Theory of Stellar Structure and Evolution (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  49. A. Sa̧dowski, ApJS 183, 171 (2009)

    Google Scholar 

  50. A. Sa̧dowski, PhD Thesis (CAMK) (2011) arXiv:1108.0396

  51. A. Sa̧dowski, R. Narayan, MNRS 453, 3213 (2015). arXiv:1503.00654

  52. A. Sa̧dowski, R. Narayan, J.C. McKinney, A. Tchekhovskoy, MNRAS 439, 503 (2014)

    Google Scholar 

  53. N.I. Shakura, R.A. Sunyaev, A&A 24, 337 (1973)

    ADS  Google Scholar 

  54. J. Smak, AcA 49, 391 (1999)

    ADS  Google Scholar 

  55. H.C. Spruit (2010). arXiv:1005.5279

  56. A. Toomre, ApJ 139, 1217 (1964)

    Article  ADS  Google Scholar 

  57. F.H. Vincent, T. Paumard, G. Perrin et al., The Galactic Center: a Window to the Nuclear Environment of Disk Galaxies 439, 275 (2011)

    Google Scholar 

  58. J. Wood, K. Horne, G. Berriman et al., MNRAS 219, 629 (1986)

    Article  ADS  Google Scholar 

  59. Z. Yan, W. Yu (2014), ApJ, 805, 87 (2015) arXiv:1408.5146

  60. F. Yuan, R. Narayan, ARA & A 52, 529 (2014)

    Google Scholar 

Download references

Acknowledgments

I am grateful to Cosimo Bambi for having invited me to teach at the 2014 Fudan Winter School in Shanghai. Discussions with and advice of Marek Abramowicz, Tal Alexander, Omer Blaes and Olek Sa̧dowski were of great help. I thank the Nella and Leon Benoziyo Center for Astrophysics at the Weizmann Institute for its hospitality in December 2014/January 2015 when parts of these lectures were written. This work has been supported in part by the French Space Agency CNES and by the Polish NCN grants DEC-2012/04/A/ST9/00083, UMO-2013/08/A/ST9/00795 and UMO-2015/19/B/ST9/01099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Lasota .

Editor information

Editors and Affiliations

Appendix

Appendix

Thermodynamical Relations

The equation of state can be expressed in the form:

$$\begin{aligned} P = P_r + {\mathcal{R} \over \mu _i } \rho T_i + {\mathcal{R} \over \mu _e } \rho T_e + {B^2 \over 24 \pi }, \end{aligned}$$
(1.228)

where \(P_r\) is the radiation pressure, \(\mathcal R\) is the gas constant, \(\mu _i\) and \(\mu _e\) are the mean molecular weights of ions and electrons respectively, \(T_i\), and \(T_e\) are ion and electron temperatures, a is the radiation constant (not to be confused with the dimensionless angular momentum a in the Kerr metric), and B is the intensity of a isotropically tangled magnetic field, includes the radiation, gas and magnetic pressures. The radiation pressure \(P_r\), the gas pressure \(P_g\) and the magnetic pressure \(P_m\) correspond respectively to the first term, the second and third terms, and the last term in Eq. (1.228).

The mean molecular weights of ions and electrons can be well approximated by:

$$\begin{aligned} \mu _i \approx {4 \over 4X + Y}, \qquad \mu _e \approx {2 \over 1+X}, \end{aligned}$$
(1.229)

where X is the relative mass abundance of hydrogen and Y that of helium. We may define a temperature as

$$\begin{aligned} T=\mu \left( {T_i \over \mu _i} +{T_e \over \mu _e}\right) , \end{aligned}$$
(1.230)

where

$$\begin{aligned} \mu = \left( {1\over \mu _i} + {1\over \mu _e}\right) ^{-1} \approx {2 \over 1 + 3X + 1/2Y} \end{aligned}$$
(1.231)

is the mean molecular weight. In the case of a one-temperature gas (\(T_i=T_e\)), one has \(T=T_i=T_e\). For an optically thick gas, \(P_r=({4\sigma }/{3c}) T_r^4\).

For the frozen-in magnetic field pressure \(P_m \sim B^2 \sim \rho ^{4/3}\), therefore, we may write the internal energy as

$$\begin{aligned} U = \frac{4\sigma }{\rho c} T_r^4 + {\mathcal{R} T \over \mu m_u (\gamma _g - 1) } + e_o \rho ^{1/3}, \end{aligned}$$
(1.232)

where \(e_o\) is a constant (\(P_m = 1/3 e_o \rho ^{4/3}\)) and \(\gamma _g\) is the ratio of the specific heats of the gas. We define

$$\begin{aligned} \beta = {P_g \over p}, \quad \beta _m = {P_g \over P_g + P_m}, \quad \beta ^*={4-\beta _m \over 3\beta _m} \beta . \end{aligned}$$
(1.233)

From Eqs. (1.228) and (1.232), one obtains the following formulae (see, e.g. “Cox and Giuli” 2004) for the specific heat at constant volume:

$$\begin{aligned} c_V = {\mathcal{R} \over \mu (\gamma _g - 1)} \left[ {12 (1 - \beta /\beta _m)(\gamma _g - 1)+\beta \over \beta }\right] = {4 - 3\beta ^* \over \varGamma _3 - 1} {P \over \rho T} \end{aligned}$$
(1.234)

and the adiabatic indices:

$$\begin{aligned} \varGamma _3 - 1 = {(4 - 3\beta ^*)(\gamma _g - 1) \over 12(1 - \beta /\beta _m)(\gamma _g -1) + \beta } \end{aligned}$$
(1.235)
$$\begin{aligned} \varGamma _1 = \beta ^* +(4 - 3\beta ^*)(\varGamma _3 - 1). \end{aligned}$$
(1.236)

The ratio of specific heats is \(\gamma =c_p/c_V= \varGamma _1/\beta \). For \(\beta =\beta _m\), we have \(\varGamma _3=\gamma _g\) and \(\varGamma _1=(4 - \beta )/3 + \beta (\gamma _g -1)\). For an equipartition magnetic field (\(\beta =0.5\)), one gets \(\varGamma _1 = 1.5\) and for \(\beta =0.95\), \(\varGamma _1= 1.65\) (here, we have used \(\gamma _g=5/3\)). One expects \(\beta _m \sim 0.5 - 1\). Since

$$\begin{aligned} T{dS \over dR}=c_V \left[ {d \ln T\over dR} - (\varGamma _3 -1) \left( {d \ln \varSigma \over dR} - {d \ln H\over dR }\right) \right] , \end{aligned}$$
(1.237)

the advective flux is written in the form:

$$\begin{aligned} Q^\mathrm{adv} = {\dot{M}\over 2\pi R^2} {P\over \rho } \xi _a \end{aligned}$$
(1.238)

where

$$\begin{aligned} \xi _a = -\left[ {4 - 3\beta ^* \over \varGamma _3 - 1} {d \ln T\over d\ln R} + (4 - 3\beta ^*) {d \ln \varSigma \over d \ln R}\right] . \end{aligned}$$
(1.239)

The term \(\propto d \ln H/d \ln R\) has been neglected. Since no rigorous vertical averaging procedure exists, the presence or not of the \(d \ln H/d \ln R\)—type terms in this (and other) equation may be decided only by comparison with 2D calculations.

The formulae derived in this section are valid for the optically thin case \(\tau =0\) if one assumes \(\beta =\beta _m\).

Reference: Weiss, A., Hillebrandt, W., Thomas, H.-C., and Ritter, H. 2004, Cox and Giuli’s Principles of Stellar Structure, Cambridge, UK: Princeton Publishing Associates Ltd, 2004.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lasota, JP. (2016). Black Hole Accretion Discs. In: Bambi, C. (eds) Astrophysics of Black Holes. Astrophysics and Space Science Library, vol 440. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52859-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52859-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52857-0

  • Online ISBN: 978-3-662-52859-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics