Skip to main content

Distances on Real and Digital Planes

  • Chapter
  • First Online:
Encyclopedia of Distances

Abstract

Any L p -metric (as well as any norm metric for a given norm | | . | | on \(\mathbb{R}^{2}\)) can be used on the plane \(\mathbb{R}^{2}\), and the most natural is the L 2-metric, i.e., the Euclidean metric \(d_{E}(x,y) = \sqrt{(x_{1 } - y_{1 } )^{2 } + (x_{2 } - y_{2 } )^{2}}\) which gives the length of the straight line segment [x, y], and is the intrinsic metric of the plane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borgefors G. Distance Transformations in Digital Images, Comp. Vision, Graphic and Image Processing, Vol. 34, pp. 344–371, 1986.

    Article  Google Scholar 

  2. O’Brien C. Minimization via the Subway metric, Honor Thesis, Dept. of Math., Itaca College, New York, 2003.

    Google Scholar 

  3. Bryant V. Metric Spaces: Iteration and Application, Cambridge Univ. Press, 1985.

    MATH  Google Scholar 

  4. Burago D., Burago Y. and Ivanov S. A Course in Metric Geometry, Amer. Math. Soc., Graduate Studies in Math., Vol. 33, 2001.

    Google Scholar 

  5. Das P.P. and Chatterji B.N. Knight’s Distance in Digital Geometry, Pattern Recognition Letters, Vol. 7, pp. 215–226, 1988.

    Article  MATH  Google Scholar 

  6. Das P.P. Lattice of Octagonal Distances in Digital Geometry, Pattern Recognition Letters, Vol. 11, pp. 663–667, 1990.

    Article  MATH  Google Scholar 

  7. Das P.P. and Mukherjee J. Metricity of Super-knight’s Distance in Digital Geometry, Pattern Recognition Letters, Vol. 11, pp. 601–604, 1990.

    Article  MATH  Google Scholar 

  8. Ehrenfeucht A. and Haussler D. A New Distance Metric on Strings Computable in Linear Time, Discrete Appl. Math., Vol. 20, pp. 191–203, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  9. Fazekas A. Lattice of Distances Based on 3D-neighborhood Sequences, Acta Math. Academiae Paedagogicae Nyiregyháziensis, Vol. 15, pp. 55–60, 1999.

    MathSciNet  MATH  Google Scholar 

  10. Klein R. Voronoi Diagrams in the Moscow Metric, Graphtheoretic Concepts in Comp. Sci., Vol. 6, pp. 434–441, 1988.

    Google Scholar 

  11. Larson R.C. and Li V.O.K. Finding Minimum Rectilinear Distance Paths in the Presence of Bariers, Networks, Vol. 11, pp. 285–304, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  12. Luczak E. and Rosenfeld A. Distance on a Hexagonal Grid, IEEE Trans. on Comp., Vol. 25-5, pp. 532–533, 1976.

    Article  MATH  Google Scholar 

  13. Melter R.A. A Survey of Digital Metrics, Contemporary Math., Vol. 119, 1991.

    Google Scholar 

  14. Rosenfeld A. and Pfaltz J. Distance Functions on Digital Pictures, Pattern Recognation, Vol. 1, pp. 33–61, 1968.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deza, M.M., Deza, E. (2016). Distances on Real and Digital Planes. In: Encyclopedia of Distances. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52844-0_19

Download citation

Publish with us

Policies and ethics