Advertisement

In Situ Lorentz Microscopy and Electron Holography Magnetization Studies of Ferromagnetic Focused Electron Beam Induced Nanodeposits

  • César MagénEmail author
  • Luis A. Rodríguez
  • Luis E. Serrano-Ramón
  • Christophe Gatel
  • Etienne Snoeck
  • José M. De TeresaEmail author
Chapter

Abstract

Quantitative Lorentz microscopy and electron holography are applied to probe the local magnetic properties of ferromagnetic nanostructures. We show here the possibilities of these techniques for the mapping of the magnetization states of nanoscale ferromagnets grown by focused electron beam induced deposition (FEBID) and for the analysis of the magnetization processes by the in situ application of magnetic fields.

Keywords

Objective Lens Spherical Aberration Magnetic Force Microscopy Object Wave High Order Aberration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aharonov Y, Bohm D (1959) Significance of electromagnetic potentials in the quantum theory. Phys Rev 115(3):485–491CrossRefGoogle Scholar
  2. 2.
    Allwood DA, Xiong G, Faulkner CC, Atkinson D, Petit D, Cowburn RP (2005) Magnetic domain-wall logic. Science 309(5741):1688–1692CrossRefGoogle Scholar
  3. 3.
    Bartolf H, Inderbitzin K, Gómez LB, Engel A, Schilling A (2010) Nanoscale fabrication by intrinsic suppression of proximity-electron exposures and general considerations for easy and effective top–down fabrication. J Micromech Microeng 20(12):125015CrossRefGoogle Scholar
  4. 4.
    Biziere N, Gatel C, Lassalle-Balier R, Clochard MC, Wegrowe JE, Snoeck E (2013) Imaging the fine structure of a magnetic domain wall in a Ni nanocylinder. Nano Lett 13(5):2053–2057CrossRefGoogle Scholar
  5. 5.
    Boero G, Utke I, Bret T, Quack N, Todorova M, Mouaziz S, Kejik P, Brugger J, Popovic RS, Hoffmann P (2005) Submicrometer Hall devices fabricated by focused electron-beam-induced deposition. Appl Phys Lett 86(4):042503CrossRefGoogle Scholar
  6. 6.
    Botman A, Mulders JJL, Hagen CW (2009) Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective. Nanotechnology 20(37):372001CrossRefGoogle Scholar
  7. 7.
    Brands M, Dumpich G (2005) Multiple switching fields and domain wall pinning in single Co nanowires. J Phys D Appl Phys 38(6):822–826CrossRefGoogle Scholar
  8. 8.
    Brands M, Leven B, Dumpich G (2005) Influence of thickness and cap layer on the switching behavior of single Co nanowires. J Appl Phys 97(11):114311CrossRefGoogle Scholar
  9. 9.
    Brands M, Wieser R, Hassel C, Hinzke D, Dumpich G (2006) Reversal processes and domain wall pinning in polycrystalline Co-nanowires. Phys Rev B 74:174411CrossRefGoogle Scholar
  10. 10.
    Cabrini S, Kawata S (eds) (2012) Nanofabrication handbook, 1st edn. CRC Press, Boca Raton, pp 1–546Google Scholar
  11. 11.
    Córdoba R, Fernández-Pacheco R, Fernández-Pacheco A, Gloter A, Magén C, Stéphan O, Ibarra MR, De Teresa JM (2011) Nanoscale chemical and structural study of Co-based FEBID structures by STEM-EELS and HRTEM. Nanoscale Res Lett 6(1):592CrossRefGoogle Scholar
  12. 12.
    De Graef M, Nuhfer N, McCartney M (1999) Phase contrast of spherical magnetic particles. J Microsc 194(1):84–94CrossRefGoogle Scholar
  13. 13.
    De Teresa JM, Fernández-Pacheco A (2014) Present and future applications of magnetic nanostructures grown by FEBID. Appl Phys A 117(4):1645–1658CrossRefGoogle Scholar
  14. 14.
    Donahue MJ, Porter DG (n.d.) http://math.nist.gov/oommf/
  15. 15.
    Dumpich G, Krome TP, Hausmanns B (2002) Magnetoresistance of single Co nanowires. J Magn Magn Mater 248(2):241–247CrossRefGoogle Scholar
  16. 16.
    Dunin-Borkowski RE, Feuerbacher M, Heggen M, Houben L, Kovács A, Luysberg M, Thust A, Tillmann K (2012) Advanced transmission electron microscopy techniques and applications. In: Lecture notes of the 43rd IFF spring school “Scattering methods for condensed matter research: towards novel applications at future sources”. Forschungszentrum, Jülich, pp 1–28Google Scholar
  17. 17.
    Dyck DV (1983) High-speed computation techniques for the simulation of high resolution electron micrographs. J Microsc 132(1):31–42CrossRefGoogle Scholar
  18. 18.
    Dyck DV, Coene W (1987) A new procedure for wave function restoration in high resolution electron microscopy. Optik 3:125–128Google Scholar
  19. 19.
    Elsner H, Meyer H-G (2001) Nanometer and high aspect ratio patterning by electron beam lithography using a simple DUV negative tone resist. Microelectron Eng 57–58:291–296CrossRefGoogle Scholar
  20. 20.
    Fernández-Pacheco A, De Teresa JM, Córdoba R, Ibarra MR (2009) Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition. J Phys D Appl Phys 42(5):055005CrossRefGoogle Scholar
  21. 21.
    Fernández-Pacheco A, De Teresa JM, Córdoba R, Ibarra MR, Petit D, Read DE, O’Brien L, Lewis ER, Zeng HT, Cowburn RP (2009) Domain wall conduit behavior in cobalt nanowires grown by focused electron beam induced deposition. Appl Phys Lett 94(19):192509CrossRefGoogle Scholar
  22. 22.
    Fernández-Pacheco A, De Teresa JM, Szkudlarek A, Córdoba R, Ibarra MR, Petit D, O’Brien L, Zeng HT, Lewis ER, Read DE, Cowburn RP (2009) Magnetization reversal in individual cobalt micro- and nanowires grown by focused-electron-beam-induced-deposition. Nanotechnology 20(47):475704CrossRefGoogle Scholar
  23. 23.
    Fernández-Pacheco A, Serrano-Ramón L, Michalik JM, Ibarra MR, De Teresa JM, O’Brien L, Petit D, Lee J, Cowburn RP (2013) Three dimensional magnetic nanowires grown by focused electron-beam induced deposition. Sci Rep 3:1492CrossRefGoogle Scholar
  24. 24.
    Gatel C, Snoeck E (2012) Magnetic mapping using electron holography. In: Claverie A (ed) Transmission electron microscopy in micro-nanoelectronics. ISTE-Wiley, LondonGoogle Scholar
  25. 25.
    Gavagnin M, Wanzenboeck HD, Belić D, Bertagnolli E (2013) Synthesis of individually tuned nanomagnets for nanomagnet logic by direct write focused electron beam induced deposition. ACS Nano 7(1):777–784CrossRefGoogle Scholar
  26. 26.
    Gavagnin M, Wanzenboeck HD, Belic D, Shawrav MM, Persson A, Gunnarsson K, Svedlindh P, Bertagnolli E (2014) Magnetic force microscopy study of shape engineered FEBID iron nanostructures. Phys Status Solidi (a) 211(2):368–374CrossRefGoogle Scholar
  27. 27.
    Gavagnin M, Wanzenboeck HD, Wachter S, Shawrav MM, Persson A, Gunnarsson K, Svedlindh P, Stöger-Pollach M, Bertagnolli E (2014) Free-standing magnetic nanopillars for 3D nanomagnet logic. ACS Appl Mater Interfaces 6:20254–20260CrossRefGoogle Scholar
  28. 28.
    Graef MD (2001) 2. Lorentz microscopy: theoretical basis and image simulations. Exp Methods Phys Sci 36:27–67CrossRefGoogle Scholar
  29. 29.
    Hausmanns B, Krome TP, Dumpich G (2003) Magnetoresistance and magnetization reversal process of Co nanowires covered with Pt. J Appl Phys 93(10):8095CrossRefGoogle Scholar
  30. 30.
    Hawkes PW, Spence JCH (2007) In: Hawkes PW, Spence JCH (eds) Science of microscopy. Springer, New YorkCrossRefGoogle Scholar
  31. 31.
    Hempe E-M, Kläui M, Kasama T, Backes D, Junginger F, Krzyk S, Heyderman LJ, Dunin-Borkowski RE, Rüdiger U (2007) Domain walls, domain wall transformations and structural changes in permalloy nanowires when subjected to current pulses. Phys Status Solidi (a) 204(12):3922–3928CrossRefGoogle Scholar
  32. 32.
    Hopster H, Oepen HP (eds) (2005) Magnetic microscopy of nanostructures. Springer, Berlin/HeidelbergGoogle Scholar
  33. 33.
    Huth M, Porrati F, Schwalb C, Winhold M, Sachser R, Dukic M, Adams J, Fantner G (2012) Focused electron beam induced deposition: a perspective. Beilstein J Nanotechnol 3:597–619CrossRefGoogle Scholar
  34. 34.
    Jaafar M, Serrano-Ramón L, Iglesias-Freire O, Fernández-Pacheco A, Ibarra MR, De Teresa JM, Asenjo A (2011) Hysteresis loops of individual Co nanostripes measured by magnetic force microscopy. Nanoscale Res Lett 6(1):407CrossRefGoogle Scholar
  35. 35.
    Kläui M (2008) Head-to-head domain walls in magnetic nanostructures. J Phys Condens Matter 20(31):313001CrossRefGoogle Scholar
  36. 36.
    Kuch W (2006) Magnetic imaging. In: Beaurepaire E, Bulou H, Scheurer F, Kappler J-P (eds) Magnetism: a synchrotron radiation approach, vol 697. Springer, Berlin/Heidelberg, pp 275–320CrossRefGoogle Scholar
  37. 37.
    Lau YM, Chee PC, Thong JTL, Ng V (2002) Properties and applications of cobalt-based material produced by electron-beam-induced deposition. J Vac Sci Technol A 20(4):1295–1302CrossRefGoogle Scholar
  38. 38.
    Lavrijsen R, Córdoba R, Schoenaker FJ, Ellis TH, Barcones B, Kohlhepp JT, Swagten HJM, Koopmans B, De Teresa JM, Magén C, Ibarra MR, Trompenaars P, Mulders JJL (2011) Fe:O:C grown by focused-electron-beam-induced deposition: magnetic and electric properties. Nanotechnology 22(2):025302CrossRefGoogle Scholar
  39. 39.
    Leven B, Dumpich G (2005) Resistance behavior and magnetization reversal analysis of individual Co nanowires. Phys Rev B 71(6):064411CrossRefGoogle Scholar
  40. 40.
    Lichte H (1993) Parameters for high-resolution electron holography. Ultramicroscopy 51(1–4):15–20CrossRefGoogle Scholar
  41. 41.
    Lichte H, Lehmann M (2008) Electron holography – basics and applications. Rep Prog Phys 71(1):016102CrossRefGoogle Scholar
  42. 42.
    Lopez-Diaz L, Aurelio D, Torres L, Martinez E, Hernandez-Lopez MA, Gomez J, Alejos O, Carpentieri M, Finocchio G, Consolo G (2012) Micromagnetic simulations using graphics processing units. J Phys D Appl Phys 45(32):323001CrossRefGoogle Scholar
  43. 43.
    Lukasczyk T, Schirmer M, Steinrück H-P, Marbach H (2008) Electron-beam-induced deposition in ultrahigh vacuum: lithographic fabrication of clean iron nanostructures. Small 4(6):841–846CrossRefGoogle Scholar
  44. 44.
    Marín L, Rodríguez LA, Magén C, Snoeck E, Arras R, Lucas I, Morellón L, Algarabel PA, De Teresa JM, Ibarra MR (2015) Observation of the strain induced magnetic phase segregation in manganite thin films. Nano Lett 15(1):492–497CrossRefGoogle Scholar
  45. 45.
    McMichael RD, Donahue MJ (1997) Head to head domain wall structures in thin magnetic strips. IEEE Trans Magn 33(5):4167–4169CrossRefGoogle Scholar
  46. 46.
    Möllenstedt G, Düker H (1956) Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen. Z Phys 145(3):377–397CrossRefGoogle Scholar
  47. 47.
    Nakatani Y, Thiaville A, Miltat J (2005) Head-to-head domain walls in soft nano-strips: a refined phase diagram. J Magn Magn Mater 290–291:750–753CrossRefGoogle Scholar
  48. 48.
    Nuhfer N, Budruk A, De Graef M (2010) Aberration-corrected Lorentz microscopy. Microsc Microanal 16(S2):142–143CrossRefGoogle Scholar
  49. 49.
    Paganin D, Nugent KA (1998) Noninterferometric phase imaging with partially coherent light. Phys Rev Lett 80:2586CrossRefGoogle Scholar
  50. 50.
    Parkin SSP, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science (New York, NY) 320(5873):190–194CrossRefGoogle Scholar
  51. 51.
    Petit D, Jausovec A-V, Read D, Cowburn RP (2008) Domain wall pinning and potential landscapes created by constrictions and protrusions in ferromagnetic nanowires. J Appl Phys 103(11):114307CrossRefGoogle Scholar
  52. 52.
    Phatak C, Petford-Long AK, De Graef M (2010) Three-dimensional study of the vector potential of magnetic structures. Phys Rev Lett 104:253901CrossRefGoogle Scholar
  53. 53.
    Porrati F, Sachser R, Walz M-M, Vollnhals F, Steinrück H-P, Marbach H, Huth M (2011) Magnetotransport properties of iron microwires fabricated by focused electron beam induced autocatalytic growth. J Phys D Appl Phys 44(42):425001CrossRefGoogle Scholar
  54. 54.
    Raptis I, Glezos N, Valamontes E, Zervas E, Argitis P (2001) Electron beam lithography simulation for high resolution and high-density patterns. Vacuum 62(2–3):263–271CrossRefGoogle Scholar
  55. 55.
    Rodríguez LA, Magén C, Snoeck E, Gatel C, Marín L, Serrano-Ramón L, Prieto JL, Muñoz M, Algarabel PA, Morellon L, De Teresa JM, Ibarra MR (2013) Quantitative in situ magnetization reversal studies in Lorentz microscopy and electron holography. Ultramicroscopy 134:144–154CrossRefGoogle Scholar
  56. 56.
    Rodríguez LA, Magén C, Snoeck E, Serrano-Ramón L, Gatel C, Córdoba R, Martínez-Vecino E, Torres L, De Teresa JM, Ibarra MR (2013) Optimized cobalt nanowires for domain wall manipulation imaged by in situ Lorentz microscopy. Appl Phys Lett 102(2):022418CrossRefGoogle Scholar
  57. 57.
    Serrano-Ramón L, Córdoba R, Rodríguez LA, Magén C, Snoeck E, Gatel C, Serrano I, Ibarra MR, De Teresa JM (2011) Ultrasmall functional ferromagnetic nanostructures grown by focused electron-beam-induced deposition. ACS Nano 5(10):7781–7787CrossRefGoogle Scholar
  58. 58.
    Serrano-Ramón L, Fernández-Pacheco A, Córdoba R, Magén C, Rodríguez LA, Petit D, Cowburn RP, Ibarra MR, De Teresa JM (2013) Improvement of domain wall conduit properties in cobalt nanowires by global gallium irradiation. Nanotechnology 24(34):345703CrossRefGoogle Scholar
  59. 59.
    Spence JCH (2003) High-resolution electron microscopy. Oxford University Press, OxfordGoogle Scholar
  60. 60.
    Tanigaki T, Takahashi Y, Shimakura T, Akashi T, Tsuneta R, Sugawara A, Shindo D (2015) Three-dimensional observation of magnetic vortex cores in stacked ferromagnetic discs. Nano Lett 15:1309–1314CrossRefGoogle Scholar
  61. 61.
    Tonomura A (1992) Electron-holographic interference microscopy. Adv Phys 41(1):59–103CrossRefGoogle Scholar
  62. 62.
    Utke I, Hoffmann P, Melngailis J (2008) Gas-assisted focused electron beam and ion beam processing and fabrication. J Vac Sci Technol: Microelectron Nanometer Struct 26(4):1197CrossRefGoogle Scholar
  63. 63.
    Utke I, Cicoira F, Jaenchen G, Hoffmann P, Scandella L, Dwir B, Kapon E, Laub D, Buffat P, Xanthopoulos N, Mathieu HJ (2011) Focused electron beam induced deposition of high resolution magnetic scanning probe tips. MRS Proc 706:Z9.24.1Google Scholar
  64. 64.
    Van Dorp WF, Hagen CW (2008) A critical literature review of focused electron beam induced deposition. J Appl Phys 104(8):081301CrossRefGoogle Scholar
  65. 65.
    Van Dyck D, Op de Beeck M, Coene W (1993) A new approach to object wavefunction reconstruction in electron microscopy. Optik 3:103–107Google Scholar
  66. 66.
    Van Tendeloo G, Van Dyck D, Pennycook SJ (eds) (2012) Handbook of nanoscopy. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  67. 67.
    Volkov VV, Zhu Y, De Graef M (2002) A new symmetrized solution for phase retrieval using the transport of intensity equation. Micron 33(5):411–416CrossRefGoogle Scholar
  68. 68.
    Williams DB, Carter CB (2009) Transmission electron microscopy. A textbook for materials science, 2nd edn. Springer, New York, pp 1–779Google Scholar
  69. 69.
    Wu H, Stern LA, Xia D, Ferranti D, Thompson B, Klein KL, Gonzalez CM, Rack PD (2013) Focused helium ion beam deposited low resistivity cobalt metal lines with 10 nm resolution: implications for advanced circuit editing. J Mater Sci Mater Electron 25(2):587–595CrossRefGoogle Scholar
  70. 70.
    Xu P, Xia K, Gu C, Tang L, Yang H, Li J (2008) An all-metallic logic gate based on current-driven domain wall motion. Nat Nanotechnol 3(2):97–100CrossRefGoogle Scholar
  71. 71.
    Yao N (ed) (2007) Focused ion beam systems: basics and applications. Cambridge University Press, CambridgeGoogle Scholar
  72. 72.
    Zhu Y (2005) Magnetic phase imaging with transmission electron microscopy. In: Zhu Y (ed) Modern techniques for characterizing magnetic materials. Springer, New York, pp 267–326CrossRefGoogle Scholar
  73. 73.
    Ziese M, Semmelhack HC, Busch P (2002) Sign reversal of the magnetic anisotropy in La0.7A0.3MnO3 (A = Ca, Sr, Ba, □) films. J Magn Magn Mater 246(1–2):327–334CrossRefGoogle Scholar
  74. 74.
    Zonnevylle AC, Heerkens CTH, Hagen CW, Kruit P (2014) Multi-electron-beam deflector array. Microelectron Eng 123:140–148CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • César Magén
    • 1
    • 2
    • 3
    • 4
    • 7
    Email author
  • Luis A. Rodríguez
    • 1
    • 2
    • 5
    • 4
  • Luis E. Serrano-Ramón
    • 5
    • 4
  • Christophe Gatel
    • 5
    • 4
  • Etienne Snoeck
    • 5
    • 4
  • José M. De Teresa
    • 1
    • 6
    • 4
    Email author
  1. 1.Laboratorio de Microscopias Avanzadas (LMA)Instituto de Nanociencia de Aragón (INA)ZaragozaSpain
  2. 2.Departamento de Física de la Materia CondensadaUniversidad de ZaragozaZaragozaSpain
  3. 3.Fundación ARAIDZaragozaSpain
  4. 4.Transpyrenean Associated Laboratory for Electron Microscopy (TALEM), CEMES-INACNRS-Universidad de ZaragozaZaragozaSpain
  5. 5.Centre d’Élaboration de Matériaux et des Etudes Structurales (CEMES-CNRS)ToulouseFrance
  6. 6.Departamento de Física de la Materia CondensadaInstituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSICZaragozaSpain
  7. 7.Departamento de FísicaUniversidad del ValleCaliColombia

Personalised recommendations