Characterization of Magnetic Hyperthermia in Magnetic Nanoparticles

  • Eva NatividadEmail author
  • Irene Andreu


Certain magnetic nanoparticles are able to generate heat through magnetic moment reversal processes under the action of an adequate alternating magnetic field. This ability, together with biocompatibility and nanosize of the particles, makes them promising materials for biomedical applications. Among the potential applications is magnetic hyperthermia, an oncological therapy expected to battle malignant tumors with minimal side effects by using localized heating. The success of the therapy requires, among others, accurate quantification of the released heat leading to the prediction of the temperature increase in and around the treatment area. This chapter is devoted to the recent advances in the determination of this heating ability.


Adiabatic Condition Interparticle Distance Specific Absorption Rate Magnetic Hyperthermia Major Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Eurostat (2014) Causes of death statistics- statistics explained.
  2. 2.
    NCHS (2014) FastStats- leading causes of death.
  3. 3.
    van der Zee J (2002) Heating the patient: a promising approach? Ann Oncol 13(8):1173–1184CrossRefGoogle Scholar
  4. 4.
    Gilchrist R, Meda R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Ann Surg 164(4):596–606CrossRefGoogle Scholar
  5. 5.
    MagForce (2015) NanoTherm therapy.
  6. 6.
    Mazario E, Menéndez N, Herrasti P, Cañete M, Connord V, Carrey J (2013) Magnetic hyperthermia properties of electrosynthesized cobalt ferrite nanoparticles. J Phys Chem C 117(21):11405–11411CrossRefGoogle Scholar
  7. 7.
    Kumar CSSR, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63(9):789–808CrossRefGoogle Scholar
  8. 8.
    Mehdaoui B, Meffre A, Carrey J, Lachaize S, Lacroix L-M, Gougeon M, Chaudret B, Respaud M (2011) Optimal size of nanoparticles for magnetic hyperthermia: a combined theoretical and experimental study. Adv Funct Mater 21(23):4573–4581CrossRefGoogle Scholar
  9. 9.
    Martinez-Boubeta C, Simeonidis K, Makridis A, Angelakeris M, Iglesias O, Guardia P, Cabot A, Yedra L, Estrade S, Peiro F, Saghi Z, Midgley PA, Conde-Leboran I, Serantes D, Baldomir D (2013) Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci Rep 3:1652CrossRefGoogle Scholar
  10. 10.
    Noh S-h, Na W, Jang J-T, Lee J-H, Lee EJ, Moon SH, Lim Y, Shin J-S, Cheon J (2012) Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett 12(7):3716–3721CrossRefGoogle Scholar
  11. 11.
    Andreu I, Natividad E, Ravagli C, Castro M, Baldi G (2014) Heating ability of cobalt ferrite nanoparticles showing dynamic and interaction effects. RSC Adv 4(55):28968–28977CrossRefGoogle Scholar
  12. 12.
    Nanotherics (2015) magneThermTM.
  13. 13.
    Natividad E, Castro M, Mediano A (2008) Accurate measurement of the specific absorption rate using a suitable adiabatic magnetothermal setup. Appl Phys Lett 92(9):093116CrossRefGoogle Scholar
  14. 14.
    Luong TT, Ha TP, Tran LD, Do MH, Mai TT, Pham NH, Phan HBT, Pham GHT, Hoang NMT, Nguyen QT, Nguyen PX (2011) Design of carboxylated Fe3O4/poly(styrene-co-acrylic acid) ferrofluids with highly efficient magnetic heating effect. Colloids Surf A 384(1–3):23–30CrossRefGoogle Scholar
  15. 15.
    Connord V, Mehdaoui B, Tan RP, Carrey J, Respaud M (2014) An air-cooled Litz wire coil for measuring the high frequency hysteresis loops of magnetic samples – a useful setup for magnetic hyperthermia applications. Rev Sci Instrum 85(9):093904CrossRefGoogle Scholar
  16. 16.
    Ma M, Wu Y, Zhou J, Sun Y, Zhang Y, Gu N (2004) Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. J Magn Magn Mater 268(1–2):33–39CrossRefGoogle Scholar
  17. 17.
    Kawashita M, Tanaka M, Kokubo T, Inoue Y, Yao T, Hamada S, Shinjo T (2005) Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Biomaterials 26(15):2231–2238CrossRefGoogle Scholar
  18. 18.
    Kasuya R, Kikuchi T, Mamiya H, Ioku K, Endo S, Nakamura A, Takai T, Balachandran J (2010) Heat dissipation characteristics of magnetite nanoparticles and their application to macrophage cells. Phys Procedia 9:186–189CrossRefGoogle Scholar
  19. 19.
    Meffre A, Mehdaoui B, Kelsen V, Fazzini PF, Carrey J, Lachaize S, Respaud M, Chaudret B (2012) A simple chemical route toward monodisperse iron carbide nanoparticles displaying tunable magnetic and unprecedented hyperthermia properties. Nano Lett 12(9):4722–4728CrossRefGoogle Scholar
  20. 20.
    Jones SK, Winter JG (2001) Experimental examination of a targeted hyperthermia system using inductively heated ferromagnetic microspheres in rabbit kidney. Phys Med Biol 46(2):385CrossRefGoogle Scholar
  21. 21.
    Alphandéry E, Faure S, Seksek O, Guyot F, Chebbi I (2011) Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano 5(8):6279–6296CrossRefGoogle Scholar
  22. 22.
    Dennis CL, Ivkov R (2013) Physics of heat generation using magnetic nanoparticles for hyperthermia. Int J Hyperthermia 29(8):715–729CrossRefGoogle Scholar
  23. 23.
    Buschow KHJ, de Boer FR (2003) Physics of magnetism and magnetic materials. Kluwer Academic, Plenum, New YorkCrossRefGoogle Scholar
  24. 24.
    Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374CrossRefGoogle Scholar
  25. 25.
    Fiorillo F (2010) Measurements of magnetic materials. Metrologia 47(2):S114CrossRefGoogle Scholar
  26. 26.
    McElfresh M (1994) Fundamentals of magnetism and magnetic measurements. Quantum Design, San DiegoGoogle Scholar
  27. 27.
    Beković M, Trlep M, Jesenik M, Goričan V, Hamler A (2013) An experimental study of magnetic-field and temperature dependence on magnetic fluid’s heating power. J Magn Magn Mater 331:264–268CrossRefGoogle Scholar
  28. 28.
    Carrey J, Mehdaoui B, Respaud M (2011) Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys 109(8):083921CrossRefGoogle Scholar
  29. 29.
    Holman J (1996) Heat transfer, Mcgraw-Hill series in mechanical engineering. McGraw Hill, New York, 752Google Scholar
  30. 30.
    Lartigue L, Hugounenq P, Alloyeau D, Clarke SP, Lévy M, Bacri J-C, Bazzi R, Brougham DF, Wilhelm C, Gazeau F (2012) Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 6(12):10935–10949CrossRefGoogle Scholar
  31. 31.
    Lee J-H, Jang J-T, Choi J-S, Moon SH, Noh S-H, Kim J-W, Kim J-G, Kim I-S, Park KI, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nano 6(7):418–422CrossRefGoogle Scholar
  32. 32.
    Taylor A, Krupskaya Y, Krämer K, Füssel S, Klingeler R, Büchner B, Wirth MP (2010) Cisplatin-loaded carbon-encapsulated iron nanoparticles and their in vitro effects in magnetic fluid hyperthermia. Carbon 48(8):2327–2334CrossRefGoogle Scholar
  33. 33.
    Kim D-H, Nikles DE, Brazel CS (2010) Synthesis and characterization of multifunctional chitosan- MnFe2O4 nanoparticles for magnetic hyperthermia and drug delivery. Materials 3(7):4051–4065CrossRefGoogle Scholar
  34. 34.
    Rovers SA, van der Poel LAM, Dietz CHJT, Noijen JJ, Hoogenboom R, Kemmere MF, Kopinga K, Keurentjes JTF (2009) Characterization and magnetic heating of commercial superparamagnetic iron oxide nanoparticles. J Phys Chem C 113(33):14638–14643CrossRefGoogle Scholar
  35. 35.
    Shah SA, Hashmi MU, Alam S (2011) Effect of aligning magnetic field on the magnetic and calorimetric properties of ferrimagnetic bioactive glass ceramics for the hyperthermia treatment of cancer. Mater Sci Eng C 31(5):1010–1016CrossRefGoogle Scholar
  36. 36.
    Zhang L-Y, Gu H-C, Wang X-M (2007) Magnetite ferrofluid with high specific absorption rate for application in hyperthermia. J Magn Magn Mater 311(1):228–233CrossRefGoogle Scholar
  37. 37.
    Kobayashi H, Ueda K, Tomitaka A, Yamada T, Takemura Y (2011) Self-heating property of magnetite nanoparticles dispersed in solution. IEEE Trans Magn 47(10):4151–4154CrossRefGoogle Scholar
  38. 38.
    Glöckl G, Hergt R, Zeisberger M, Dutz S, Nagel S, Weitschies W (2006) The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. J Phys Condens Matter 18(38):S2935CrossRefGoogle Scholar
  39. 39.
    Atsarkin VA, Generalov AA, Demidov VV, Mefed AE, Markelova MN, Gorbenko OY, Kaul AR, Roy EJ, Odintsov BM (2009) Critical RF losses in fine particles of La1 − xAgyMnO3 + δ: prospects for temperature-controlled hyperthermia. J Magn Magn Mater 321(19):3198–3202CrossRefGoogle Scholar
  40. 40.
    Aono H, Ebara H, Senba R, Naohara T, Maehara T, Hirazawa H, Watanabe Y (2012) High heat generation ability in AC magnetic field for nano-sized magnetic Y3Fe5O12 powder prepared by bead milling. J Magn Magn Mater 324(12):1985–1991CrossRefGoogle Scholar
  41. 41.
    Sharma M, Mantri S, Bahadur D (2012) Study of carbon encapsulated iron oxide/iron carbide nanocomposite for hyperthermia. J Magn Magn Mater 324(23):3975–3980CrossRefGoogle Scholar
  42. 42.
    Verde EL, Landi GT, Gomes JA, Sousa MH, Bakuzis AF (2012) Magnetic hyperthermia investigation of cobalt ferrite nanoparticles: comparison between experiment, linear response theory, and dynamic hysteresis simulations. J Appl Phys 111(12):123902CrossRefGoogle Scholar
  43. 43.
    Comes Franchini M, Baldi G, Bonacchi D, Gentili D, Giudetti G, Lascialfari A, Corti M, Marmorato P, Ponti J, Micotti E, Guerrini U, Sironi L, Gelosa P, Ravagli C, Ricci A (2010) Bovine serum albumin-based magnetic nanocarrier for MRI diagnosis and hyperthermic therapy: a potential theranostic approach against cancer. Small 6(3):366–370CrossRefGoogle Scholar
  44. 44.
    Asin L, Goya GF, Tres A, Ibarra MR (2013) Induced cell toxicity originates dendritic cell death following magnetic hyperthermia treatment. Cell Death Dis 4:e596CrossRefGoogle Scholar
  45. 45.
    Bordelon DE, Cornejo C, Grüttner C, Westphal F, DeWeese TL, Ivkov R (2011) Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields. J Appl Phys 109 (12), Article 124904, p 8Google Scholar
  46. 46.
    Kline TL, Xu Y-H, Jing Y, Wang J-P (2009) Biocompatible high-moment FeCo-Au magnetic nanoparticles for magnetic hyperthermia treatment optimization. J Magn Magn Mater 321(10):1525–1528CrossRefGoogle Scholar
  47. 47.
    Kita E, Oda T, Kayano T, Sato S, Minagawa M, Yanagihara H, Kishimoto M, Mitsumata C, Hashimoto S, Yamada K, Ohkohchi N (2010) Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy. J Phys D Appl Phys 43(47):474011CrossRefGoogle Scholar
  48. 48.
    Khandhar AP, Ferguson RM, Simon JA, Krishnan KM (2012) Enhancing cancer therapeutics using size-optimized magnetic fluid hyperthermia. J Appl Phys 111(7), Article 07B306, p 4Google Scholar
  49. 49.
    Regmi R, Black C, Sudakar C, Keyes PH, Naik R, Lawes G, Vaishnava P, Rablau C, Kahn D, Lavoie M, Garg VK, Oliveira AC (2009) Effects of fatty acid surfactants on the magnetic and magnetohydrodynamic properties of ferrofluids. J Appl Phys 106(11), Article 113902, p 9Google Scholar
  50. 50.
    Li CH, Hodgins P, Peterson GP (2011) Experimental study of fundamental mechanisms in inductive heating of ferromagnetic nanoparticles suspension (Fe3O4 Iron Oxide Ferrofluid). J Appl Phys 110(5):054303CrossRefGoogle Scholar
  51. 51.
    Drake P, Cho H-J, Shih P-S, Kao C-H, Lee K-F, Kuo C-H, Lin X-Z, Lin Y-J (2007) Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia. J Mater Chem 17(46):4914–4918CrossRefGoogle Scholar
  52. 52.
    Maity D, Chandrasekharan P, Pradhan P, Chuang K-H, Xue J-M, Feng S-S, Ding J (2011) Novel synthesis of superparamagnetic magnetite nanoclusters for biomedical applications. J Mater Chem 21(38):14717–14724CrossRefGoogle Scholar
  53. 53.
    Salas G, Camarero J, Cabrera D, Takacs H, Varela M, Ludwig R, Dähring H, Hilger I, Miranda R, Morales MdP, Teran FJ (2014) Modulation of magnetic heating via dipolar magnetic interactions in monodisperse and crystalline iron oxide nanoparticles. J Phys Chem C 118(34):19985–19994Google Scholar
  54. 54.
    Salas G, Casado C, Teran FJ, Miranda R, Serna CJ, Morales MP (2012) Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications. J Mater Chem 22(39):21065–21075CrossRefGoogle Scholar
  55. 55.
    Khot VM, Salunkhe AB, Thorat ND, Ningthoujam RS, Pawar SH (2013) Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia. Dalton Trans 42(4):1249–1258CrossRefGoogle Scholar
  56. 56.
    Shlyakhtin OA, Leontiev VG, Young-Jei O, Kuznetsov AA (2007) New manganite-based mediators for self-controlled magnetic heating. Smart Mater Struct 16(5):N35CrossRefGoogle Scholar
  57. 57.
    Izydorzak M, Skumiel A, Leonowicz M, Kaczmarek-Klinowska M, Pomogailo AD, Dzhardimalieva GI (2012) Thermophysical and magnetic properties of carbon beads containing cobalt nanocrystallites. Int J Thermophys 33(4):627–639CrossRefGoogle Scholar
  58. 58.
    Zhao D-L, Zhang H-L, Zeng X-W, Xia Q-S, Tang J-T (2006) Inductive heat property of Fe3O4/polymer composite nanoparticles in an ac magnetic field for localized hyperthermia. Biomed Mater 1(4):198CrossRefGoogle Scholar
  59. 59.
    Zhixia L, Masakazu K, Norio A, Michihide M, Masahiro H, Masaaki D (2010) Magnetic SiO2 gel microspheres for arterial embolization hyperthermia. Biomed Mater 5(6):065010CrossRefGoogle Scholar
  60. 60.
    Le Renard P-E, Lortz R, Senatore C, Rapin J-P, Buchegger F, Petri-Fink A, Hofmann H, Doelker E, Jordan O (2011) Magnetic and in vitro heating properties of implants formed in situ from injectable formulations and containing superparamagnetic iron oxide nanoparticles (SPIONs) embedded in silica microparticles for magnetically induced local hyperthermia. J Magn Magn Mater 323(8):1054–1063CrossRefGoogle Scholar
  61. 61.
    Chen S-W, Lai J-J, Chiang C-L, Chen C-L (2012) Construction of orthogonal synchronized bi-directional field to enhance heating efficiency of magnetic nanoparticles. Rev Sci Instrum 83(6), Article 064701, p 7Google Scholar
  62. 62.
    Hilger I, Frühauf K, Andrä W, Hiergeist R, Hergt R, Kaiser WA (2002) Heating potential of iron oxides for therapeutic purposes in interventional radiology. Acad Radiol 9(2):198–202CrossRefGoogle Scholar
  63. 63.
    Marcos-Campos I, Asín L, Torres TE, Marquina C, Tres A, Ibarra MR, Goya GF (2011) Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells. Nanotechnology 22(20):205101CrossRefGoogle Scholar
  64. 64.
    Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1(2):93–122Google Scholar
  65. 65.
    Fan J, Wang L (2011) Analytical theory of bioheat transport. J Appl Phys 109(10):104702CrossRefGoogle Scholar
  66. 66.
    Golneshan AA, Lahonian M (2011) The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method. Int J Hyperthermia 27(3):266–274CrossRefGoogle Scholar
  67. 67.
    Moroz P, Jones SK, Gray BN (2002) Magnetically mediated hyperthermia: current status and future directions. Int J Hyperthermia 18(4):267–284CrossRefGoogle Scholar
  68. 68.
    Bordelon DE, Goldstein RC, Nemkov VS, Kumar A, Jackowski JK, DeWeese TL, Ivkov R (2012) Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications. IEEE Trans Magn 48(1):47–52CrossRefGoogle Scholar
  69. 69.
    Bekovic M, Hamler A (2010) Determination of the heating effect of magnetic fluid in alternating magnetic field. IEEE Trans Magn 46(2):552–555CrossRefGoogle Scholar
  70. 70.
    Huang S, Wang SY, Gupta A, Borca-Tasciuc DA, Salon SJ (2012) On the measurement technique for specific absorption rate of nanoparticles in an alternating electromagnetic field. Meas Sci Technol 23(3):035701CrossRefGoogle Scholar
  71. 71.
    Pollert E, Knížek K, Maryško M, Kašpar P, Vasseur S, Duguet E (2007) New Tc-tuned magnetic nanoparticles for self-controlled hyperthermia. J Magn Magn Mater 316(2):122–125CrossRefGoogle Scholar
  72. 72.
    Aono H, Watanabe Y, Naohara T, Maehara T, Hirazawa H, Watanabe Y (2011) Effect of bead milling on heat generation ability in AC magnetic field of FeFe2O4 powder. Mater Chem Phys 129(3):1081–1088CrossRefGoogle Scholar
  73. 73.
    Gudoshnikov SA, Liubimov BY, Usov NA (2012) Hysteresis losses in a dense superparamagnetic nanoparticle assembly. AIP Adv 2(1):012143CrossRefGoogle Scholar
  74. 74.
    Garaio E, Collantes JM, Garcia JA, Plazaola F, Mornet S, Couillaud F, Sandre O (2014) A wide-frequency range AC magnetometer to measure the specific absorption rate in nanoparticles for magnetic hyperthermia. J Magn Magn Mater 368:432–437CrossRefGoogle Scholar
  75. 75.
    Ahrentorp F, Astalan AP, Jonasson C, Blomgren J, Qi B, Mefford OT, Yan M, Courtois J, Berret JF, Fresnais J, Sandre O, Dutz S, Müller R, Johansson C (2010) Sensitive high frequency AC susceptometry in magnetic nanoparticle applications. AIP Conf Proc 1311(1):213–223CrossRefGoogle Scholar
  76. 76.
    Nakamura K, Ueda K, Tomitaka A, Yamada T, Takemura Y (2013) Self-heating temperature and AC hysteresis of magnetic iron oxide nanoparticles and their dependence on secondary particle size. IEEE Trans Magn 49(1):240–243CrossRefGoogle Scholar
  77. 77.
    Oireachtaigh CM, Fannin PC (2008) Investigation of the non-linear loss properties of magnetic fluids subject to large alternating fields. J Magn Magn Mater 320(6):871–880CrossRefGoogle Scholar
  78. 78.
    Cobos P, Maicas M, Sanz M, Aroca C (2011) High resolution system for nanoparticles hyperthermia efficiency evaluation. IEEE Trans Magn 47(10):2360–2363CrossRefGoogle Scholar
  79. 79.
    Gmelin E (1979) Modern low-temperature calorimetry. Thermochim Acta 29(1):1–39CrossRefGoogle Scholar
  80. 80.
    Schnelle W, Gmelin E (2002) Critical review of small sample calorimetry: improvement by auto-adaptive thermal shield control. Thermochim Acta 391(1–2):41–49CrossRefGoogle Scholar
  81. 81.
    Natividad E, Castro M, Mediano A (2009) Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids. J Magn Magn Mater 321(10):1497–1500CrossRefGoogle Scholar
  82. 82.
    Wang S-Y, Huang S, Borca-Tasciuc D (2013) Potential sources of errors in measuring and evaluating the specific loss power of magnetic nanoparticles in an alternating magnetic field. IEEE Trans Magn 49(1):255–262CrossRefGoogle Scholar
  83. 83.
    Hilger I (2013) In vivo applications of magnetic nanoparticle hyperthermia. Int J Hyperthermia 29(8):828–834CrossRefGoogle Scholar
  84. 84.
    Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46(7):2523–2558CrossRefGoogle Scholar
  85. 85.
    Koksharov YA (2009) Magnetism of nanoparticles: effects of size, shape, and interactions. In Gubin SP (ed) Magnetic nanoparticles. Wiley-VCH, Weinheim, Germany, pp 197–254Google Scholar
  86. 86.
    O’Handley RC (2000) Modern magnetic materials: principles and applications. Wiley-VCH, Weinheim, Germany, p 768Google Scholar
  87. 87.
    Raikher YL, Stepanov VI, Perzynski R (2004) Dynamic hysteresis of a superparamagnetic nanoparticle. Physica B 343(1–4):262–266CrossRefGoogle Scholar
  88. 88.
    Usov NA (2010) Low frequency hysteresis loops of superparamagnetic nanoparticles with uniaxial anisotropy. J Appl Phys 107(12):123909CrossRefGoogle Scholar
  89. 89.
    Landi GT, Bakuzis AF (2012) On the energy conversion efficiency in magnetic hyperthermia applications: a new perspective to analyze the departure from the linear regime. J Appl Phys 111(8):083915CrossRefGoogle Scholar
  90. 90.
    Hergt R, Hiergeist R, Zeisberger M, Schüler D, Heyen U, Hilger I, Kaiser WA (2005) Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J Magn Magn Mater 293(1):80–86CrossRefGoogle Scholar
  91. 91.
    Lartigue L, Innocenti C, Kalaivani T, Awwad A, Sanchez Duque MDM, Guari Y, Larionova J, Guérin C, Montero J-LG, Barragan-Montero V, Arosio P, Lascialfari A, Gatteschi D, Sangregorio C (2011) Water-dispersible sugar-coated iron oxide nanoparticles An evaluation of their relaxometric and magnetic hyperthermia properties. J Am Chem Soc 133(27):10459–10472CrossRefGoogle Scholar
  92. 92.
    Levy M, Quarta A, Espinosa A, Figuerola A, Wilhelm C, García-Hernández M, Genovese A, Falqui A, Alloyeau D, Buonsanti R, Cozzoli PD, García MA, Gazeau F, Pellegrino T (2011) Correlating magneto-structural properties to hyperthermia performance of highly monodisperse iron oxide nanoparticles prepared by a seeded-growth route. Chem Mater 23(18):4170–4180CrossRefGoogle Scholar
  93. 93.
    Bakoglidis KD, Simeonidis K, Sakellari D, Stefanou G, Angelakeris M (2012) Size-dependent mechanisms in ac magnetic hyperthermia response of iron-oxide nanoparticles. IEEE Trans Magn 48(4):1320–1323CrossRefGoogle Scholar
  94. 94.
    Hugounenq P, Levy M, Alloyeau D, Lartigue L, Dubois E, Cabuil V, Ricolleau C, Roux S, Wilhelm C, Gazeau F, Bazzi R (2012) Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia. J Phys Chem C 116(29):15702–15712CrossRefGoogle Scholar
  95. 95.
    Khandhar AP, Ferguson RM, Simon JA, Krishnan KM (2012) Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia. J Biomed Mater Res A 100A(3):728–737CrossRefGoogle Scholar
  96. 96.
    de la Presa P, Luengo Y, Multigner M, Costo R, Morales MP, Rivero G, Hernando A (2012) Study of heating efficiency as a function of concentration, size, and applied field in γ-Fe2O3 nanoparticles. J Phys Chem C 116(48):25602–25610CrossRefGoogle Scholar
  97. 97.
    Chen S-W, Chiang C-L, Chen C-L (2012) The influence of nanoparticle size and external AC magnetic field on heating ability. Mater Lett 67(1):349–351CrossRefGoogle Scholar
  98. 98.
    Lima EJ, De Biasi E, Vasquez Mansilla M, Saleta ME, Granada M, Troiani HE, Effenberger FB, Rossi LM, Rechenberg HR, Zysler RD (2013) Heat generation in agglomerated ferrite nanoparticles in an alternating magnetic field. J Phys D Appl Phys 46(4):045002CrossRefGoogle Scholar
  99. 99.
    Chen R, Christiansen MG, Anikeeva P (2013) Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization. ACS Nano 7(10):8990–9000CrossRefGoogle Scholar
  100. 100.
    Mehdaoui B, Meffre A, Lacroix L-M, Carrey J, Lachaize S, Respaud M, Gougeon M, Chaudret B (2010) Magnetic anisotropy determination and magnetic hyperthermia properties of small Fe nanoparticles in the superparamagnetic regime. J Appl Phys 107(9):09A324CrossRefGoogle Scholar
  101. 101.
    Ichiyanagi Y, Shigeoka D, Hiroki T, Mashino T, Kimura S, Tomitaka A, Ueda K, Takemura Y (2012) Study on increase in temperature of Co–Ti ferrite nanoparticles for magnetic hyperthermia treatment. Thermochim Acta 532:123–126CrossRefGoogle Scholar
  102. 102.
    Józefczak A, Hornowski T, Skumiel A, Łabowski M, Timko M, Kopčanský P, Koneracká M, Szlaferek A, Kowalski W (2009) Effect of poly (ethylene glycol) coating on the magnetic and thermal properties of biocompatible magnetic liquids. J Magn Magn Mater 321(10):1505–1508CrossRefGoogle Scholar
  103. 103.
    Gonzales-Weimuller M, Zeisberger M, Krishnan KM (2009) Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Magn Mater 321(13):1947–1950CrossRefGoogle Scholar
  104. 104.
    Skumiel A, Hornowski T, Józefczak A (2011) Heating characteristics of transformer oil-based magnetic fluids of different magnetic particle concentrations. Int J Thermophys 32(4):876–885CrossRefGoogle Scholar
  105. 105.
    Barick KC, Hassan PA (2012) Glycine passivated Fe3O4 nanoparticles for thermal therapy. J Colloid Interface Sci 369(1):96–102CrossRefGoogle Scholar
  106. 106.
    Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L, Pellegrino T (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6(4):3080–3091CrossRefGoogle Scholar
  107. 107.
    Diamantopoulos G, Basina G, Tzitzios V, Karakosta E, Fardis M, Jaglicic Z, Lazaridis N, Papavassiliou G (2013) Magnetic hyperthermia of laponite based ferrofluid. J Magn Magn Mater 336:71–74CrossRefGoogle Scholar
  108. 108.
    Gkanas EI (2013) In vitro magnetic hyperthermia response of iron oxide MNP’s incorporated in DA3, MCF-7 and HeLa cancer cell lines. Cent Eur J Chem 11(7):1042–1054Google Scholar
  109. 109.
    Sadat ME, Patel R, Sookoor J, Bud’ko SL, Ewing RC, Zhang J, Xu H, Wang Y, Pauletti GM, Mast DB, Shi D (2014) Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications. Mater Sci Eng C 42:52–63CrossRefGoogle Scholar
  110. 110.
    Dong-Hyun K, Thai YT, Nikles DE, Brazel CS (2009) Heating of aqueous dispersions containing MnFe2O3 nanoparticles by radio-frequency magnetic field induction. IEEE Trans Magn 45(1):64–70CrossRefGoogle Scholar
  111. 111.
    Ibrahim EMM, Hampel S, Wolter AUB, Kath M, El-Gendy AA, Klingeler R, Täschner C, Khavrus VO, Gemming T, Leonhardt A, Büchner B (2012) Superparamagnetic FeCo and FeNi nanocomposites dispersed in submicrometer-sized C spheres. J Phys Chem C 116(42):22509–22517CrossRefGoogle Scholar
  112. 112.
    Tannous C, Gieraltowski J (2008) The Stoner–Wohlfarth model of ferromagnetism. Eur J Phys 29(3):475CrossRefGoogle Scholar
  113. 113.
    Stoner EC, Wohlfarth EP (1948) A mechanism of magnetic hysteresis in heterogeneous alloys. Philos Trans R Soc Lond A Math Phys Sci 240(826):599–642CrossRefGoogle Scholar
  114. 114.
    Garcıa-Otero J, Garcıa-Bastida AJ, Rivas J (1998) Influence of temperature on the coercive field of non-interacting fine magnetic particles. J Magn Magn Mater 189(3):377–383CrossRefGoogle Scholar
  115. 115.
    Hergt R, Andra W, d’Ambly CG, Hilger I, Kaiser WA, Richter U, Schmidt HG (1998) Physical limits of hyperthermia using magnetite fine particles. IEEE Trans Magn 34(5):3745–3754CrossRefGoogle Scholar
  116. 116.
    Lu JJ, Huei Li H, Klik I (1994) Field orientations and sweep rate effects on magnetic switching of Stoner-Wohlfarth particles. J Appl Phys 76(3):1726–1732CrossRefGoogle Scholar
  117. 117.
    Verde EL, Landi GT, Carrião MS, Drummond AL, Gomes JA, Vieira ED, Sousa MH, Bakuzis AF (2012) Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes. AIP Adv 2(3):032120CrossRefGoogle Scholar
  118. 118.
    Usov NA, Grebenshchikov YB (2009) Hysteresis loops of an assembly of superparamagnetic nanoparticles with uniaxial anisotropy. J Appl Phys 106(2):11CrossRefGoogle Scholar
  119. 119.
    Lacroix L-M, Malaki RB, Carrey J, Lachaize S, Respaud M, Goya GF, Chaudret B (2009) Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: evidences for Stoner–Wohlfarth behavior and large losses. J Appl Phys 105(2):023911CrossRefGoogle Scholar
  120. 120.
    Bae S, Sang Won L, Hirukawa A, Takemura Y, Youn Haeng J, Sang Geun L (2009) AC magnetic-field-induced heating and physical properties of ferrite nanoparticles for a hyperthermia agent in medicine. IEEE Trans Nano 8(1):86–94CrossRefGoogle Scholar
  121. 121.
    Timko M, Dzarova A, Kovac J, Skumiel A, Józefczak A, Hornowski T, Gojżewski H, Zavisova V, Koneracka M, Sprincova A, Strbak O, Kopcansky P, Tomasovicova N (2009) Magnetic properties and heating effect in bacterial magnetic nanoparticles. J Magn Magn Mater 321(10):1521–1524CrossRefGoogle Scholar
  122. 122.
    Müller R, Dutz S, Habisreuther T, Zeisberger M (2011) Investigations on magnetic particles prepared by cyclic growth. J Magn Magn Mater 323(10):1223–1227CrossRefGoogle Scholar
  123. 123.
    Alphandéry E, Guyot F, Chebbi I (2012) Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia. Int J Pharm 434(1–2):444–452CrossRefGoogle Scholar
  124. 124.
    Chen X, Klingeler R, Kath M, El Gendy AA, Cendrowski K, Kalenczuk RJ, Borowiak-Palen E (2012) Magnetic silica nanotubes: synthesis, drug release, and feasibility for magnetic hyperthermia. ACS Appl Mater Interfaces 4(4):2303–2309CrossRefGoogle Scholar
  125. 125.
    Sotiriou GA, Visbal-Onufrak MA, Teleki A, Juan EJ, Hirt AM, Pratsinis SE, Rinaldi C (2013) Thermal energy dissipation by SiO2-coated plasmonic-superparamagnetic nanoparticles in alternating magnetic fields. Chem Mater 25(22):4603–4612CrossRefGoogle Scholar
  126. 126.
    Filippousi M, Altantzis T, Stefanou G, Betsiou M, Bikiaris DN, Angelakeris M, Pavlidou E, Zamboulis D, Van Tendeloo G (2013) Polyhedral iron oxide core-shell nanoparticles in a biodegradable polymeric matrix: preparation, characterization and application in magnetic particle hyperthermia and drug delivery. RSC Adv 3(46):24367–24377CrossRefGoogle Scholar
  127. 127.
    Mehdaoui B, Meffre A, Lacroix LM, Carrey J, Lachaize S, Gougeon M, Respaud M, Chaudret B (2010) Large specific absorption rates in the magnetic hyperthermia properties of metallic iron nanocubes. J Magn Magn Mater 322(19):L49–L52CrossRefGoogle Scholar
  128. 128.
    Serantes D, Baldomir D, Martinez-Boubeta C, Simeonidis K, Angelakeris M, Natividad E, Castro M, Mediano A, Chen D-X, Sanchez A, Balcells L, Martínez B (2010) Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles. J Appl Phys 108(7):073918CrossRefGoogle Scholar
  129. 129.
    El-Gendy AA, Ibrahim EMM, Khavrus VO, Krupskaya Y, Hampel S, Leonhardt A, Büchner B, Klingeler R (2009) The synthesis of carbon coated Fe, Co and Ni nanoparticles and an examination of their magnetic properties. Carbon 47(12):2821–2828CrossRefGoogle Scholar
  130. 130.
    Pollert E, Veverka P, Veverka M, Kaman O, Závěta K, Vasseur S, Epherre R, Goglio G, Duguet E (2009) Search of new core materials for magnetic fluid hyperthermia: preliminary chemical and physical issues. Prog Solid State Chem 37(1):1–14CrossRefGoogle Scholar
  131. 131.
    Mehdaoui B, Carrey J, Stadler M, Cornejo A, Nayral C, Delpech F, Chaudret B, Respaud M (2012) Influence of a transverse static magnetic field on the magnetic hyperthermia properties and high-frequency hysteresis loops of ferromagnetic FeCo nanoparticles. Appl Phys Lett 100(5):052403CrossRefGoogle Scholar
  132. 132.
    Mehdaoui B, Tan RP, Meffre A, Carrey J, Lachaize S, Chaudret B, Respaud M (2013) Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: theoretical and experimental results. Phys Rev B 87(17):174419CrossRefGoogle Scholar
  133. 133.
    Yang Y, Liu X, Yang Y, Xiao W, Li Z, Xue D, Li F, Ding J (2013) Synthesis of nonstoichiometric zinc ferrite nanoparticles with extraordinary room temperature magnetism and their diverse applications. J Mater Chem C 1(16):2875–2885CrossRefGoogle Scholar
  134. 134.
    Zélis PM, Pasquevich GA, Stewart SJ, van Raap MBF, Aphesteguy J, Bruvera IJ, Laborde C, Pianciola B, Jacobo S, Sánchez FH (2013) Structural and magnetic study of zinc-doped magnetite nanoparticles and ferrofluids for hyperthermia applications. J Phys D Appl Phys 46(12):125006CrossRefGoogle Scholar
  135. 135.
    Atkinson WJ, Brezovich IA, Chakraborty DP (1984) Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Eng BME-31(1):70–75CrossRefGoogle Scholar
  136. 136.
    Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho CH, Waldöfner N, Scholz R, Jordan A, Loening SA, Wust P (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52(6):1653–1662CrossRefGoogle Scholar
  137. 137.
    Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, Deimling A, Waldoefner N, Felix R, Jordan A (2007) Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol 81(1):53–60CrossRefGoogle Scholar
  138. 138.
    Bekovic M, Ban I, Hamler A (2010) Assessment of magnetic fluid losses out of magnetic properties measurement. J Phys Conf Ser 200(7):072010CrossRefGoogle Scholar
  139. 139.
    Natividad E, Castro M, Mediano A (2011) Adiabatic magnetothermia makes possible the study of the temperature dependence of the heat dissipated by magnetic nanoparticles under alternating magnetic fields. Appl Phys Lett 98(24):243119CrossRefGoogle Scholar
  140. 140.
    Natividad E, Castro M, Goglio G, Andreu I, Epherre R, Duguet E, Mediano A (2012) New insights into the heating mechanisms and self-regulating abilities of manganite perovskite nanoparticles suitable for magnetic fluid hyperthermia. Nanoscale 4(13):3954–3962CrossRefGoogle Scholar
  141. 141.
    Ondeck CL, Habib AH, Ohodnicki P, Miller K, Sawyer CA, Chaudhary P, McHenry ME (2009) Theory of magnetic fluid heating with an alternating magnetic field with temperature dependent materials properties for self-regulated heating. J Appl Phys 105(7):07B324CrossRefGoogle Scholar
  142. 142.
    Bertoni G, Torre B, Falqui A, Fragouli D, Athanassiou A, Cingolani R (2011) Nanochains formation of superparamagnetic nanoparticles. J Phys Chem C 115(15):7249–7254CrossRefGoogle Scholar
  143. 143.
    Andreu I, Natividad E, Solozábal L, Roubeau O (2015) Same magnetic nanoparticles, different heating behavior: influence of the arrangement and dispersive medium. J Magn Magn Mater 380:341–346CrossRefGoogle Scholar
  144. 144.
    Chamberlin RV, Hemberger J, Loidl A, Humfeld KD, Farrell D, Yamamuro S, Ijiri Y, Majetich SA (2002) Percolation, relaxation halt, and retarded van der Waals interaction in dilute systems of iron nanoparticles. Phys Rev B 66(17):172403CrossRefGoogle Scholar
  145. 145.
    Fortin J-P, Gazeau F, Wilhelm C (2008) Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur Biophys J 37(2):223–228CrossRefGoogle Scholar
  146. 146.
    Dormann JL, Bessais L, Fiorani D (1988) A dynamic study of small interacting particles: superparamagnetic model and spin-glass laws. J Phys C 21(10):2015CrossRefGoogle Scholar
  147. 147.
    Dormann JL, Fiorani D, Tronc E (1999) On the models for interparticle interactions in nanoparticle assemblies: comparison with experimental results. J Magn Magn Mater 202(1):251–267CrossRefGoogle Scholar
  148. 148.
    Mørup S, Tronc E (1994) Superparamagnetic relaxation of weakly interacting particles. Phys Rev Lett 72(20):3278–3281CrossRefGoogle Scholar
  149. 149.
    Hansen MF, Mørup S (1998) Models for the dynamics of interacting magnetic nanoparticles. J Magn Magn Mater 184(3):L262–L274CrossRefGoogle Scholar
  150. 150.
    Déjardin P-M (2011) Magnetic relaxation of a system of superparamagnetic particles weakly coupled by dipole-dipole interactions. J Appl Phys 110(11):113921CrossRefGoogle Scholar
  151. 151.
    Shtrikman S, Wohlfarth EP (1981) The theory of the Vogel-Fulcher law of spin glasses. Phys Lett A 85(8–9):467–470CrossRefGoogle Scholar
  152. 152.
    Landi GT (2013) The random dipolar-field approximation for systems of interacting magnetic particles. J Appl Phys 113(16):163908CrossRefGoogle Scholar
  153. 153.
    Landi GT (2014) Role of dipolar interaction in magnetic hyperthermia. Phys Rev B 89(1):014403CrossRefGoogle Scholar
  154. 154.
    Urtizberea A, Natividad E, Arizaga A, Castro M, Mediano A (2010) Specific absorption rates and magnetic properties of ferrofluids with interaction effects at low concentrations. J Phys Chem C 114(11):4916–4922CrossRefGoogle Scholar
  155. 155.
    Branquinho LC, Carrião MS, Costa AS, Zufelato N, Sousa MH, Miotto R, Ivkov R, Bakuzis AF (2013) Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia. Sci Rep 3:2887CrossRefGoogle Scholar
  156. 156.
    Serantes D, Simeonidis K, Angelakeris M, Chubykalo-Fesenko O, Marciello M, Morales MdP, Baldomir D, Martinez-Boubeta C (2014) Multiplying magnetic hyperthermia response by nanoparticle assembling. J Phys Chem C 118(11):5927–5934Google Scholar
  157. 157.
    Tan RP, Carrey J, Respaud M (2014) Magnetic hyperthermia properties of nanoparticles inside lysosomes using kinetic Monte Carlo simulations: influence of key parameters and dipolar interactions, and evidence for strong spatial variation of heating power. Phys Rev B 90(21):214421CrossRefGoogle Scholar
  158. 158.
    Haase C, Nowak U (2012) Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles. Phys Rev B 85(4):045435CrossRefGoogle Scholar
  159. 159.
    Andreu I, Natividad E, Solozábal L, Roubeau O (2015) Nano-objects for addressing the control of nanoparticle arrangement and performance in magnetic hyperthermia. ACS Nano 9(2):1408–1419CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Instituto de Ciencia de Materiales de Aragón (ICMA)CSIC - Universidad de ZaragozaZaragozaSpain

Personalised recommendations