Advertisement

Magnetic Force Microscopy

  • Daniele PasseriEmail author
  • Livia Angeloni
  • Melania Reggente
  • Marco Rossi
Chapter

Abstract

Magnetic force microscopy (MFM) is scanning probe technique which enables the analysis of magnetic properties of the samples at the nanoscale using a microfabricated tip coated with a magnetic layer. In this chapter, we describe MFM and give an overview of its applications, ranging from well established to advanced new applications.

Keywords

External Magnetic Field Magnetic Force Microscopy Lift Height Magnetic Force Microscopy Image Magnetic Stray Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge the availability of AFM/MFM facilities put at their disposal at SAPIENZA Nanotechnologies and Nanosciences Laboratory by the Research Center for Nanotechnology applied to Engineering (CNIS) of SAPIENZA University of Rome.

References

  1. 1.
    Jun YW, Seo JW, Cheon J (2008) Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res 41:179–189CrossRefGoogle Scholar
  2. 2.
    Pankhurst QA, Connelly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181CrossRefGoogle Scholar
  3. 3.
    Kaur R, Hasan A, Iqbal N, Alam S, Saini MK, Raza SK (2014) Synthesis and surface engineering of magnetic nanoparticles for environmental cleanup and pesticide residue analysis: a review. J Sep Sci 37:1805–1825CrossRefGoogle Scholar
  4. 4.
    Stella B, Arpicco S, Peracchia MT, Desmaele D, Hoebeke J, Renoir M et al (2000) Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci 89:1452–1464CrossRefGoogle Scholar
  5. 5.
    Lu AH, Salabas EL, Schüth F (2007) Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Angew Chem Int Ed 46:1222–1244CrossRefGoogle Scholar
  6. 6.
    Wilhelm C, Lavialle F, Péchoux C, Tatischeff I, Gazeau F (2008) Intracellular trafficking of magnetic nanoparticles to design multifunctional biovesicles. Small 4:577–582CrossRefGoogle Scholar
  7. 7.
    Frascione D, Diwoky C, Almer G, Opriessnig P, Vonach C, Gradauer K et al (2012) Ultrasmall superparamagnetic iron oxide (USPIO)-based liposomes as magnetic resonance imaging probes. Int J Nanomedicine 7:2349–2359Google Scholar
  8. 8.
    Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592CrossRefGoogle Scholar
  9. 9.
    Binnig G, Rohrer H (1983) Surface imaging by scanning tunneling microscopy. Ultramicroscopy 11:157–160CrossRefGoogle Scholar
  10. 10.
    Binnig G, Rohrer H (1983) Scanning tunneling microscopy. Surf Sci 126:236–244CrossRefGoogle Scholar
  11. 11.
    Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933CrossRefGoogle Scholar
  12. 12.
    Weisenhorn AL, Hansma PK, Albrecht TR, Quate CF (1989) Forces in atomic force microscopy in air and water. Appl Phys Lett 54:2651–2653CrossRefGoogle Scholar
  13. 13.
    Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59:1–152CrossRefGoogle Scholar
  14. 14.
    Passeri D, Bettucci A, Rossi M (2010) Acoustic and atomic force microscopy for the mechanical characterization of thin films. Anal Bioanal Chem 396:2769–2783CrossRefGoogle Scholar
  15. 15.
    Passeri D, Rossi M, Tamburri E, Terranova ML (2013) Mechanical characterization of polymeric thin films by atomic force microscopy based techniques. Anal Bioanal Chem 405:1463–1478CrossRefGoogle Scholar
  16. 16.
    Marinello F, Passeri D, Savio E (eds) (2012) Acoustic scanning probe microscopy. Springer, Berlin/HeidelbergGoogle Scholar
  17. 17.
    Hartmann U (1999) Magnetic force microscopy. Annu Rev Mater Sci 29:53–87CrossRefGoogle Scholar
  18. 18.
    Majumdar A (1999) Scanning thermal microscopy. Annu Rev Mater Sci 29:505–585CrossRefGoogle Scholar
  19. 19.
    Passeri D, Sassi U, Bettucci A, Tamburri E, Toschi F, Orlanducci S et al (2012) Thermoacoustic emission from carbon nanotubes imaged by atomic force microscopy. Adv Funct Mater 22:2956–2963CrossRefGoogle Scholar
  20. 20.
    Girard P (2001) Electrostatic force microscopy: principles and some applications to semiconductors. Nanotechnology 12:485–490CrossRefGoogle Scholar
  21. 21.
    Tamburri E, Guglielmotti V, Orlanducci S, Terranova ML, Sordi D, Passeri D et al (2012) Nanodiamond-mediated crystallization in fibers of PANI nanocomposites produced by template-free polymerization: conductive and thermal properties of the fibrillar networks. Polymer 53:4045–4053CrossRefGoogle Scholar
  22. 22.
    Vezenov DV, Noy A, Ashby P (2005) Chemical force microscopy: probing chemical origin of interfacial forces and adhesion. J Adhes Sci Technol 19:313–364CrossRefGoogle Scholar
  23. 23.
    Martin Y, Wickramasinghe HK (1987) Magnetic imaging by “force microscopy” with 1000 Å resolution. Appl Phys Lett 50:1455–1457CrossRefGoogle Scholar
  24. 24.
    Sáenz JJ, Garca N, Grütter P, Meyer E, Heinzelmann H, Wiesendanger R et al (1987) Observation of magnetic forces by the atomic force microscope. J Appl Phys 62:4293–4295CrossRefGoogle Scholar
  25. 25.
    Passeri D, Bettucci A, Germano M, Rossi M, Alippi A, Orlanducci S et al (2005) Effect of tip geometry on local indentation modulus measurement via atomic force acoustic microscopy technique. Rev Sci Instrum 76:093904CrossRefGoogle Scholar
  26. 26.
    Passeri D, Bettucci A, Germano M, Rossi M, Alippi A, Sessa V et al (2006) Local indentation modulus characterization of diamond-like carbon films by atomic force acoustic microscopy two contact resonance frequencies imaging technique. Appl Phys Lett 88:121910CrossRefGoogle Scholar
  27. 27.
    Passeri D, Rossi M, Alippi A, Bettucci A, Terranova ML, Tamburri E et al (2008) Characterization of epoxy/single-walled carbon nanotubes composite samples via atomic force acoustic microscopy. Physica E 40:2419–2424CrossRefGoogle Scholar
  28. 28.
    Passeri D, Rossi M, Alippi A, Bettucci A, Manno D, Serra A et al (2008) Atomic force acoustic microscopy characterization of nanostructured Selenium-Tin thin films. Superlattices Microstruct 44:641–649CrossRefGoogle Scholar
  29. 29.
    Bar G, Thomann Y, Brandsch R, Cantow HJ (1997) Factors affecting the height and phase images in tapping mode atomic force microscopy. Study of phase-separated polymer blends of poly(ethene-co-styrene) and poly(2,6-dimethyl-1,4-phenylene oxide). Langmuir 13:3807–3812CrossRefGoogle Scholar
  30. 30.
    Magonov SN, Cleveland J, Elings V, Denley D, Whangbo MH (1997) Tapping-mode atomic force microscopy study of the near-surface composition of a styrene-butadiene-styrene triblock copolymer film. Surf Sci 389:201–211CrossRefGoogle Scholar
  31. 31.
    Pignataro B, Sardone L, Marletta G (2003) Dynamic scanning force microscopy investigation of nanostructured spiral-like domains in Langmuir-Blodgett monolayers. Nanotechnology 14:245–249CrossRefGoogle Scholar
  32. 32.
    Sarid D (1994) Scanning force microscopy. Oxford University Press, New YorkGoogle Scholar
  33. 33.
    Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope-force mapping and profiling on a sub 100-Å scale. J Appl Phys 61:4723–4729CrossRefGoogle Scholar
  34. 34.
    Rugar D, Mamin HJ, Guethner P, Lambert SE, Stern JE, McFadyen I et al (1990) Magnetic force microscopy: general principles and application to longitudinal recording media. J Appl Phys 68:1169–1183CrossRefGoogle Scholar
  35. 35.
    Mironov VL, Nikitushkin DS, Bins C, Shubin AB, Zhdan PA (2007) Magnetic force microscope contrast simulation for low-coercive ferromagnetic and superparamagnetic nanoparticles in an external magnetic field. IEEE Trans Magn 43:3961–3963CrossRefGoogle Scholar
  36. 36.
    Wadas A, Grütter P, Güntherodt HJ (1990) Analysis of in-plane bit structure by magnetic force microscopy. J Appl Phys 67:3462–3467CrossRefGoogle Scholar
  37. 37.
    Krause F, Kaisinger F, Starke H, Persch G, Hartmann U (1995) The influence of experimental parameters on contrast formation in magnetic force microscopy. Thin Solid Films 264:141–147CrossRefGoogle Scholar
  38. 38.
    Hughes IG, Barton PA, Roach TM, Hinds EA (1997) Atom optics with magnetic surfaces: II. Microscopic analysis of the ‘floppy disk’ mirror. J Phys B: At Mol Opt Phys 30:2119–2132CrossRefGoogle Scholar
  39. 39.
    Passeri D, Dong C, Angeloni L, Pantanella F, Natalizi T, Berlutti F et al (2014) Thickness measurement of soft thin films on periodically patterned magnetic substrates by phase difference magnetic force microscopy. Ultramicroscopy 136:96–106CrossRefGoogle Scholar
  40. 40.
    Giles R, Cleveland JP, Manne S, Hansma PK, Drake B, Maivals P et al (1993) Noncontact force microscopy in liquids. Appl Phys Lett 63:617–618CrossRefGoogle Scholar
  41. 41.
    Dietz C, Herruzo ET, Lozano JR, Garcia R (2011) Nanomechanical coupling enables detection and imaging of 5 nm superparamagnetic particles in liquid. Nanotechnology 22:125708CrossRefGoogle Scholar
  42. 42.
    Ares P, Jaafar M, Gil A, Gómez-Herrero J, Asenjo A (2015) Magnetic force microscopy in liquids. Small 11:4731–4736CrossRefGoogle Scholar
  43. 43.
    Abraham DW, Williams CC, Wickramasinghe HK (1988) Measurement of in-plane magnetization by force microscopy. Appl Phys Lett 53:1446–1448CrossRefGoogle Scholar
  44. 44.
    Ishikawa K, Taguchi R, Miyashita E, Numazawa J, Ohshima H (1997) Magnetic force microscopy image of Co-Cr-Ta layer in perpendicular magnetic tape at high linear recording density. J Appl Phys 81:4390–4392CrossRefGoogle Scholar
  45. 45.
    Porthun S, Abelmann L, Lodder C (1998) Magnetic force microscopy applied in magnetic data storage technology. J Magn Magn Mater 182:238–273CrossRefGoogle Scholar
  46. 46.
    Koblischka MR, Hewener B, Hartmann U, Wienss A, Christoffer B, Persch-Schuy G (2003) Magnetic force microscopy applied in magnetic data storage technology. Appl Phys A 76:879–884CrossRefGoogle Scholar
  47. 47.
    Relttu HJ, Lalho R (1992) Magnetic force microscopy of Abrikosov vortices. Supercond Sci Technol 5:448–452CrossRefGoogle Scholar
  48. 48.
    Volodin AP (1992) Magnetic force microscopy investigation of superconductors: first results. Ultramicroscopy 42–44:757–763CrossRefGoogle Scholar
  49. 49.
    Kirtley JR (2010) Fundamental studies of superconductors using scanning magnetic imaging. Rep Prog Phys 73:126501CrossRefGoogle Scholar
  50. 50.
    Moser A, Hug HJ, Fritz O, Parashikov I, Guntherodt HJ et al (1994) Magnetic force microscopy on high-Tc superconductors. J Vac Sci Technol B 12:1586–1590CrossRefGoogle Scholar
  51. 51.
    Moser A, Hug HJ, Parashikov I, Stiefel B, Fritz O, Thomas H et al (1995) Observation of single vortices condensed into a vortex-glass phase by magnetic force microscopy. Phys Rev Lett 74:1847–1850CrossRefGoogle Scholar
  52. 52.
    Volodin A, Temst K, Van Haesendonck C, Bruynseraede Y (2000) Imaging of vortices in conventional superconductors by magnetic force microscopy. Physica C 332:156–159CrossRefGoogle Scholar
  53. 53.
    Volodin A, Temst K, Bruynseraede Y, Van Haesendonck C, Montero MI, Schuller IK et al (2002) Magnetic force microscopy of vortex pinning at grain boundaries in superconducting thin films. Physica C 369:165–170CrossRefGoogle Scholar
  54. 54.
    Auslaender OM, Luan L, Straver EWJ, Hoffman JE, Koshnick NC, Zeldov E et al (2009) Mechanics of individual isolated vortices in a cuprate superconductor. Nat Phys 5:35–39CrossRefGoogle Scholar
  55. 55.
    Bobba F, Di Giorgio C, Scarfato A, Longobardi M, Iavarone M, Moore SA et al (2014) Vortex-antivortex coexistence in Nb-based superconductor/ferromagnet heterostructures. Phys Rev B 89:214502CrossRefGoogle Scholar
  56. 56.
    Pi UH, Schwarz A, Liebmann M, Wiesendanger R, Khim ZG, Kim DH (2006) Visualizing flux distribution of superconductors in external magnetic fields with magnetic force microscopy. Phys Rev B 73:144505CrossRefGoogle Scholar
  57. 57.
    Straver EWJ, Hoffman JE, Auslaender OM, Rugar D, Moler KA (2008) Controlled manipulation of individual vortices in a superconductor. Appl Phys Lett 93:172514CrossRefGoogle Scholar
  58. 58.
    Buntinx D, Volodin A, Van Haesendonck C (2002) Combination of magnetic force microscopy with in situ magnetoresistance measurements. J Appl Phys 92:1014–1017CrossRefGoogle Scholar
  59. 59.
    Lu Q, Chen C, de Lozanne A (1997) Observation of magnetic domain behavior in colossal magnetoresistive materials with a magnetic force microscope. Science 276:2006–2008CrossRefGoogle Scholar
  60. 60.
    Koch SA, te Velde RH, Palasantzas G, De Hosson JTM (2004) Magnetic force microscopy on cobalt nanocluster films. Appl Surf Sci 226:185–190CrossRefGoogle Scholar
  61. 61.
    Hsieh CT, Liu JQ, Lue JT (2005) Magnetic force microscopy studies of domain walls in nickel and cobalt films. Appl Surf Sci 252:1899–1909CrossRefGoogle Scholar
  62. 62.
    Song HZ, Li YX, Zhao KY, Zeng HR, Hui SX, Li GR et al (2009) Influence of stress on the magnetic domain structure in Fe81Ga19 alloys. J Appl Phys 105:13913CrossRefGoogle Scholar
  63. 63.
    Mironov VL, Gribkov BA, Vdovichev SN, Gusev SA, Fraerman AA, Ermolaeva OL et al (2009) Magnetic force microscope tip-induced remagnetization of CoPt nanodisks with perpendicular anisotropy. J Appl Phys 106:053911CrossRefGoogle Scholar
  64. 64.
    Jalli J, Hong YK, Abo GS, Bae S, Lee JJ, Park JH et al (2011) MFM studies of magnetic domain patterns in bulk barium ferrite (BaFe12O19) single crystals. J Magn Magn Mater 323:2627–2631CrossRefGoogle Scholar
  65. 65.
    Nagaraja HS, Nagaraja KK, Rossignol F, Dumas-Bouchiat F, Champeaux C, Catherinot A (2012) Magnetic domain studies of cobalt nanostructures. J Supercond Nov Magn 25:1901–1906CrossRefGoogle Scholar
  66. 66.
    Coïsson M, Barrera G, Celegato F, Enrico E, Olivetti ES, Tiberto P et al (2015) Local hysteresis loops measurements on irradiated FeSiB patterned dots by magnetic force microscopy. J Magn Magn Mater 373:250–254CrossRefGoogle Scholar
  67. 67.
    Kishore GVK, Kumar A, Chakraborty G, Albert SK, Rao BPC, Bhaduri AK et al (2015) Study of magnetism in Ni-Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy. J Magn Magn Mater 385:112–118CrossRefGoogle Scholar
  68. 68.
    Vallet CE, White CW, Withrow SP, Budai JD, Boatner LA, Sorge KD et al (2002) Magnetic force microscopy of ferromagnetic nanoparticles formed in Al2O3 and SiO2 by ion implantation. J Appl Phys 92:6200–6204CrossRefGoogle Scholar
  69. 69.
    Warren AD, Harniman RL, Collins AM, Davis SA, Younes CM, Flewitt PEJ et al (2015) Comparison between magnetic force microscopy and electron back-scatter diffraction for ferrite quantification in type 321 stainless steel. Ultramicroscopy 148:1–9CrossRefGoogle Scholar
  70. 70.
    Jain S, Adeyeye AO, Singh N (2010) Spin re-orientation in magnetostatically coupled Ni80Fe20 ellipsoidal nanomagnets. Nanotechnology 21:285702CrossRefGoogle Scholar
  71. 71.
    Jaafar M, Serrano-Ramón L, Iglesias-Freire O, Fernández-Pacheco A, Ibarra MR, De Teresa JM et al (2011) Hysteresis loops of individual Co nanostripes measured by magnetic force microscopy. Nanoscale Res Lett 6:407CrossRefGoogle Scholar
  72. 72.
    Tabasum MR, Zighem F, De La Torre Medina J, Encinas A, Piraux L, Nysten B (2014) Magnetic force microscopy investigation of arrays of nickel nanowires and nanotubes. Nanotechnology 25:245707CrossRefGoogle Scholar
  73. 73.
    Berger AJ, Amamou W, White SP, Adur R, Pu Y, Kawakami RK et al (2014) Magnetization dynamics of cobalt grown on graphene. J Appl Phys 115:17C510CrossRefGoogle Scholar
  74. 74.
    Bliznyuk V, Singamaneni S, Sahoo S, Polisetty S, He X, Binek C (2009) Self-assembly of magnetic Ni nanoparticles into 1D arrays with antiferromagnetic order. Nanotechnology 20:105606CrossRefGoogle Scholar
  75. 75.
    Kim J, Akinaga H, Kim J (2011) Observation of magnetic domain structures in epitaxial MnAs film on GaAs (001) with temperature hysteresis. Appl Phys Lett 98:102511CrossRefGoogle Scholar
  76. 76.
    Kim J, Akinaga H, Kim J (2011) Direct observation of the spin configurations of vertical Bloch line. Appl Phys Lett 98:052510CrossRefGoogle Scholar
  77. 77.
    Schreiber S, Savla M, Pelekhov DV, Iscru DF, Selcu C, Hammel PC et al (2008) Magnetic force microscopy of superparamagnetic nanoparticles. Small 4:270–278CrossRefGoogle Scholar
  78. 78.
    Sievers S, Braun KF, Eberbeck D, Gustafsson S, Olsson E, Schumacher HW et al (2012) Quantitative measurement of the magnetic moment of individual magnetic nanoparticles by magnetic force microscopy. Small 8:2675–2679CrossRefGoogle Scholar
  79. 79.
    Neves CS, Quaresma P, Baptista PV, Carvalho PA, Araújo JP, Pereira E et al (2010) New insights into the use of magnetic force microscopy to discriminate between magnetic and nonmagnetic nanoparticles. Nanotechnology 21:305706CrossRefGoogle Scholar
  80. 80.
    Häberle T, Haering F, Pfeifer H, Han L, Kuerbanjiang B, Wiedwald U et al (2012) Towards quantitative magnetic force microscopy: theory and experiment. New J Phys 14:043044CrossRefGoogle Scholar
  81. 81.
    Nocera TM, Chen J, Murray CB, Agarwal G (2012) Magnetic anisotropy considerations in magnetic force microscopy studies of single superparamagnetic nanoparticles. Nanotechnology 23:495704CrossRefGoogle Scholar
  82. 82.
    Pacifico J, van Leeuwen YM, Spuch-Calvar M, Sánchez-Iglesias A, Rodríguez-Lorenzo L, Pérez-Juste J et al (2009) Field gradient imaging of nanoparticle systems: analysis of geometry and surface coating effects. Nanotechnology 20:095708CrossRefGoogle Scholar
  83. 83.
    Cordova G, Attwood S, Gaikwad R, Gu F, Leonenko Z (2014) Magnetic anisotropy considerations in magnetic force microscopy studies of single superparamagnetic nanoparticles. Nano Biomed Eng 23:31–39Google Scholar
  84. 84.
    Angeloni L, Passeri D, Reggente M, Rossi M, Mantovani D, Lazzaro L et al (2015) Experimental issues in magnetic force microscopy of nanoparticles. AIP Conf Proc 1667:020010CrossRefGoogle Scholar
  85. 85.
    Passeri D, Dong C, Reggente M, Angeloni L, Barteri M, Scaramuzzo FA et al (2014) Magnetic force microscopy: quantitative issues in biomaterials. Biomatter 4:e29507CrossRefGoogle Scholar
  86. 86.
    Miyasaka M, Nishide H (2003) Magnetic force microscopy images of nanometer-sized, purely organic high-spin polyradical. Adv Funct Mater 13:113–117CrossRefGoogle Scholar
  87. 87.
    Fukuzaki E, Nishide H (2006) Room-temperature high-spin organic single molecule: nanometer-sized and hyperbranched poly[1,2, (4)-phenylenevinyleneanisylaminium]. J Am Chem Soc 128:996–1001CrossRefGoogle Scholar
  88. 88.
    Yanagi H, Manivannan A (2001) Epitaxial growth of molecular magnetic thin films of lithium phthalocyanine. Thin Solid Films 393:28–33CrossRefGoogle Scholar
  89. 89.
    Cavallini M, Gomez-Segura J, Ruiz-Molina D, Massi M, Albonetti C, Rovira C et al (2005) Magnetic information storage on polymers by using patterned single-molecule magnets. Angew Chem 117:910–914CrossRefGoogle Scholar
  90. 90.
    Zaidi NA, Giblin SR, Terry I, Monkman AP (2004) Room temperature magnetic order in an organic magnet derived from polyaniline. Polymer 45:5683–5689CrossRefGoogle Scholar
  91. 91.
    Jaiswal MK, Banerjee R, Bahadur D (2010) Thermal behavior of magnetically modalized poly(N-isopropylacrylamide)-chitosan based nanohydrogel. Colloid Surf B 81:185–194CrossRefGoogle Scholar
  92. 92.
    Dong C, Corsetti S, Passeri D, Rossi M, Carafa M, Pantanella F et al (2015) Visualization and quantification of magnetic nanoparticles into vesicular systems by combined atomic and magnetic force microscopy. AIP Conf Proc 1667:020011CrossRefGoogle Scholar
  93. 93.
    Nyamjav D, Kinsella JM, Ivanisevic A (2005) Magnetic wires with DNA cores: a magnetic force microscopy study. Appl Phys Lett 86:093107CrossRefGoogle Scholar
  94. 94.
    Jaafar M, Aljabali AAA, Berlanga I, Mas-Balleste R, Saxena P, Warren S et al (2014) Structural insights into magnetic clusters grown inside virus capsids. ACS Appl Mater Interfaces 6:20936–20942CrossRefGoogle Scholar
  95. 95.
    Hsieh CW, Zheng B, Hsieh S (2010) Ferritin protein imaging and detection by magnetic force microscopy. Chem Commun 46:1655–1657CrossRefGoogle Scholar
  96. 96.
    Martinez RV, Chiesa M, Garcia R (2011) Nanopatterning of ferritin molecules and the controlled size reduction of their magnetic cores. Small 7:2914–2920CrossRefGoogle Scholar
  97. 97.
    Nocera TM, Zeng Y, Agarwal G (2014) Distinguishing ferritin from apoferritin using magnetic force microscopy. Nanotechnology 25:461001CrossRefGoogle Scholar
  98. 98.
    Hergt R, Hiergeist R, Zeisberger M, Schüler D, Heyen U, Hilger I et al (2005) Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J Magn Magn Mater 293:80–86CrossRefGoogle Scholar
  99. 99.
    Proksch RB, Schäffer TE, Moskowitz BM, Dahlberg ED, Bazylinski DA, Frankel RB (1995) Magnetic force microscopy of the submicron magnetic assembly in a magnetotactic bacterium. Appl Phys Lett 66:2582–2584CrossRefGoogle Scholar
  100. 100.
    Albrecht M, Janke V, Sievers S, Siegner U, Schüler D, Heyen U (2005) Scanning force microscopy study of biogenic nanoparticles for medical applications. J Magn Magn Mater 290:269–271CrossRefGoogle Scholar
  101. 101.
    Eberbeck D, Janke V, Hartwig S, Heyen U, Schüler D, Albrecht M et al (2005) Blocking of magnetic moments of magnetosomes measured by magnetorelaxometry and direct observation by magnetic force microscopy. J Magn Magn Mater 289:70–73CrossRefGoogle Scholar
  102. 102.
    Wei JD, Knittel I, Lang C, Schüler D, Hartmann U (2011) Magnetic properties of single biogenic magnetite nanoparticles. J Nanopart Res 13:3345–3352CrossRefGoogle Scholar
  103. 103.
    Gojzewski H, Makowski M, Hashim A, Kopcansky P, Tomori Z, Timko M (2012) Magnetosomes on surface: an imaging study approach. Scanning 34:159–169CrossRefGoogle Scholar
  104. 104.
    Dunn JR, Fuller M, Zoeger J, Dobson J, Heller F, Hammann J et al (1995) Magnetic material in the human hippocampus. Brain Res Bull 36:149–153CrossRefGoogle Scholar
  105. 105.
    Dobson J (2001) Nanoscale biogenic iron oxides and neurodegenerative disease. FEBS Lett 496:1–5CrossRefGoogle Scholar
  106. 106.
    Amemiya Y, Tanaka T, Yoza B, Matsunaga T (2005) Novel detection system for biomolecules using nano-sized bacterial magnetic particles and magnetic force microscopy. J Biotechnol 120:308–314CrossRefGoogle Scholar
  107. 107.
    Moskalenko AV, Yarova PL, Gordeev SN, Smirnov SV (2010) Single protein molecule mapping with magnetic atomic force microscopy. Biophys J 98:478–487CrossRefGoogle Scholar
  108. 108.
    Wang L, Min Y, Wang Z, Riggio C, Calatayud MP, Pinkernelle J et al (2014) Evaluation of in-situ magnetic signals from iron oxide nanoparticle-labeled PC12 cells by atomic force microscopy. J Biomed Nanotechnol 10:1–12CrossRefGoogle Scholar
  109. 109.
    Shen HB, Long DH, Zhu LZ, Li XY, Dong YM, Jia NQ et al (2006) Magnetic force microscopy analysis of apoptosis of HL-60 cells induced by complex of antisense oligonucleotides and magnetic nanoparticles. Biophys Chem 122:1–4CrossRefGoogle Scholar
  110. 110.
    Zhang Y, Yang M, Ozkan M, Ozkan CS (2009) Magnetic force microscopy of iron oxide nanoparticles and their cellular uptake. Biotechnol Prog 25:923–928CrossRefGoogle Scholar
  111. 111.
    Wang Z, Cuschieri A (2013) Tumor cell labelling by magnetic nanoparticles with determination of intracellular iron content and spatial distribution of the intracellular iron. Int J Mol Sci 14:9111–9125CrossRefGoogle Scholar
  112. 112.
    Ouchi T, Arikawa Y, Kuno T, Mizuno J, Shoji S, Homma T (2010) Electrochemical fabrication and characterization of CoPt bit patterned media: towards a wetchemical, large-scale fabrication. IEEE Trans Magn 46:2224–2227CrossRefGoogle Scholar
  113. 113.
    Butler J, Shachar M, Lee B, Garcia D, Hu B, Hong J et al (2014) Reconfigurable and non-volatile vertical magnetic logic gates. J Appl Phys 115:163903CrossRefGoogle Scholar
  114. 114.
    Wang T, Wang Y, Fu Y, Hasegawa T, Li FS, Saito H et al (2009) A magnetic force microscopy study of the magnetic reversal of a single Fe nanowire. Nanotechnology 20:105707CrossRefGoogle Scholar
  115. 115.
    Davydenko AV, Pustovalov EV, Ognev AV, Chebotkevich LA (2012) Magnetization reversal in the single epitaxial Co(111) nanowires with step-induced anisotropy. IEEE Trans Magn 48:3128–3131CrossRefGoogle Scholar
  116. 116.
    Chen CC, Lin JY, Horng L, Yang JS, Isogami S, Tsunoda M et al (2009) Investigation on the magnetization reversal of nanostructured magnetic tunnel junction rings. IEEE Trans Magn 45:3546–3549CrossRefGoogle Scholar
  117. 117.
    Aniya M, Shimada A, Sonobe Y, Sato K, Shima T, Takanashi K et al (2010) Magnetization reversal process of hard/soft nano-composite structures formed by ion irradiation. IEEE Trans Magn 46:2132–2135CrossRefGoogle Scholar
  118. 118.
    Tekielak M, Gieniusz R, Kisielewski M, Mazalski P, Maziewski A, Zablotskii V et al (2011) The effect of magnetostatic coupling on spin configurations in ultrathin multilayers. J Appl Phys 110:043924CrossRefGoogle Scholar
  119. 119.
    Ranjbar M, Piramanayagam SN, Suzi D, Aung KO, Sbiaa R, Kay YS et al (2010) Antiferromagnetically coupled patterned media and control of switching field distribution. IEEE Trans Magn 46:1787–1790CrossRefGoogle Scholar
  120. 120.
    Chen Y, Ding J, Deng J, Huang T, Leong SH, Shi J et al (2010) Switching probability distribution of bit islands in bit patterned media. IEEE Trans Magn 46:1990–1993CrossRefGoogle Scholar
  121. 121.
    Yang JKW, Chen Y, Huang T, Duan H, Thiyagarajah N, Hui HK et al (2011) Fabrication and characterization of bit-patterned media beyond 1.5 Tbit/in2. Nanotechnology 22:385301CrossRefGoogle Scholar
  122. 122.
    Pei WL, Qin GW, Ren YP, Li S, Wang T, Hasegawa H et al (2011) Incoherent magnetization reversal in Co-Pt nanodots investigated by magnetic force microscopy. Acta Mater 59:4818–4824CrossRefGoogle Scholar
  123. 123.
    Tabasum MR, Zighem F, De La Torre MJ, Encinas A, Piraux L, Nysten B (2013) Magnetic force microscopy study of the switching field distribution of low density arrays of single domain magnetic nanowires. J Appl Phys 113:183908CrossRefGoogle Scholar
  124. 124.
    Brands M, Wieser R, Hassel C, Hinzke D, Dumpich G (2006) Reversal processes and domain wall pinning in polycrystalline Co-nanowires. Phys Rev B 74:174411CrossRefGoogle Scholar
  125. 125.
    Fernández-Pacheco A, De Teresa JM, Szkudlarek A, Córdoba R, Ibarra MR, Petit D et al (2009) Magnetization reversal in individual cobalt micro- and nanowires grown by focused-electron-beam-induced-deposition. Nanotechnology 20:475704CrossRefGoogle Scholar
  126. 126.
    Schoenmaker J, dos Santos AD, Seabra AC, Souche Y, Jamet JP, Thiaville A et al (2005) Local hysteresis loop measurements by magneto-optical scanning near-field optical microscope. J Appl Phys 98:086108CrossRefGoogle Scholar
  127. 127.
    Theil Kuhn L, Geim AK, Lok JGS, Hedegård P, Ylänen K, Jensen JB et al (2000) Magnetisation of isolated single crystalline Fe-nanoparticles measured by a ballistic Hall micro-magnetometer. Eur Phys J D 10:259–263CrossRefGoogle Scholar
  128. 128.
    Jin Park J, Reddy M, Stadler BJH, Flatau AB (2013) Hysteresis measurement of individual multilayered Fe-Ga/Cu nanowires using magnetic force microscopy. J Appl Phys 113:17A331CrossRefGoogle Scholar
  129. 129.
    Cosson M, Barrera G, Celegato F, Enrico E, Manzin A, Olivetti ES et al (2014) Local field loop measurements by magnetic force microscopy. J Phys D Appl Phys 47:325003CrossRefGoogle Scholar
  130. 130.
    Rastei MV, Meckenstock R, Bucher JP (2005) Nanoscale hysteresis loop of individual Co dots by field-dependent magnetic force microscopy. Appl Phys Lett 87:222505CrossRefGoogle Scholar
  131. 131.
    Fumagalli L, Ferrari G, Sampietro M, Casuso I, Martnez E, Samitier J et al (2006) Nanoscale capacitance imaging with attofarad resolution using ac current sensing atomic force microscopy. Nanotechnology 17:4581–4587CrossRefGoogle Scholar
  132. 132.
    Casuso I, Fumagalli L, Gomila G, Pedrós E (2007) Nondestructive thickness measurement of biological layers at the nanoscale by simultaneous topography and capacitance imaging. Appl Phys Lett 91:063111CrossRefGoogle Scholar
  133. 133.
    Schmidt R, Schwarz A, Wiesendanger R (2009) Hydrogen-related contrast in atomic force microscopy. Nanotechnology 20:264007CrossRefGoogle Scholar
  134. 134.
    Engel-Herbert R, Hesjedal T, Mohanty J, Schaadt DM, Ploog KH (2006) Magnetization reversal in MnAs films: magnetic force microscopy, SQUID magnetometry, and micromagnetic simulations. Phys Rev B 73:104441CrossRefGoogle Scholar
  135. 135.
    Asenjo A, García D, García JM, Prados C, Vázquez M (2000) Magnetic force microscopy study of dense stripe domains in Fe-B/Co-Si-B multilayers and the evolution under an external applied field. Phys Rev B 62:6538–6544CrossRefGoogle Scholar
  136. 136.
    Schwarz A, Wiesendanger R (2008) Magnetic sensitive force microscopy. Nano Today 3:28–39CrossRefGoogle Scholar
  137. 137.
    Jaafar M, Iglesias-Freire O, Serrano-Ramón L, Ibarra MR, de Teresa JM, Asenjo A (2011) Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy-magnetic force microscopy combination. Beilstein J Nanotechnol 2:552–560CrossRefGoogle Scholar
  138. 138.
    Cambel V, Eliáš P, Gregušová D, Martaus J, Fedor J, Karapetrov G et al (2010) Magnetic elements for switching magnetization magnetic force microscopy tips. J Magn Magn Mater 322:2715–2721CrossRefGoogle Scholar
  139. 139.
    Cambel V, Gregušová D, Eliáš P, Fedor J, Kostič I, Maňka J et al (2011) Switching magnetization magnetic force microscopy - an alternative to conventional lift-mode MFM. J Electr Eng 62:37–43Google Scholar
  140. 140.
    Hubert A, Rave W, Tomlinson SL (1997) Imaging magnetic charges with magnetic force microscopy. Phys Status Solidi (b) 204:817–828CrossRefGoogle Scholar
  141. 141.
    Gomez RD, Burke ER, Mayergoyz ID (1996) Magnetic imaging in the presence of external fields: technique and applications. J Appl Phys 79:6441–6446CrossRefGoogle Scholar
  142. 142.
    Babcock KL, Elings VB, Shi J, Awschalom DD, Dugas M (1996) Field-dependence of microscopic probes in magnetic force microscopy. Appl Phys Lett 69:705–707CrossRefGoogle Scholar
  143. 143.
    Fischer PB, Chou SY (1993) 10 nm electron beam lithography and sub-50 nm overlay using a modified scanning electron microscope. Appl Phys Lett 62:2989–2991CrossRefGoogle Scholar
  144. 144.
    Kong L, Chou SY (1997) Study of magnetic properties of magnetic force microscopy probes using micronscale current rings. J Appl Phys 81:5026–5028CrossRefGoogle Scholar
  145. 145.
    Lohau J, Kirsch S, Carl A, Dumpich G, Wassermann EF (1999) Quantitative determination of effective dipole and monopole moments of magnetic force microscopy tips. J Appl Phys 86:3410–3417CrossRefGoogle Scholar
  146. 146.
    Carl A, Lohau J, Kirsch S, Wassermann EF (2001) Magnetization reversal and coercivity of magnetic-force microscopy tips. J Appl Phys 89:6098–6104CrossRefGoogle Scholar
  147. 147.
    Liu C, Lin K, Holmes R, Mankey GJ, Fujiwara H, Jiang H et al (2002) Calibration of magnetic force microscopy using micron size straight current wires. J Appl Phys 91:8849–8851CrossRefGoogle Scholar
  148. 148.
    Kebe T, Carl A (2004) Calibration of magnetic force microscopy tips by using nanoscale current-carrying parallel wires. J Appl Phys 95:775–792CrossRefGoogle Scholar
  149. 149.
    Jaafar M, Asenjo A, Vazquez M (2008) Calibration of coercive and stray fields of commercial magnetic force microscope probes. IEEE Trans Nanotechnol 7:245–250CrossRefGoogle Scholar
  150. 150.
    Wu Y, Shen Y, Liu Z, Li K, Qiu J (2003) Point-dipole response from a magnetic force microscopy tip with a synthetic antiferromagnetic coating. Appl Phys Lett 82:1748–1750CrossRefGoogle Scholar
  151. 151.
    Saito H, Yatsuyanagi D, Ishio S, Ito A, Kawamura H, Ise K et al (2007) Simulation of high-resolution MFM tip using exchange-spring magnet. J Magn Magn Mater 310:e939–e940CrossRefGoogle Scholar
  152. 152.
    Amos N, Ikkawi R, Haddon R, Litvinov D, Khizroev S (2008) Controlling multidomain states to enable sub-10-nm magnetic force microscopy. Appl Phys Lett 93:203116CrossRefGoogle Scholar
  153. 153.
    Piramanayagam SN, Ranjbar M, Tan EL, Tan HK, Sbiaa R, Chong TC (2011) Enhanced resolution in magnetic force microscropy using tips with perpendicular magnetic anisotropy. J Appl Phys 109:07E326CrossRefGoogle Scholar
  154. 154.
    Li H, Wei D, Piramanayagam SN (2012) Micromagnetic studies on resolution limits of magnetic force microscopy tips with different magnetic anisotropy. J Appl Phys 111:07E309CrossRefGoogle Scholar
  155. 155.
    Porthun S, Abelmann L, Vellekoop SJL, Lodder JC, Hug HJ (1998) Optimization of lateral resolution in magnetic force microscopy. Appl Phys A – Mater 66:1185–1189CrossRefGoogle Scholar
  156. 156.
    Hug HJ, Stiefel B, Van Schendel PJA, Moser A, Hofer R, Martin S et al (1998) Quantitative magnetic force microscopy on perpendicularly magnetized samples. J Appl Phys 83:5609–5620CrossRefGoogle Scholar
  157. 157.
    van den Bos A, Heskamp I, Siekman M, Abelmann L, Lodder C (2002) The CantiClever: a dedicated probe for magnetic force microscopy. IEEE Trans Magn 38:2441–2443CrossRefGoogle Scholar
  158. 158.
    Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384:147–150CrossRefGoogle Scholar
  159. 159.
    Arie T, Nishijima H, Akita S, Nakayama Y (2000) Carbon-nanotube probe equipped magnetic force microscope. J Vac Sci Technol B 18:104–106CrossRefGoogle Scholar
  160. 160.
    Kuramochi H, Asada H, Uzumaki T, Yui H, Iitake M, Takano F et al (2014) Material dependence of magnetic force microscopy performance using carbon nanotube probes: experiments and simulation. J Appl Phys 115:093907CrossRefGoogle Scholar
  161. 161.
    Wolny F, Mühl T, Weissker U, Lipert K, Schumann J, Leonhardt A et al (2010) Iron filled carbon nanotubes as novel monopole-like sensors for quantitative magnetic force microscopy. Nanotechnology 21:435501CrossRefGoogle Scholar
  162. 162.
    Wolny F, Mühl T, Weissker U, Leonhardt A, Wolff U, Givord D et al (2010) Magnetic force microscopy measurements in external magnetic field – comparison between coated probes and an iron filled carbon nanotube probe. J Appl Phys 108:013908CrossRefGoogle Scholar
  163. 163.
    Lutz MU, Weissker U, Wolny F, Müller C, Löffler M, Mühl T, et al (2010) Magnetic properties of α-Fe and Fe3C nanowires. J Phys Conf Ser 200:072062Google Scholar
  164. 164.
    Precner M, Fedor J, Šoltýs J, Cambel V (2015) Dual-tip magnetic force microscopy with suppressed influence on magnetically soft samples. Nanotechnology 26:055304CrossRefGoogle Scholar
  165. 165.
    Kim D, Chung NK, Allen S, Tendler SJB, Park JW (2012) Ferritin-based new magnetic force microscopic probe detecting 10 nm sized magnetic nanoparticles. ACS Nano 6:241–248CrossRefGoogle Scholar
  166. 166.
    Proksch R, Neilson P, Austvold S, Schmidt JJ (1999) Measuring the gigahertz response of recording heads with the magnetic force microscope. Appl Phys Lett 74:1308–1310CrossRefGoogle Scholar
  167. 167.
    Abe M, Tanaka Y (2002) A study of high-frequency characteristics of write heads with the ac-phase high-frequency magnetic force microscope. IEEE Trans Magn 38:45–49CrossRefGoogle Scholar
  168. 168.
    Koblischka MR, Kirsch M, Pfeifer R, Getlawi S, Rigato F, Fontcuberta J et al (2010) Different types of ferrite thin films as magnetic cantilever coating for magnetic force microscopy. J Magn Magn Mater 322:1697–1699CrossRefGoogle Scholar
  169. 169.
    Saito H, Ikeya H, Egawa G, Ishio S, Yoshimura S (2009) Magnetic force microscopy of alternating magnetic field gradient by frequency modulation of tip oscillation. J Appl Phys 105:07D524CrossRefGoogle Scholar
  170. 170.
    Saito H, Lu W, Hatakeyama K, Egawa G, Yoshimura S (2010) High frequency magnetic field imaging by frequency modulated magnetic force microscopy. J Appl Phys 107:09D309CrossRefGoogle Scholar
  171. 171.
    Lu W, Li Z, Hatakeyama K, Egawa G, Yoshimura S, Saito H (2010) High resolution magnetic imaging of perpendicular magnetic recording head using frequency-modulated magnetic force microscopy with a hard magnetic tip. Appl Phys Lett 96:143104CrossRefGoogle Scholar
  172. 172.
    Tanaka S, Azuma Y, Majima Y (2012) Secondary resonance magnetic force microscopy. J Appl Phys 111:084312CrossRefGoogle Scholar
  173. 173.
    Arima E, Naitoh Y, Li YJ, Yoshimura S, Saito H, Nomura H et al (2015) Magnetic force microscopy using tip magnetization modulated by ferromagnetic resonance. Nanotechnology 26:125701CrossRefGoogle Scholar
  174. 174.
    Workman RK, Manne S (2000) Variable temperature fluid stage for atomic force microscopy. Rev Sci Instrum 71:431–436CrossRefGoogle Scholar
  175. 175.
    Chen YJ, Yang HZ, Leong SH, Wu BL, Asbahi M, Ko HYY et al (2014) A study on dynamic heat assisted magnetization reversal mechanisms under insufficient reversal field conditions. Appl Phys Lett 105:162402CrossRefGoogle Scholar
  176. 176.
    Nazaretski E, Graham KS, Thompson JD, Wright JA, Pelekhov DV, Hammel PC et al (2009) Design of a variable temperature scanning force microscope. Rev Sci Instrum 80:083704CrossRefGoogle Scholar
  177. 177.
    Lakhani A, Kushwaha P, Rawat R, Chaddah P (2009) Magnetic force microscopic study of the magnetic field induced antiferro to ferrimagnetic transition in Mn1.85Co0.15Sb. Appl Surf Sci 256(2):404–406CrossRefGoogle Scholar
  178. 178.
    Israel C, Wu W, de Lozanne A (2006) High-field magnetic force microscopy as susceptibility imaging. Appl Phys Lett 89:032502CrossRefGoogle Scholar
  179. 179.
    Pinilla-Cienfuegos E, Kumar S, Mañas-Valero S, Canet-Ferrer J, Catala L, Mallah T et al (2015) Imaging the magnetic reversal of isolated and organized molecular-based nanoparticles using magnetic force microscopy. Part Part Syst Char 32:693–700CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Daniele Passeri
    • 1
    Email author
  • Livia Angeloni
    • 1
  • Melania Reggente
    • 1
  • Marco Rossi
    • 1
    • 2
  1. 1.Department of Basic and Applied Sciences for EngineeringSAPIENZA University of RomeRomeItaly
  2. 2.Centro di Ricerca per le Nanotecnologie Applicate all’Ingegneria della Sapienza (CNIS)SAPIENZA University of RomeRomeItaly

Personalised recommendations