Advertisement

Characterization of Magnetism in Gold Nanoparticles

  • B. Donnio
  • J. L. GallaniEmail author
  • M. V. Rastei
Chapter

Abstract

Gold nanoparticles have been discovered to possess peculiar properties not found in the bulk metal, such as optical, catalytic, or magnetic properties. Whereas some of the properties are well understood, such as the optical ones, the magnetic properties are much more mysterious. This chapter is devoted to the magnetic characterization of nanoparticulate gold samples, using a variety of techniques.

Keywords

Nuclear Magnetic Resonance Gold Nanoparticles Scanning Tunneling Microscopy Nuclear Magnetic Resonance Signal Magnetic Circular Dichroism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Trudel S (2011) Unexpected magnetism in gold nanostructures: making gold even more attractive. Gold Bull 44:3CrossRefGoogle Scholar
  2. 2.
    van Rhee PG, Zijlstra P, Verhagen TGA, Aarts J, Katsnelson MI, Maan JC, Orrit M, Christianen PCM (2013) Giant magnetic susceptibility of gold nanorods detected by magnetic alignment. Phys Rev Lett 111:127202CrossRefGoogle Scholar
  3. 3.
    Nealon GL, Donnio B, Greget R, Kappler J-P, Terazzi E, Gallani J-L (2012) Magnetism in gold nanoparticles. Nanoscale 4:5244CrossRefGoogle Scholar
  4. 4.
    Pereira LMC, Araujo JP, Van Bael MJ, Temst K, Vantomme A (2011) Practical limits for detection of ferromagnetism using highly sensitive magnetometry techniques. J Phys D Appl Phys 44:215001CrossRefGoogle Scholar
  5. 5.
    Clarke J (1994) SQUIDs. Sci Am 271:2, p 46CrossRefGoogle Scholar
  6. 6.
    Hori H, Teranishi T, Nakae Y, Seino Y, Miyake M, Yamada S (1999) Anomalous magnetic polarization effect of Pd and Au nano-particles. Phys Lett A 263:406CrossRefGoogle Scholar
  7. 7.
    Kowlgi K, Zhang L, Picken S, Koper G (2012) One paper has reported a vanishing of the ferromagnetism for 15 nm gold nanoparticles at the impressive temperature of 850K and found a surprising critical exponent of 0.78 for the magnetization below Tc. Anomalous magnetism in noble metal (nano)particles. Coll Surf A 413:248Google Scholar
  8. 8.
    Donnio B, García-Vázquez P, Gallani J-L, Guillon D, Terazzi E (2007) Dendronized ferromagnetic gold nanoparticles self-organized in a thermotropic cubic phase. Adv Mater 19:3534CrossRefGoogle Scholar
  9. 9.
    Muñoz-Márquez MA, Guerrero E, Fernandez A, Crespo P, Hernando A, Lucena R, Conesa JC (2010) Permanent magnetism in phosphine- and chlorine-capped gold: from clusters to nanoparticles. J Nanopart Res 12:1307CrossRefGoogle Scholar
  10. 10.
    Guerrero E, Muñoz-Márquez MA, Fernández A, Crespo P, Hernando A, Lucena R, Conesa JC (2010) Magnetometry and electron paramagnetic resonance studies of phosphine- and thiol-capped gold nanoparticles. J Appl Phys 107:064303CrossRefGoogle Scholar
  11. 11.
    Lucarini M, Pasquato L (2010) ESR spectroscopy as a tool to investigate the properties of self-assembled monolayers protecting gold nanoparticles. Nanoscale 2:668CrossRefGoogle Scholar
  12. 12.
    Chechik V, Wellsted HJ, Korte A, Gilbert BC, Caldaru H, Ionita P, Caragheorgheopol A (2004) Spin-labelled Au nanoparticles. Faraday Discuss 125:279CrossRefGoogle Scholar
  13. 13.
    Zhang Z, Berg A, Levanon H, Fessenden RW, Meisel D (2003) On the interactions of free radicals with gold nanoparticles. J Am Chem Soc 125:7959CrossRefGoogle Scholar
  14. 14.
    Kawakami M, Enokiya H, Okamoto T (1985) 197Au NMR study of Au impurities in Fe and FCC Co. J Phys F: Met Phys 15:1613CrossRefGoogle Scholar
  15. 15.
    Tokita M, Haga E (1982) Nuclear magnetic resonance of 197Au in gold metal. J Mol Struct 83:143CrossRefGoogle Scholar
  16. 16.
    Greget R (2011) Propriétés magnétiques de nanoparticules d’or fonctionnalisées. PhD thesis, Université de Strasbourg. Available online at: http://scd-theses.u-strasbg.fr/2404/
  17. 17.
    Wende H (2004) Rep Prog Phys 67:2105CrossRefGoogle Scholar
  18. 18.
    Garitaonandia JS, Insausti M, Goikolea E, Suzuki M, Cashion JD, Kawamura N, Ohsawa H, Gil de Muro I, Suzuki K, Plazaola F, Rojo T (2008) Chemically induced permanent magnetism in Au, Ag, and Cu nanoparticles: localization of the magnetism by element selective techniques. Nano Lett 8:661CrossRefGoogle Scholar
  19. 19.
    Negishi Y, Tsunoyama H, Suzuki M, Kawamura N, Matsushita MM, Maruyama K, Sugawara T, Yokoyama T, Tsukuda T (2006) X-ray magnetic circular dichroism of size-selected, thiolated gold clusters. J Am Chem Soc 128:12034CrossRefGoogle Scholar
  20. 20.
    Garitaonandia JS, Goikolea E, Insausti M, Suzuki M, Kawamura N, Osawa H, Gil del Muro I, Suzuki K, Cashion JD, Gorria C, Plazaola F, Rojo T (2009) Magnetometry and electron paramagnetic resonance studies of phosphine- and thiol capped gold nanoparticles. J Appl Phys 105:07A907CrossRefGoogle Scholar
  21. 21.
    Suzuki M, Kawamura N, Miyagawa H, Garitaonandia JS, Yamamoto Y, Hori H (2012) Measurement of a Pauli and orbital paramagnetic state in bulk gold using x-ray magnetic circular dichroism spectroscopy. Phys Rev Lett 108:047201CrossRefGoogle Scholar
  22. 22.
    Sharma VK, Klingelhofer G, Nishida T (eds) (2013) Mossbauer spectroscopy: applications in chemistry, biology, and nanotechnology. Wiley, WeinheimGoogle Scholar
  23. 23.
    Goossens A, Crajé MWJ, van der Kraan AM, Zwijnenburg A, Makkee M, Moulijn JA, Grisel RJH, Nieuwenhuys BE, de Jongh LJ (2002) Characterization of supported gold catalysts with 197 Au Mössbauer effect spectroscopy. Hyperfine Interact 139:59CrossRefGoogle Scholar
  24. 24.
    Pakdel S, Miri M (2012) Faraday rotation and circular dichroism spectra of gold and silver nanoparticle aggregates. Phys Rev B 86:235445CrossRefGoogle Scholar
  25. 25.
    Wysin GM, Chikan V, Young N, Dani RK (2013) Effects of interband transitions on Faraday rotation in metallic nanoparticles. J Phys Condens Matter 25:325302CrossRefGoogle Scholar
  26. 26.
    Hamidi SM, Tehranchi MM (2012) Magneto-optical Faraday rotation in Ce:YIG thin films incorporating gold nanoparticles. J Supercond Nov Magn 25:2713CrossRefGoogle Scholar
  27. 27.
    Wang L, Clavero C, Huba Z, Carroll KJ, Carpenter EE, Gu D, Lukaszew RA (2011) Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles. Nano Lett 11:1237CrossRefGoogle Scholar
  28. 28.
    Mason R (2007) Magnetic circular dichroism spectroscopy. Wiley, HobokenCrossRefGoogle Scholar
  29. 29.
    Pineider F, Campo G, Bonanni V, de Julián Fernández C, Mattei G, Caneschi A, Gatteschi D, Sangregorio C (2013) Circular magnetoplasmonic modes in gold nanoparticles. Nano Lett 13:4785CrossRefGoogle Scholar
  30. 30.
    Sokolov AE, Ovchinnikov SG, Zabluda VN, Kal’sin AM, Zubavichus YV (2013) JETP (Letters) 97:98CrossRefGoogle Scholar
  31. 31.
    Armelles G, Cebollada A, Garcia-Martin A, Gonzalez MU (2013) Magnetoplasmonics: combining magnetic and plasmonic functionalities. Adv Opt Mater 1:10CrossRefGoogle Scholar
  32. 32.
    Gréget R, Nealon GL, Vileno B, Turek P, Mény C, Ott F, Derory A, Voirin E, Rivière E, Rogalev A, Wilhelm F, Joly L, Knafo W, Ballon G, Terazzi E, Kappler J-P, Donnio B, Gallani J-L (2012) Magnetic properties of gold nanoparticles: a room-temperature quantum effect. ChemPhysChem 13:3092CrossRefGoogle Scholar
  33. 33.
    Blundell S (2001) Magnetism in condensed matter. Oxford University Press, Oxford, UKGoogle Scholar
  34. 34.
    Goikolea E, Garitaonandia JS, Insausti M, Lago J, Gil de Muro I, Salado J, Bermejo FJ, Schmool D (2008) Evidence of intrinsic ferromagnetic behavior of thiol capped Au nanoparticles based on μSR results. J Non Cryst Solids 354:5210CrossRefGoogle Scholar
  35. 35.
    Chatterji T (ed) (2005) Neutron scattering from magnetic materials. Elsevier Science, BurlingtonGoogle Scholar
  36. 36.
    de la Venta J, Bouzas V, Pucci A, Laguna-Marco MA, Haskel D, te Velthuis SGE, Hoffmann A, Lal J, Bleuel M, Ruggeri G, de Julián Fernández C, García MA (2009) X-ray magnetic circular dichroism and small angle neutron scattering studies of thiol capped gold nanoparticles. J Nanosci Nanotechnol 9:6434CrossRefGoogle Scholar
  37. 37.
    For an application to individual nanoparticles, see for instance Rastei MV, Meckenstock R, Bucher JP (2005) Nanoscale hysteresis loop of individual Co dots by field-dependent magnetic force microscopy. Appl Phys Lett 87: 222505Google Scholar
  38. 38.
    Rugar D, Budakian R, Mamin HJ, Chui BW (2004) Single spin detection by magnetic resonance force microscopy. Nature 430:329CrossRefGoogle Scholar
  39. 39.
    Rastei MV, Abes M, Bucher JP, Dinia A, Pierron-Bohnes V (2006) Field-dependent of a magnetic force microscopy tip probed by means of high coercive nanomagnets. J Appl Phys 99:084316CrossRefGoogle Scholar
  40. 40.
    Carl A, Lohau J, Kirsch S, Wassermann EF (2001) Magnetization reversal and coercivity of magnetic force microscopy tips. J Appl Phys 89:6099CrossRefGoogle Scholar
  41. 41.
    Rastei MV (2006) Assembly of controlled-size Co nanoparticles on surfaces and their local characterisation by means of field-dependent magnetic force microscopy and scanning tunnelling spectroscopy. PhD thesis, University of StrasbourgGoogle Scholar
  42. 42.
    Rastei MV, Bucher JP (2006) Spin polarized tunnelling investigation of nanometre Co clusters by means of a Ni bulk tip. J Phys Condens Matter 18:L619CrossRefGoogle Scholar
  43. 43.
    Rastei MV, Heinrich B, Limot L, Ignatiev PA, Stepanyuk VS, Bruno P, Bucher JP (2007) Size-dependent surface states of strained cobalt nanoislands on Cu(111). Phys Rev Lett 99:246102CrossRefGoogle Scholar
  44. 44.
    Barke I, Hövel H (2003) Confined Shockley surface states on the (111) facets of gold clusters. Phys Rev Lett 90:166801CrossRefGoogle Scholar
  45. 45.
    Zhu M, Aikens CM, Hendrich MP, Gupta R, Qian H, Schatz GC, Jin R (2009) Reversible switching of magnetism in thiolate-protected Au25 superatoms. J Am Chem Soc 131:2490CrossRefGoogle Scholar
  46. 46.
    For quantum dots see: Stomp RP Dissipative and electrostatic force spectroscopy of InAs quantum dots by non-contact atomic force microscopy. PhD thesis, McGill University, MontréalGoogle Scholar
  47. 47.
    Krishnan R, Hahn MA, Yu Z, Silcox J, Fauchet PM, Krauss TD (2004) Polarization surface-charge density of single semiconductor quantum rods. Phys Rev Lett 92:216803CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.IPCMS-DMOCNRS – University of StrasbourgStrasbourgFrance

Personalised recommendations