Magnetic Force Microscopy Characterization of Magnetic Nanowires and Nanotubes

  • Muhammad Ramzan TabasumEmail author
  • Fatih Zighem
  • Luc Piraux
  • Bernard Nysten


Magnetic force microscopy (MFM) is one of the operational modes of atomic force microscopy (AFM). In this mode, a magnetic probe is brought close to the sample surface and interacts with the magnetic stray fields emanating from the sample. The strength of the local magnetostatic interaction determines the vertical motion of the tip as it scans across the sample. Since early 1990s, it has been widely used in fundamental research on magnetic materials, as well as in the development of magnetic recording components. It has the capacity to map the local stray fields emanating from individual magnetic nanostructures of the sample, hence providing insight into its magnetic behavior.


Dipolar Field Magnetic Force Microscopy Stray Field Magnetic Force Microscopy Image Remanent State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



M.R Tabasum is Assistant Professor on leave from department of industrial and manufacturing engineering RCET-UET Lahore. Financial support was provided by the Fédération Wallonie-Bruxelles (ARC 13/18-052 Supracryst) and by the Belgian Federal Science Policy (IAP-PAI 7/05). The authors thank the society it4ip (Louvain-la-Neuve, Belgium) for providing the polycarbonate track-etched membranes.


  1. 1.
    Alberto PG (2009) Principles of nanomagnetism. Springer, Berlin/HeidelbergGoogle Scholar
  2. 2.
    Encinas A, Vila L, Darques M, George JM, Piraux L (2007) Configurable multiband microwave absorption states prepared by field cycling in arrays of magnetic nanowires. Nanotechnology, 18:065705Google Scholar
  3. 3.
    Darques M, Spiegel J, De la Torre Medina J, Huynen I, Piraux L (2009) Ferromagnetic nanowire-loaded membranes for microwave electronics. J Magn Magn Mater 321:2055CrossRefGoogle Scholar
  4. 4.
    Hamoir G, Piraux L, Huynen I (2013) Control of microwave circulation using unbiased ferromagnetic nanowires arrays. IEEE Trans Magn 49(7):4261CrossRefGoogle Scholar
  5. 5.
    Favier F, Walter EC, Zach MP, Benter T, Penner RM (2001) Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293:2227CrossRefGoogle Scholar
  6. 6.
    Murray BJ, Walter EC, Penner RM (2004) Amine vapor sensing with silver mesowires. Nano Lett 4(4):665CrossRefGoogle Scholar
  7. 7.
    Nielsch K, Wehrspohn RB, Fischer SF, Kronmiller H, Kirsehner J, Gosele U (2001) Magnetic properties of 100 nm-period nickel nanowire arrays obtained from ordered porous-alumina templates. Mater Res Soc Symp Proc 9:636Google Scholar
  8. 8.
    Wang T, Wang Y, Fu Y, Hasegawa T, Oshima H, Itoh K, Nishio K, Masuda H, Li FS, Saito H, Ishio S (2008) Magnetic behavior in an ordered Co nanorod array. Nanotechnology 19:455703CrossRefGoogle Scholar
  9. 9.
    Proenca MP, Sousa CT, Escrig J, Ventura J, Vazquez M, Araujo JP (2013) Magnetic interactions and reversal mechanisms in Co nanowire and nanotube arrays. J Appl Phys 113:093907CrossRefGoogle Scholar
  10. 10.
    Li J, Papadopoulos C, Xu JM (1999) Highly-ordered carbon nanotube arrays for electronics applications. Appl Phys Lett 75:367CrossRefGoogle Scholar
  11. 11.
    Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989CrossRefGoogle Scholar
  12. 12.
    Martin CR, Baker LA (2005) Expanding the molecular electronics toolbox. Science 309:67CrossRefGoogle Scholar
  13. 13.
    Martin CR, Kohli P (2003) The emerging field of nanotube biotechnology. Nat Rev Drug Discov 2:29CrossRefGoogle Scholar
  14. 14.
    Lee SB, Mitchell DT, Trofin L, Nevanen TK, Soderlund H, Martin CR (2002) Antibody-based bio/nanotube membranes for enantiomeric drug separations. Science 296:2198CrossRefGoogle Scholar
  15. 15.
    Escrig J, Altbir D, Jaafar M, Navas D, Asenjo A, Vázquez M (2007) Remanence of Ni nanowires: influence of size and labyrinth magnetic structure. Phys Rev B 75:184429CrossRefGoogle Scholar
  16. 16.
    Lee J, Suess D, Schrefl T, Oh KH, Fidler J (2007) Magnetic characteristics of ferromagnetic nanotube. J Magn Magn Mater 310:2445CrossRefGoogle Scholar
  17. 17.
    Choi D, Park J, Kim S, Gracias D, Cho M, Kim Y, Fung A, Lee S, Chen Y, Khanal S, Baral S, Kim J (2008) Hyperthermia with magnetic nanowires for inactivating living cells. J Nanosci Nanotechnol 8:1–5CrossRefGoogle Scholar
  18. 18.
    Albrecht TT, Schotter TJ, Kästle CA, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black CT, Tuominen MT, Russell TP (2000) Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290:2126CrossRefGoogle Scholar
  19. 19.
    Nicoleta L (2010) Electrodeposited nanowires and their applications. Intech-Olajnica, vol. 1, p 141Google Scholar
  20. 20.
    Fert A, Piraux L (1999) Magnetic nanowires. J Magn Magn Mater 200:338CrossRefGoogle Scholar
  21. 21.
    Encinas-Oropesa A, Demand M, Piraux L, Huynen I, Ebels U (2001) Dipolar interactions in arrays of nickel nanowires studied by ferromagnetic resonance. Phys Rev B 63:104415CrossRefGoogle Scholar
  22. 22.
    Vazquez M, Hernandez-Velez M, Pirota K, Asenjo A, Navas D, Velazquez J, Vargas P, Ramos C (2004) Arrays of Ni nanowires in alumina membranes: magnetic properties and spatial ordering. Eur Phys J B40:489CrossRefGoogle Scholar
  23. 23.
    Navas D, Asenjo A, Jaafar M, Pirota KR, Hernandez-Velez M, Sanz R, Lee W, Nielsch K, Batallan F, Vazquez M (2005) Magnetic behavior of NixFe (100-x) (65 < x < 100) nanowire arrays. J Magn Magn Mater 290:191CrossRefGoogle Scholar
  24. 24.
    Sun L, Hao Y, Chien CL, Searson PC (2005) Tuning the properties of magnetic nanowires. IBM J Res Dev 49:1CrossRefGoogle Scholar
  25. 25.
    Han XF, Shamaila S, Sharif R, Chen JY, Liu HR, Dong-Ping L (2009) Structural and magnetic properties of various ferromagnetic nanotubes. Adv Mater 21:4619CrossRefGoogle Scholar
  26. 26.
    Rosa WO, Jaafar M, Asenjo A, Vázquez M (2009) Co nanostructured array in patterned polymeric template. J Appl Phys 105:07C108CrossRefGoogle Scholar
  27. 27.
    Sun L, Chen Q (2009) Core-shell cylindrical magnetic domains in Nickel nanowires prepared under magnetic flux. J Phys Chem C113:2710Google Scholar
  28. 28.
    Eftekhari A (2008) Nanostructured materials in electrochemistry. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  29. 29.
    Asenjo A, Garcia JM, Vazquez M (2001) Magnetic force microscopy: an advance technique for the observation of magnetic domains and walls. Recent Res Dev Magn 2:25Google Scholar
  30. 30.
    Jaafar M, Gomez-Herrero J, Gil A, Ares P, Vazquez M, Asenjo A (2009) Variable field magnetic force microscopy. Ultramicroscopy 109:693CrossRefGoogle Scholar
  31. 31.
    Pei WL, Qin GW, Ren YP, Li S, Wang T, Hasegawa H, Ishio S, Yamane H (2011) Incoherent magnetization reversal in Co–Pt nanodots investigated by magnetic force microscopy. Acta Mater 59:4818CrossRefGoogle Scholar
  32. 32.
    Jaafar M, Iglesias-Freire O, Serrano-Ramón L, Ibarra MR, de Teresa JM, Asenjo A (2011) Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy–magnetic force microscopy combination. Beilstein J Nanotechnol 2:552CrossRefGoogle Scholar
  33. 33.
    Piraux L, Antohe VA, Abreu Araujo F, Srivastava SK, Hehn M, Lacour D, Mangin S, Hauet T (2012) Periodic arrays of magnetic nanostructures by depositing Co/Pt multilayers on the barrier layer of ordered anodic alumina templates. Appl Phys Lett 101:013110CrossRefGoogle Scholar
  34. 34.
    Tabasum MR, Zighem F, Medina JDLT, Encinas A, Piraux L, Nysten B (2014) Magnetic force microscopy investigation of arrays of nickel nanowires and nanotubes. Nanotechnology 25:245707CrossRefGoogle Scholar
  35. 35.
    Sorop TG, Untiedt C, Luis F, Kröll M, Rasa M, de Jongh LJ (2003) Magnetization reversal of ferromagnetic nanowires studied by magnetic force microscopy. Phys Rev B 67:014402CrossRefGoogle Scholar
  36. 36.
    Yuan J, Pei W, Hasagawa T, Washiyaa T, Saito H, Ishio S, Oshima H, Itoh K (2008) Study on magnetization reversal of cobalt nanowire arrays by magnetic force microscopy. J Magn Magn Mater 320:736CrossRefGoogle Scholar
  37. 37.
    Tabasum MR, Zighem F, De La Torre Medina J, Piraux L, Nysten B (2013a) Intrinsic switching field distribution of arrays of Ni80Fe20 nanowires probed by in situ magnetic force microscopy. J Superconduct Novel Magn 26: 1375; Tabasum MR, Zighem F, Medina JDLT, Encinas A, Piraux L, Nysten B (2013b) Magnetic force microscopy study of the switching field distribution of low density arrays of single domain magnetic nanowires. J Appl Phys 113: 183908Google Scholar
  38. 38.
    Keller F, Hunter MS, Robinson DL (1953) Structural features of oxide coatings on aluminium. J Electrochem Soc 100(9):411CrossRefGoogle Scholar
  39. 39.
    Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268:1466CrossRefGoogle Scholar
  40. 40.
    Daub M, Knez M, Goesele U, Nielsch K (2007) Ferromagnetic nanotubes by atomic layer deposition in anodic alumina membranes. J Appl Phys 101:09J111CrossRefGoogle Scholar
  41. 41.
    Schlorb H, Haehnel V, Khatri MS, Srivastav A, Kumar A, Schultz L, Fahler S (2010) Magnetic nanowires by electrodeposition within templates. Phys Status Solidi B 247(10):2364CrossRefGoogle Scholar
  42. 42.
    Vater P (1988) Production and applications of nuclear track micro filter. Nucl Tracks Radiat Meas 15:743CrossRefGoogle Scholar
  43. 43.
    Ferain E, Legras R (2003) Track-etch templates designed for micro- and nanofabrication. Nucl Instr Methods Phys Res B 208:115CrossRefGoogle Scholar
  44. 44.
    Hu J, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Accounts Chem Res 32:435CrossRefGoogle Scholar
  45. 45.
    Bao J, Tie C, Xu Z, Zhou Q, Shen D, Ma Q (2001) Template synthesis of an array of nickel nanotubules and its magnetic behavior. Adv Mater 13:21CrossRefGoogle Scholar
  46. 46.
    Sui YC, Skomski R, Sorge KD, Sellmyer DJ (2004) Nanotube magnetism. Appl Phys Lett 84:1527CrossRefGoogle Scholar
  47. 47.
    Wang Q, Wang G, Han X, Wang X, Hou JG (2005) Controllable template synthesis of Ni/Cu nanocable and Ni nanotube arrays: a one-step co-deposition and electrochemical etching method. J Phys Chem B 109:23326CrossRefGoogle Scholar
  48. 48.
    Tao F, Guan M, Jiang Y, Zhu J, Xu Z, Xue Z (2006) An easy way to construct an ordered array of nickel nanotubes: the triblock-copolymer-assisted hard-template method. Adv Mater 18:2161CrossRefGoogle Scholar
  49. 49.
    Liu J, Wang F, Zhai J, Ji J (2010) Controllable growth and magnetic characterization of electrodeposited nanocrystalline Ni-P alloy nanotube and nanowire arrays in AAO template. J Elect Chem 642:103Google Scholar
  50. 50.
    Rozman KZ, Pecko D, Suhodolcan L, McGuiness PJ, Kobe S (2011) Electrochemical syntheses of soft and hard magnetic Fe50Pd50-based nanotubes and their magnetic characterization. J Alloys Compd 509:551CrossRefGoogle Scholar
  51. 51.
    Aravena DS, Corona RM, Goerlitz D, Nielsch K, Escrig J (2013) Magnetic properties of multisegmented cylindrical nanoparticles with alternating magnetic wire and tube segments. J Magn Magn Mater 346:171CrossRefGoogle Scholar
  52. 52.
    Zhang HM, Zhang XL, Zhang JJ, Li ZY, Sun HY (2013) Fabrication and magnetic properties of CoNi alloy nanotube arrays. J Magn Magn Mater 342:69CrossRefGoogle Scholar
  53. 53.
    Chen YH, Duan JL, Yao HJ, Mo D, Liu TQ, Wang TS, Hou MD, Sun YM, Liu J (2014) Facile preparation and magnetic properties of Ni nanotubes in polycarbonate ion-track templates. Phys B 441:1CrossRefGoogle Scholar
  54. 54.
    Galvan YV, Martınez-Huerta JM, De La Torre Medina J, Danlee Y, Piraux L, Encinas A (2014) Dipolar interaction in arrays of magnetic nanotubes. J Phys Condens Matter 26:026001CrossRefGoogle Scholar
  55. 55.
    Karim S, Maaz K (2011) Magnetic behavior of arrays of nickel nanowires: effect of microstructure and aspect ratio. Mat Chem Phys 130:1103CrossRefGoogle Scholar
  56. 56.
    Hartmann U (1999) Magnetic force microscopy. Ann Rev Mater Sci 29:53CrossRefGoogle Scholar
  57. 57.
    Ferri FA, Pereira-da-Silva MA, Marega EJ (2012) In: Bellitto V (ed) Magnetic force microscopy: basic principles and applications, atomic force microscopy – imaging, measuring and manipulating surfaces at the atomic scale. ISBN: 978-953-51-0414-8 InTechGoogle Scholar
  58. 58.
    Metzger RM, Konovalov VV, Sun M, Xu T, Zangari G, Xu B, Benakli M, Doyle WD (2000) Magnetic nanowires in hexagonally ordered pores of alumina. IEEE Trans Magn 36:30CrossRefGoogle Scholar
  59. 59.
    McGary PD, Tan L, Zou J, Stadler BJH, Downey PR, Flatau AB (2006) Magnetic nanowires for acoustic sensors. J Appl Phys 99:08B310CrossRefGoogle Scholar
  60. 60.
    Darques M, Piraux L, Encinas A, Bayle-Guillemaud P, Popa A, Ebels U (2005) Electrochemical control and selection of the structural and magnetic properties of cobalt nanowires. Appl Phys Lett 86:072508CrossRefGoogle Scholar
  61. 61.
    Belliard L, Millat J, Thiaville A, Dubois S, Duvail JL, Piraux L (1998) Observing magnetic nanowires by means of magnetic force microscopy. J Magn Magn Mater 190:1CrossRefGoogle Scholar
  62. 62.
    Kou X, Fan X, Dumas RK, Lu Q, Zhang Y, Zhu H, Zhang X, Liu K, Xiao JQ (2011) Memory effect in magnetic nanowire arrays. Adv Mater 23:1393CrossRefGoogle Scholar
  63. 63.
    Chen YJ, Huang TL, Shi JZ, Deng J, Ding J, Li WM, Leong SH, Zong BY, Hnin Yu Yu Ko, Hu SB, Zhao JM (2012) Individual bit island reversal and switching field distribution in perpendicular magnetic bit patterned media. J Magn Magn Mater 324:264CrossRefGoogle Scholar
  64. 64.
    Asenjo A, Jaafar M, Navas D, Vázquez M (2006) Quantitative magnetic force microscopy analysis of the magnetization process in nanowire arrays. J Appl Phys 100:023909CrossRefGoogle Scholar
  65. 65.
    Sharif R, Shamaila S, Ma M, Yao LD, Yu RC, Han XF, Khaleeq-ur-Rahman M (2008) Magnetic switching of ferromagnetic nanotubes. Appl Phys Lett 92:032505CrossRefGoogle Scholar
  66. 66.
    Chen AP, Gonzalez J, Guslienko KY (2012) Domain walls confined in magnetic nanotubes with uniaxial anisotropy. J Magn Magn Mater 324:3912CrossRefGoogle Scholar
  67. 67.
    Lopez-Lopez JA, Cortés-Ortuno D, Landeros P (2012) Role of anisotropy on the domain wall properties of ferromagnetic nanotubes. J Magn Magn Mater 324:2024CrossRefGoogle Scholar
  68. 68.
    Zhang Z, Zhang H, Wu T, Li Z, Zhang Z, Sun H (2013) Comparative study in fabrication and magnetic properties of FeNi alloy nanowires and nanotubes. J Magn Magn Mater 331:162CrossRefGoogle Scholar
  69. 69.
    Wang XW, Yuan ZH, Fang BC (2011) Template-based synthesis and magnetic properties of Ni nanotube arrays with different diameters. Mater Chem Phys 125:1CrossRefGoogle Scholar
  70. 70.
    Landeros P, Allende S, Escrig J, Salcedo E, Altbir D (2007) Reversal modes in magnetic nanotubes. Appl Phys Lett 90:102501CrossRefGoogle Scholar
  71. 71.
    Usov NA, Zhukov A, Gonzalez J (2007) Domain walls and magnetization reversal process in soft magnetic nanowires and nanotubes. J Magn Magn Mater 316:255CrossRefGoogle Scholar
  72. 72.
    Escrig J, Landeros P, Altbir D, Vogel EE, Vargas P (2007) Phase diagrams of magnetic nanotubes. J Magn Magn Mater 308:233CrossRefGoogle Scholar
  73. 73.
    Meeker DC (2014) Finite element method magnetics (, used the package in
  74. 74.
    Aharoni A, Shtrikman S (1958) Magnetization curve of the infinite cylinder. Phys Rev 109:1522CrossRefGoogle Scholar
  75. 75.
    Zighem F, Maurer T, Ott F, Chaboussant G (2011) Dipolar interactions in arrays of ferromagnetic nanowires: a micromagnetic study. J Appl Phys 109:013910CrossRefGoogle Scholar
  76. 76.
    Ferré R, Ounadjela K, George JM, Piraux L, Dubois S (1997) Magnetization processes in nickel and cobalt electrodeposited nanowires. Phys Rev B 56:14066CrossRefGoogle Scholar
  77. 77.
    Wang XW, Fei GT, Chen L, Xu XJ, Zhang LD (2007) Orientation-controllable growth of Ni nanowire arrays with different diameters. Electrochem Solid-State Lett 10(4):E1–E3Google Scholar
  78. 78.
    Nam B, Kim J, Hyeon JJ (2012) Analysis of effective permeability behaviors of magnetic hollow fibers filled in composite. J Appl Phys 111:07E347CrossRefGoogle Scholar
  79. 79.
    Fischbacher T, Franchin M, Bordignon G, Fangohr H (2007) A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: NMAG. IEEE Trans Magn 43:2896CrossRefGoogle Scholar
  80. 80.
    Rozman KZ, Rhein F, Wolff U, Neu V (2014) Single-vortex magnetization distribution and its reversal behaviour in Co-Pt nanotubes. Acta Mater 81:469CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Muhammad Ramzan Tabasum
    • 1
    Email author
  • Fatih Zighem
    • 2
  • Luc Piraux
    • 1
  • Bernard Nysten
    • 1
  1. 1.Institute of Condensed Matter and Nanosciences, Bio and Soft Matter (IMCN/BSMA)Université catholique de LouvainLouvain La NeuveBelgium
  2. 2.LSPM, CNRS-Université Paris 13Sorbonne Paris CitéVilletaneuseFrance

Personalised recommendations