Magnetic Rotational Spectroscopy for Probing Rheology of Nanoliter Droplets and Thin Films

  • Konstantin G. KornevEmail author
  • Yu Gu
  • Pavel Aprelev
  • Alexander Tokarev


In situ characterization of minute amounts of complex fluids is a challenge. Magnetic rotational spectroscopy (MRS) with submicron probes offers flexibility and accuracy providing desired spatial and temporal resolution in characterization of nanoliter droplets and thin films when other methods fall short. MRS analyzes distinct features of the in-plane rotation of a magnetic probe, when its magnetic moment makes full revolution following an external rotating magnetic field. The probe demonstrates a distinguishable movement which changes from rotation to tumbling to trembling as the frequency of rotation of the driving magnetic field changes. In practice, MRS has been used in analysis of gelation of thin polymer films, ceramic precursors, and nanoliter droplets of insect biofluids. MRS is a young field, but it has many potential applications requiring rheological characterization of scarcely available, chemically reacting complex fluids.


Magnetic Field Newtonian Fluid Magnetic Probe Particle Rotation Magnetic Torque 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been conducted over the last decade and we thank our collaborators, especially, Guzelia Korneva, Derek Halverson, Gary Friedman, Yury Gogotsi, Alexey Aprelev, Taras Andrukh, Daria Monaenkova, Binyamin Rubin, Igor Luzinov, Bogdan Zdyrko, Ruslan Byrtovyy, Jeffery Owens, Kim Ivey, and David White. The authors are grateful for the financial support of the National Science Foundation and the Air Force Office of Scientific Research.


  1. 1.
    Doi M, Edwards SF (1988) The theory of polymer dynamics, Paperback, with corrections. Clarendon, Oxford, EditionGoogle Scholar
  2. 2.
    Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    Vincent JFV (2012) Structural biomaterials, 3rd edn. Princeton University Press, PrincetonGoogle Scholar
  4. 4.
    Vogel S (2003) Comparative biomechanics: life’s physical world. Princeton University Press, PrincetonGoogle Scholar
  5. 5.
    Brinker CJ, Scherer JW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Gulf Professional Publishing. Academic Press, BostonGoogle Scholar
  6. 6.
    Apgar J, Tseng Y, Fedorov E, Herwig MB, Almo SC, Wirtz D (2000) Multiple-particle tracking measurements of heterogeneities in solutions of actin filaments and actin bundles. Biophys J 79:1095–1106CrossRefGoogle Scholar
  7. 7.
    Blanchard GB, Adams RJ (2011) Measuring the multi-scale integration of mechanical forces during morphogenesis. Curr Opin Genet Dev 21:653–663CrossRefGoogle Scholar
  8. 8.
    Carlsson AE (2010) Actin dynamics: from nanoscale to microscale. Annual review of biophysics, vol 39. pp 91–110Google Scholar
  9. 9.
    Daniels BR, Masi BC, Wirtz D (2006) Probing single-cell micromechanics in vivo: the microrheology of C-elegans developing embryos. Biophys J 90:4712–4719CrossRefGoogle Scholar
  10. 10.
    Davidson LA, Koehl MAR, Keller R, Oster GF (1995) How do sea-urchins invaginate – using biomechanics to distinguish between mechanisms of primary invagination. Development 121:2005–2018Google Scholar
  11. 11.
    Martin AC, Kaschube M, Wieschaus EF (2009) Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457:495–499, U411CrossRefGoogle Scholar
  12. 12.
    Varner VD, Nelson CM (2013) Let’s push things forward: disruptive technologies and the mechanics of tissue assembly. Integr Biol 5:1162–1173CrossRefGoogle Scholar
  13. 13.
    Abou B, Gay C, Laurent B, Cardoso O, Voigt D, Peisker H, Gorb S (2010) Extensive collection of femtolitre pad secretion droplets in the beetle Leptinotarsa decemlineata allows nanolitre microrheology. J R Soc Interface 7:1745–1752CrossRefGoogle Scholar
  14. 14.
    Mason TG, Weitz DA (1995) Optical measurements of frequency dependent linear viscoelastic moduli of complex fluids. Phys Rev Lett 74:1250–1253CrossRefGoogle Scholar
  15. 15.
    Waigh TA (2005) Microrheology of complex fluids. Rep Prog Phys 68:685CrossRefGoogle Scholar
  16. 16.
    Gomes FA (2008) Biological applications of microfluidics. Wiley-Interscience, New YorkGoogle Scholar
  17. 17.
    Barabino GA, Platt MO, Kaul DK (2010) Sickle cell biomechanics. In: Yarmush ML, Duncan JS, Gray ML (eds) Annual review of biomedical engineering, vol 12. Annual Reviews, Palo Alto, pp 345–367Google Scholar
  18. 18.
    Aprelev A, Liu ZH, Ferrone FA (2011) The growth of sickle hemoglobin polymers. Biophys J 101:885–891CrossRefGoogle Scholar
  19. 19.
    Aprelev A, Weng WJ, Zakharov M, Rotter M, Yosmanovich D, Kwong S, Briehl RW, Ferrone FA (2007) Metastable polymerization of sickle hemoglobin in droplets. J Mol Biol 369:1170–1174CrossRefGoogle Scholar
  20. 20.
    Zavyalova EG, Protopopova AD, Kopylov AM, Yaminsky IV (2011) Investigation of early stages of fibrin association. Langmuir 27:4922–4927CrossRefGoogle Scholar
  21. 21.
    Hall CE, Slayter HS (1959) The fibrinogen molecule: its size, shape, and mode of polymerization. J Biophys Biochem Cytol 5:11–16CrossRefGoogle Scholar
  22. 22.
    Ferri F, Greco M, Arcovito G, Bassi FA, De Spirito M, Paganini E, Rocco M (2001) Growth kinetics and structure of fibrin gels. Phys Rev E 63:031401CrossRefGoogle Scholar
  23. 23.
    Chapman RF (1998) The insects: structure and function, 4th edn. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  24. 24.
    Sa V, Kornev KG (2011) A method for wet spinning of alginate fibers with a high concentration of single-walled carbon nanotubes. Carbon 49:1859–1868CrossRefGoogle Scholar
  25. 25.
    Grigoryev A, Sa V, Gopishetty V, Tokarev I, Kornev KG, Minko S (2013) Wet-spun stimuli-responsive composite fibers with tunable electrical conductivity. Adv Funct Mater 23:5903–5909CrossRefGoogle Scholar
  26. 26.
    Austero MS, Donius AE, Wegst UGK, Schauer CL (2012) New crosslinkers for electrospun chitosan fibre mats. I. Chemical analysis. J R Soc Interface 9:2551–2562CrossRefGoogle Scholar
  27. 27.
    Donius AE, Kiechel MA, Schauer CL, Wegst UGK (2013) New crosslinkers for electrospun chitosan fibre mats. Part II: mechanical properties. J R Soc Interface 10:20120946CrossRefGoogle Scholar
  28. 28.
    Schiffman JD, Stulga LA, Schauer CL (2009) Chitin and chitosan: transformations due to the electrospinning process. Polym Eng Sci 49:1918–1928CrossRefGoogle Scholar
  29. 29.
    Wilson LG, Harrison AW, Schofield AB, Arlt J, Poon WCK (2009) Passive and active microrheology of hard-sphere colloids. J Phys Chem B 113:3806–3812CrossRefGoogle Scholar
  30. 30.
    Squires TM, Mason TG (2010) Fluid mechanics of microrheology. Annu Rev Fluid Mech 42:413–438CrossRefGoogle Scholar
  31. 31.
    Mason TG, Gang H, Weitz DA (1996) Rheology of complex fluids measured by dynamic light scattering. J Mol Struct 383:81–90CrossRefGoogle Scholar
  32. 32.
    Mason TG, Gang H, Weitz DA (1997) Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids. J Opt Soc Am A 14:139–149CrossRefGoogle Scholar
  33. 33.
    Scheffold F, Romer S, Cardinaux F, Bissig H, Stradner A, Rojas-Ochoa LF, Trappe V, Urban C, Skipetrov SE, Cipelletti L et al (2004) New trends in optical microrheology of complex fluids and gels. Prog Coll Pol Sci S 123:141–146Google Scholar
  34. 34.
    Ewoldt RH, Johnston MT, Caretta LM (2015) Experimental challenges of shear rheology: how to avoid bad data. In: Spagnolie S (ed) Complex fluids in biological systems. New York, Springer, pp 207–241Google Scholar
  35. 35.
    Banchio AJ, Nagele G, Bergenholtz J (1999) Viscoelasticity and generalized Stokes-Einstein relations of colloidal dispersions. J Chem Phys 111:8721–8740CrossRefGoogle Scholar
  36. 36.
    Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523–2558CrossRefGoogle Scholar
  37. 37.
    Tierno P (2014) Recent advances in anisotropic magnetic colloids: realization, assembly and applications. Phys Chem Chem Phys 16:23515–23528CrossRefGoogle Scholar
  38. 38.
    Sousa CT, Leitao DC, Proenca MP, Ventura J, Pereira AM, Araujo JP (2014) Nanoporous alumina as templates for multifunctional applications. Appl Phys Rev 1:031102CrossRefGoogle Scholar
  39. 39.
    Tokarev A, Lee WK, Sevonkaev I, Goia D, Kornev KG (2014) Sharpening the surface of magnetic paranematic droplets. Soft Matter 10:1917–1923CrossRefGoogle Scholar
  40. 40.
    Fievet F, Lagier JP, Blin B, Beaudoin B, Figlarz M (1989) Homogeneous and heterogeneous nucleations in the polyol processfor the preparation of micron and submicron size meal particles. Solid State Ion 32–3:198–205CrossRefGoogle Scholar
  41. 41.
    Goia DV (2004) Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions. J Mater Chem 14:451–458CrossRefGoogle Scholar
  42. 42.
    Goia DV, Matijevic E (1998) Preparation of monodispersed metal particles. N J Chem 22:1203–1215CrossRefGoogle Scholar
  43. 43.
    Pal A, Sevonkaev I, Bartling B, Rijssenbeek J, Goia DV (2014) Dipentaerythritol: a novel additive for the precipitation of dispersed Ni particles in polyols. RSC Adv 4:20909–20914CrossRefGoogle Scholar
  44. 44.
    Crick FHC (1950) The physical properties of cytoplasm. A study by means of the magnetic particle method. Part II. Theoretical treatment. Exp Cell Res 1:505–533CrossRefGoogle Scholar
  45. 45.
    Crick FHC, Hughes AFW (1950) The physical properties of cytoplasm: a study by means of the magnetic particle method Part I. Experimental. Exp Cell Res 1:37–80CrossRefGoogle Scholar
  46. 46.
    Valberg PA, Feldman HA (1987) Magnetic particle motions within living cells – measurement of cytoplasmic viscosity and motile activity. Biophys J 52:551–561CrossRefGoogle Scholar
  47. 47.
    Schmidt FG, Ziemann F, Sackmann E (1996) Shear field mapping in actin networks by using magnetic tweezers. Eur Biophys J Biophys 24:348–353CrossRefGoogle Scholar
  48. 48.
    Amblard F, Maggs AC, Yurke B, Pargellis AN, Leibler S (1996) Subdiffusion and anomalous local viscoelasticity in actin networks. Phys Rev Lett 77:4470–4473CrossRefGoogle Scholar
  49. 49.
    Li Y, Burke D, Kopelman R, Burns M (2014) Asynchronous magnetic bead rotation (AMBR) microviscometer for label-free DNA analysis. Biosensors 4:76–89CrossRefGoogle Scholar
  50. 50.
    McNaughton BH, Kinnunen P, Smith RG, Pei SN, Torres-Isea R, Kopelman R, Clarke R (2009) Compact sensor for measuring nonlinear rotational dynamics of driven magnetic microspheres with biomedical applications. J Magn Magn Mater 321:1648–1652CrossRefGoogle Scholar
  51. 51.
    McNaughton BH, Kehbein KA, Anker JN, Kopelman R (2006) Sudden breakdown in linear response of a rotationally driven magnetic microparticle and application to physical and chemical microsensing. J Phys Chem B 110:18958–18964CrossRefGoogle Scholar
  52. 52.
    Amblard F, Yurke B, Pargellis A, Leibler S (1996) A magnetic manipulator for studying local rheology and micromechanical properties of biological systems. Rev Sci Instrum 67:818–827CrossRefGoogle Scholar
  53. 53.
    Ziemann F, Radler J, Sackmann E (1994) Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer. Biophys J 66:2210–2216CrossRefGoogle Scholar
  54. 54.
    Bausch AR, Moller W, Sackmann E (1999) Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys J 76:573–579CrossRefGoogle Scholar
  55. 55.
    Barrera C, Florian-Algarin V, Acevedo A, Rinaldi C (2010) Monitoring gelation using magnetic nanoparticles. Soft Matter 6:3662–3668CrossRefGoogle Scholar
  56. 56.
    Calero-DdelC VL, Santiago-Quinonez DI, Rinaldi C (2011) Quantitative nanoscale viscosity measurements using magnetic nanoparticles and SQUID AC susceptibility measurements. Soft Matter 7:4497–4503CrossRefGoogle Scholar
  57. 57.
    Roeben E, Roeder L, Teusch S, Effertz M, Deiters UK, Schmidt AM (2014) Magnetic particle nanorheology. Colloid Polym Sci 292:2013–2023CrossRefGoogle Scholar
  58. 58.
    Roeder L, Bender P, Tschope A, Birringer R, Schmidt AM (2012) Shear modulus determination in model hydrogels by means of elongated magnetic nanoprobes. J Polym Sci Part B-Polym Phys 50:1772–1781CrossRefGoogle Scholar
  59. 59.
    Zaner KS, Valberg PA (1989) Viscoelasticity of F-actin measured with magnetic microparticles. J Cell Biol 109:2233–2243CrossRefGoogle Scholar
  60. 60.
    Valberg PA, Albertini DF (1985) Cytoplasmic motions, rheology, and structure probed by a novel magnetic particle method. J Cell Biol 101:130–140CrossRefGoogle Scholar
  61. 61.
    Nguyen KVT, Anker JN (2014) Detecting de-gelation through tissue using magnetically modulated optical nanoprobes (MagMOONs). Sens Actuators B-Chem 205:313–321CrossRefGoogle Scholar
  62. 62.
    Anker JN, Behrend CJ, Huang HM, Kopelman R (2005) Magnetically-modulated optical nanoprobes (MagMOONs) and systems. J Magn Magn Mater 293:655–662CrossRefGoogle Scholar
  63. 63.
    Anker JN, Kopelman R (2003) Magnetically modulated optical nanoprobes. Appl Phys Lett 82:1102–1104CrossRefGoogle Scholar
  64. 64.
    Wilson LG, Poon WCK (2011) Small-world rheology: an introduction to probe-based active microrheology. Phys Chem Chem Phys 13:10617–10630CrossRefGoogle Scholar
  65. 65.
    Celedon A, Hale CM, Wirtz D (2011) Magnetic manipulation of nanorods in the nucleus of living cells. Biophys J 101:1880–1886CrossRefGoogle Scholar
  66. 66.
    Kinnunen P, Sinn I, McNaughton BH, Newton DW, Burns MA, Kopelman R (2011) Monitoring the growth and drug susceptibility of individual bacteria using asynchronous magnetic bead rotation sensors. Biosens Bioelectron 26:2751–2755CrossRefGoogle Scholar
  67. 67.
    Tokarev A, Aprelev A, Zakharov MN, Korneva G, Gogotsi Y, Kornev KG (2012) Multifunctional magnetic rotator for micro and nanorheological studies. Rev Sci Instrum 83:065110CrossRefGoogle Scholar
  68. 68.
    Tokarev A, Kaufman B, Gu Y, Andrukh T, Adler PH, Kornev KG (2013) Probing viscosity of nanoliter droplets of butterfly saliva by magnetic rotational spectroscopy. Appl Phys Lett 102:33701CrossRefGoogle Scholar
  69. 69.
    Tokarev A, Luzinov I, Owens JR, Kornev KG (2012) Magnetic rotational spectroscopy with nanorods to probe time-dependent rheology of microdroplets. Langmuir 28:10064–10071CrossRefGoogle Scholar
  70. 70.
    Wilhelm C, Browaeys J, Ponton A, Bacri JC (2003) Rotational magnetic particles microrheology: the Maxwellian case. Phys Rev E 67:011504CrossRefGoogle Scholar
  71. 71.
    Chevry L, Sampathkumar NK, Cebers A, Berret JF (2013) Magnetic wire-based sensors for the microrheology of complex fluids. Phys Rev E 88:62306CrossRefGoogle Scholar
  72. 72.
    Cappallo N, Lapointe C, Reich DH, Leheny RL (2007) Nonlinear microrheology of wormlike micelle solutions using ferromagnetic nanowire probes. Phys Rev E 76:031505CrossRefGoogle Scholar
  73. 73.
    Gu Y, Chen Z, Borodinov N, Luzinov I, Peng F, Kornev KG (2014) Kinetics of evaporation and gel formation in thin films of ceramic precursors. Langmuir. doi:10.1021/la5037986Google Scholar
  74. 74.
    Keshoju K, Xing H, Sun L (2007) Magnetic field driven nanowire rotation in suspension. Appl Phys Lett 91:123114CrossRefGoogle Scholar
  75. 75.
    Dhar P, Cao YY, Fischer TM, Zasadzinski JA (2010) Active interfacial shear microrheology of aging protein films. Phys Rev Lett 104:016001CrossRefGoogle Scholar
  76. 76.
    Frka-Petesic B, Erglis K, Berret JF, Cebers A, Dupuis V, Fresnais J, Sandre O, Perzynski R (2011) Dynamics of paramagnetic nanostructured rods under rotating field. J Magn Magn Mater 323:1309–1313CrossRefGoogle Scholar
  77. 77.
    Erglis K, Ose V, Zeltins A, Cebers A (2010) Viscoelasticity of the bacteriophage Pf1 network measured by magnetic microrheology. Magnetohydrodynamics 46:23–29Google Scholar
  78. 78.
    Allione M, Torre B, Casu A, Falqui A, Piacenza P, Di Corato R, Pellegrino T, Diaspro A (2011) Rod-shaped nanostructures based on superparamagnetic nanocrystals as viscosity sensors in liquid. J Appl Phys 110:064907CrossRefGoogle Scholar
  79. 79.
    Anguelouch A, Leheny RL, Reich DH (2006) Application of ferromagnetic nanowires to interfacial microrheology. Appl Phys Lett 89:111914CrossRefGoogle Scholar
  80. 80.
    Chippada U, Yurke B, Georges PC, Langrana NA (2009) A nonintrusive method of measuring the local mechanical properties of soft hydrogels using magnetic microneedles. J Biomech Eng-Trans ASME 131:021014CrossRefGoogle Scholar
  81. 81.
    Landau LD, Lifshitz EM (1960) Electrodynamics of continuous media. Pergamon, OxfordGoogle Scholar
  82. 82.
    Chikazumi S, Graham CD (2009) Physics of ferromagnetism, 2nd edn. Oxford University Press, Oxford/New YorkGoogle Scholar
  83. 83.
    Tokarev A, Rubin B, Bedford M, Kornev KG (2010) Magnetic nanorods for optofluidic applications. AIP Conf Proc 1311:204–209CrossRefGoogle Scholar
  84. 84.
    Frenkel J (1955) Kinetic theory of liquids. Dover, New YorkGoogle Scholar
  85. 85.
    Korneva G, Ye H, Gogotsi Y, Halverson D, Friedman G, Bradley J-C, Kornev KG (2005) Carbon nanotubes loaded with magnetic particles. Nano Lett 5:879–884CrossRefGoogle Scholar
  86. 86.
    Ghosh A, Mandal P, Karmakar S (2013) Analytical theory and stability analysis of an elongated nanoscale object under external torque. Phys Chem Chem Phys 15:10817–10823CrossRefGoogle Scholar
  87. 87.
    Zakharov MN, Aprelev A, Turner MS, Ferrone FA (2010) The microrheology of sickle hemoglobin gels. Biophys J 99:1149–1156CrossRefGoogle Scholar
  88. 88.
    Morozov KI, Leshansky AM (2014) The chiral magnetic nanomotors. Nanoscale 6:1580–1588CrossRefGoogle Scholar
  89. 89.
    Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, New YorkCrossRefGoogle Scholar
  90. 90.
    Newman JJ, Yarbroug RB (1968) Motions of a magnetic particle in a viscous medium. J Appl Phys 39:5566CrossRefGoogle Scholar
  91. 91.
    Tirado MM, Garciadelatorre J (1980) Rotational-dynamics of rigid, symmetric top macromolecules – application to circular-cylinders. J Chem Phys 73:1986–1993CrossRefGoogle Scholar
  92. 92.
    Blums E, Cebers A, Maiorov MM (1997) Magnetic fluids. Walter de Gruyter, New YorkGoogle Scholar
  93. 93.
    Tirado MM, Martinez CL, Delatorre JG (1984) Comparison of theories for the translational and rotational diffusion-coefficients of rod-like macromolecules – application to short DNA fragments. J Chem Phys 81:2047–2052CrossRefGoogle Scholar
  94. 94.
    Gu Y, Burtovyy R, Townsend J, Owens JR, Luzinov I, Kornev KG (2013) Collective alignment of nanorods in thin Newtonian films. Soft Matter 9:8532–8539CrossRefGoogle Scholar
  95. 95.
    Macosko CW (1994) Rheology: principles, measurements, and applications. Wiley-VCH, New YorkGoogle Scholar
  96. 96.
    Li L, Lee LJ (2005) Photopolymerization of HEMA/DEGDMA hydrogels in solution. Polymer 46:11540–11547CrossRefGoogle Scholar
  97. 97.
    Malkin AIA, Isayev AI (2006) Rheology concepts, methods, and applications. ChemTec Pub, TorontoGoogle Scholar
  98. 98.
    Valberg PA, Butler JP (1987) Magnetic particle motions within living cells – physical theory and techniques. Biophys J 52:537–550CrossRefGoogle Scholar
  99. 99.
    Moller W, Takenaka S, Rust M, Stahlhofen W, Heyder J (1997) Probing mechanical properties of living cells by magnetopneumography. J Aerosol Med 10:173–186CrossRefGoogle Scholar
  100. 100.
    Wilhelm C (2008) Out-of-equilibrium microrheology inside living cells. Phys Rev Lett 101:028101CrossRefGoogle Scholar
  101. 101.
    Wilhelm C, Gazeau F, Bacri JC (2003) Rotational magnetic endosome microrheology: viscoelastic architecture inside living cells. Phys Rev E 67:061908CrossRefGoogle Scholar
  102. 102.
    Bausch AR, Ziemann F, Boulbitch AA, Jacobson K, Sackmann E (1998) Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J 75:2038–2049CrossRefGoogle Scholar
  103. 103.
    Nayfeh AH (1993) Introduction to perturbation techniques, 1st edn. Wiley-VCH, New YorkGoogle Scholar
  104. 104.
    Evans BA, Shields AR, Carroll RL, Washburn S, Falvo MR, Superfine R (2007) Magnetically actuated nanorod arrays as biomimetic cilia. Nano Lett 7:1428–1434CrossRefGoogle Scholar
  105. 105.
    Hosu BG, Jakab K, Banki P, Toth FI, Forgacs G (2003) Magnetic tweezers for intracellular applications. Rev Sci Instrum 74:4158–4163CrossRefGoogle Scholar
  106. 106.
    Kinnunen P, Sinn I, McNaughton BH, Kopelman R (2010) High frequency asynchronous magnetic bead rotation for improved biosensors. Appl Phys Lett 97:223701CrossRefGoogle Scholar
  107. 107.
    Helgesen G, Pieranski P, Skjeltorp AT (1990) Dynamic behavior of simple magnetic hole systems. Phys Rev A 42:7271–7280CrossRefGoogle Scholar
  108. 108.
    Helgesen G, Pieranski P, Skjeltorp AT (1990) Nonlinear phenomena in systems of magnetic holes. Phys Rev Lett 64:1425–1428CrossRefGoogle Scholar
  109. 109.
    Vuppu AK, Garcia AA, Hayes MA (2003) Video microscopy of dynamically aggregated paramagnetic particle chains in an applied rotating magnetic field. Langmuir 19:8646–8653CrossRefGoogle Scholar
  110. 110.
    Mosconi F, Allemand JF, Croquette V (2011) Soft magnetic tweezers: a proof of principle. Rev Sci Instrum 82:034302CrossRefGoogle Scholar
  111. 111.
    Celedon A, Nodelman IM, Wildt B, Dewan R, Searson P, Wirtz D, Bowman GD, Sun SX (2009) Magnetic tweezers measurement of single molecule torque. Nano Lett 9:1720–1725CrossRefGoogle Scholar
  112. 112.
    Hultgren A, Tanase M, Chen CS, Meyer GJ, Reich DH (2003) Cell manipulation using magnetic nanowires. J Appl Phys 93:7554–7556CrossRefGoogle Scholar
  113. 113.
    Tokarev A, Gu Y, Zakharchenko A, Trotsenko O, Luzinov I, Kornev KG, Minko S (2014) Reconfigurable anisotropic coatings via magnetic field-directed assembly and translocation of locking magnetic chains. Adv Funct Mater 24:4738–4745CrossRefGoogle Scholar
  114. 114.
    Gu Y, Kornev KG (2014) Attachment/detachment hysteresis of fiber-based magnetic grabbers. Soft Matter 10:2816–2824CrossRefGoogle Scholar
  115. 115.
    Gu Y, Burtovyy R, Custer J, Luzinov I, Kornev KG (2014) A gradient field defeats the inherent repulsion between magnetic nanorods. 1:140271Google Scholar
  116. 116.
    Llandro J, Palfreyman JJ, Ionescu A, Barnes CHW (2010) Magnetic biosensor technologies for medical applications: a review. Med Biol Eng Comput 48:977–998CrossRefGoogle Scholar
  117. 117.
    Lipfert J, Kerssemakers JJW, Rojer M, Dekker NH (2011) A method to track rotational motion for use in single-molecule biophysics. Rev Sci Instrum 82:103707CrossRefGoogle Scholar
  118. 118.
    Lipfert J, Wiggin M, Kerssemakers JWJ, Pedaci F, Dekker NH (2011) Freely orbiting magnetic tweezers to directly monitor changes in the twist of nucleic acids. Nat Commun 2:439CrossRefGoogle Scholar
  119. 119.
    De Vlaminck I, Dekker C (2012) Recent advances in magnetic tweezers. Annu Rev Biophys 41(41):453–472CrossRefGoogle Scholar
  120. 120.
    Yellen BB, Hovorka O, Friedman G (2005) Arranging matter by magnetic nanoparticle assemblers. Proc Natl Acad Sci U S A 102:8860–8864CrossRefGoogle Scholar
  121. 121.
    Gosse C, Croquette V (2002) Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys J 82:3314–3329CrossRefGoogle Scholar
  122. 122.
    Barbic M (2002) Magnetic wires in MEMS and bio-medical applications. J Magn Magn Mater 249:357–367CrossRefGoogle Scholar
  123. 123.
    Tierno P, Claret J, Sagues F, Cemacrbers A (2009) Overdamped dynamics of paramagnetic ellipsoids in a precessing magnetic field. Phys Rev E 79:021501CrossRefGoogle Scholar
  124. 124.
    Coq N, Ngo S, du Roure O, Fermigier M, Bartolo D (2010) Three-dimensional beating of magnetic microrods. Phys Rev E Stat Nonlin Soft Matter Phys 82:041503CrossRefGoogle Scholar
  125. 125.
    Robert D, Aubertin K, Bacri J-C, Wilhelm C (2012) Magnetic nanomanipulations inside living cells compared with passive tracking of nanoprobes to get consensus for intracellular mechanics. Phys Rev E 85:011905CrossRefGoogle Scholar
  126. 126.
    Sinn I, Albertson T, Kinnunen P, Breslauer DN, McNaughton BH, Burns MA, Kopelman R (2012) Asynchronous magnetic bead rotation microviscometer for rapid, sensitive, and label-free studies of bacterial growth and drug sensitivity. Anal Chem 84:5250–5256CrossRefGoogle Scholar
  127. 127.
    Sinn I, Kinnunen P, Albertson T, McNaughton BH, Newton DW, Burns MA, Kopelman R (2011) Asynchronous magnetic bead rotation (AMBR) biosensor in microfluidic droplets for rapid bacterial growth and susceptibility measurements. Lab Chip 11:2604–2611CrossRefGoogle Scholar
  128. 128.
    Zhang L, Petit T, Lu Y, Kratochvil BE, Peyer KE, Pei R, Lou J, Nelson BJ (2010) Controlled propulsion and cargo transport of rotating nickel nanowires near a patterned solid surface. ACS Nano 4:6228–6234CrossRefGoogle Scholar
  129. 129.
    Behrend CJ, Anker JN, McNaughton BH, Kopelman R (2005) Microrheology with modulated optical nanoprobes (MOONs). J Magn Magn Mater 293:663–670CrossRefGoogle Scholar
  130. 130.
    Anker JN, Lee Y-EK, Kopelman R (2014) Magnetically guiding and orienting integrated chemical sensors. J Magn Magn Mater 362:229–234CrossRefGoogle Scholar
  131. 131.
    Furst EM, Suzuki C, Fermigier M, Gast AP (1998) Permanently linked monodisperse paramagnetic chains. Langmuir 14:7334–7336CrossRefGoogle Scholar
  132. 132.
    Goubault C, Leal-Calderon F, Viovy J-L, Bibette J (2005) Self-assembled magnetic nanowires made irreversible by polymer bridging. Langmuir 21:3725–3729CrossRefGoogle Scholar
  133. 133.
    Tang ZY, Kotov NA (2005) One-dimensional assemblies of nanoparticles: preparation, properties, and promise. Adv Mater 17:951–962CrossRefGoogle Scholar
  134. 134.
    Motornov M, Malynych SZ, Pippalla DS, Zdyrko B, Royter H, Roiter Y, Kahabka M, Tokarev A, Tokarev I, Zhulina E et al (2012) Field-directed self-assembly with locking nanoparticles. Nano Lett 12:3814–3820CrossRefGoogle Scholar
  135. 135.
    Kornev KG, Halverson D, Korneva G, Gogotsi Y, Fridman G (2008) Magnetostatic interactions between carbon nanotubes filled with magnetic nanoparticles. Appl Phys Lett 92:233117CrossRefGoogle Scholar
  136. 136.
    Mattia D, Korneva G, Sabur A, Friedman G, Gogotsi Y (2007) Multifunctional carbon nanotubes with nanoparticles embedded in their walls. Nanotechnology 18:155305CrossRefGoogle Scholar
  137. 137.
    Freedman JR, Mattia D, Korneva G, Gogotsi Y, Friedman G, Fontecchio AK (2007) Magnetically assembled carbon nanotube tipped pipettes. Appl Phys Lett 90:103108CrossRefGoogle Scholar
  138. 138.
    Martin CR (1994) Nanomaterials – a membrane-based synthetic approach. Science 266:1961–1966CrossRefGoogle Scholar
  139. 139.
    Bentley AK, Farhoud M, Ellis AB, Nickel A-ML, Lisensky GC, Crone WC (2005) Template synthesis and magnetic manipulation of nickel nanowires. J Chem Educ 82:765CrossRefGoogle Scholar
  140. 140.
    Gupta MK, Kulkarni DD, Geryak R, Naik S, Tsukruk VV (2013) A robust and facile approach to assembling mobile and highly-open unfrustrated triangular lattices from ferromagnetic nanorods. Nano Lett 13:36–42CrossRefGoogle Scholar
  141. 141.
    Krishnadas KR, Sajanlal PR, Pradeep T (2011) Pristine and hybrid nickel nanowires: template-, magnetic field-, and surfactant-free wet chemical synthesis and Raman studies. J Phys Chem C 115:4483–4490CrossRefGoogle Scholar
  142. 142.
    Kulakov M, Luzinov I, Kornev KG (2009) Capillary and surface effects in the formation of nanosharp tungsten tips by electropolishing. Langmuir 25:4462–4468CrossRefGoogle Scholar
  143. 143.
    Nave M, Rubin B, Maximov V, Creager S, Kornev KG (2013) Transport-limited electrochemical formation of long nanosharp probes from tungsten. Nanotechnology 24:355702CrossRefGoogle Scholar
  144. 144.
    Buschow JKH, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, Veyssière P (2001) Encyclopedia of materials: science and technology. Pergamon, New York, p 10388Google Scholar
  145. 145.
    Hofmann G (1977) ISCO tables : a handbook of data for biological and physical scientists. Instrumentation Specialties Company, LincolnGoogle Scholar
  146. 146.
    Ribeiro JMC (1995) Insect saliva: function, biochemistry, and physiology. Chapman & Hall, New YorkGoogle Scholar
  147. 147.
    Terra WR (1990) Evolution of digestive systems of insects. Annu Rev Entomol 35:181–200CrossRefGoogle Scholar
  148. 148.
    Zussman E, Yarin AL, Nagler RM (2007) Age- and flow-dependency of salivary viscoelasticity. J Dent Res 86:281–285CrossRefGoogle Scholar
  149. 149.
    Tsai C-C, Monaenkova D, Beard CE, Adler PH, Kornev KG (2014) Paradox of the drinking-straw model of the butterfly proboscis. J Exp Biol 217:2130–2138CrossRefGoogle Scholar
  150. 150.
    Hu H, Larson RG (2002) Evaporation of a sessile droplet on a substrate. J Phys Chem B 106:1334–1344CrossRefGoogle Scholar
  151. 151.
    Edwards DA, Brenner H, Wasan DT (1991) Interfacial transport processes and rheology. Butterworth-Heinemann, BostonGoogle Scholar
  152. 152.
    Weaire D, Hutzler S (2001) The physics of foams. Oxford University PressGoogle Scholar
  153. 153.
    Ghaskadvi RS, Ketterson JB, MacDonald RC, Dutta P (1997) Apparatus to measure the shear modulus of Langmuir monolayers as functions of strain amplitude and frequency. Rev Sci Instrum 68:1792–1795CrossRefGoogle Scholar
  154. 154.
    Brooks CF, Fuller GG, Frank CW, Robertson CR (1999) An interfacial stress rheometer to study rheological transitions in monolayers at the air-water interface. Langmuir 15:2450–2459CrossRefGoogle Scholar
  155. 155.
    Ding JQ, Warriner HE, Zasadzinski JA, Schwartz DK (2002) Magnetic needle viscometer for Langmuir monolayers. Langmuir 18:2800–2806CrossRefGoogle Scholar
  156. 156.
    Bantchev GB, Schwartz DK (2003) Surface shear rheology of beta-casein layers at the air/solution interface: formation of a two-dimensional physical gel. Langmuir 19:2673–2682CrossRefGoogle Scholar
  157. 157.
    Choi SQ, Steltenkamp S, Zasadzinski JA, Squires TM (2011) Active microrheology and simultaneous visualization of sheared phospholipid monolayers. Nat Commun 2:312CrossRefGoogle Scholar
  158. 158.
    Zell ZA, Nowbahar A, Mansard V, Leal LG, Deshmukh SS, Mecca JM, Tucker CJ, Squires TM (2014) Surface shear inviscidity of soluble surfactants. Proc Natl Acad Sci U S A 111:3677–3682CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Konstantin G. Kornev
    • 1
    Email author
  • Yu Gu
    • 1
  • Pavel Aprelev
    • 1
  • Alexander Tokarev
    • 1
  1. 1.Department of Materials Science and EngineeringClemson UniversityClemsonUSA

Personalised recommendations