Magneto-Optical (MO) Characterization Tools for Chemically Prepared Magnetic Nanomaterials

  • Francesco PineiderEmail author
  • Claudio Sangregorio


Magneto-optical (MO) techniques are sensitive and versatile tools for the study of magnetic nanomaterials. Interaction of polarized light with a magnetized medium brings information on the magnetic properties of the sample, thus making MO techniques a valid alternative to standard magnetometric techniques. On the other hand, spectroscopic degrees of freedom arising from the tuneability of the incoming photon energy give access to an additional set of information, inaccessible to other investigation methods.


Indium Oxide Zeeman Splitting Leave Circularly Polarize Right Circularly Polarize Linearly Polarize Light 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial support from the European Research Council through the Advanced Grant “MolNanoMas” (267746) and from the Italian MIUR through FIRB project “NanoPlasMag” (RBFR10OAI0) is acknowledged.


  1. 1.
    Robinson AL (1986) Demonstrating single photon interference. Science 231:671CrossRefGoogle Scholar
  2. 2.
    Buckingham A, Stephens P (1966) Magnetic optical activity. Annu Rev Phys Chem 17:399–432CrossRefGoogle Scholar
  3. 3.
    Sessoli R, Gatteschi D, Caneschi A, Novak M (1993) Magnetic bistability in a metal-ion cluster. Nature 365:141–143CrossRefGoogle Scholar
  4. 4.
    Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. OUP, OxfordCrossRefGoogle Scholar
  5. 5.
    Tamura M, Nakazawa Y, Shiomi D, Nozawa K, Hosokoshi Y, Ishikawa M, Takahashi M, Kinoshita M (1991) Bulk ferromagnetism in the β-phase crystal of the p-nitrophenyl nitronyl nitroxide radical. Chem Phys Lett 186:401–404CrossRefGoogle Scholar
  6. 6.
    Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R, Barbara B (1996) Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature 383:145–147Google Scholar
  7. 7.
    Cornia A, Fabretti AC, Pacchioni M, Zobbi L, Bonacchi D, Caneschi A, Gatteschi D, Biagi R, Del Pennino U, De Renzi V (2003) Direct observation of single‐molecule magnets organized on gold surfaces. Angew Chem Int Ed 42:1645–1648CrossRefGoogle Scholar
  8. 8.
    Condorelli GG, Motta A, Fragalà IL, Giannazzo F, Raineri V, Caneschi A, Gatteschi D (2004) Anchoring molecular magnets on the Si (100) surface. Angew Chem Int Ed 43:4081–4084CrossRefGoogle Scholar
  9. 9.
    Mannini M, Pineider F, Sainctavit P, Danieli C, Otero E, Sciancalepore C, Talarico AM, Arrio MA, Cornia A, Gatteschi D, Sessoli R (2009) Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nat Mater 8:194–197CrossRefGoogle Scholar
  10. 10.
    Mannini M, Pineider F, Danieli C, Totti F, Sorace L, Sainctavit P, Arrio MA, Otero E, Joly L, Cezar JC, Cornia A, Sessoli R (2010) Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets. Nature 468:417–421CrossRefGoogle Scholar
  11. 11.
    McInnes EJL, Pidcock E, Oganesyan VS, Cheesman MR, Powell AK, Thomson AJ (2002) Optical detection of spin polarization in single-molecule magnets [Mn12O12 (O2CR) 16 (H2O) 4]. J Am Chem Soc 124:9219–9228CrossRefGoogle Scholar
  12. 12.
    Domingo N, Williamson B, Gómez-Segura J, Gerbier P, Ruiz-Molina D, Amabilino DB, Veciana J, Tejada J (2004) Magnetism of isolated Mn 12 single-molecule magnets detected by magnetic circular dichroism: observation of spin tunneling with a magneto-optical technique. Phys Rev B 69:052405CrossRefGoogle Scholar
  13. 13.
    Bogani L, Cavigli L, Gurioli M, Novak RL, Mannini M, Caneschi A, Pineider F, Sessoli R, Clemente‐León M, Coronado E (2007) Magneto‐optical investigations of nanostructured materials based on single‐molecule magnets monitor strong environmental effects. Adv Mater 19:3906–3911CrossRefGoogle Scholar
  14. 14.
    Mannini M, Sainctavit P, Sessoli R, Cartier dit Moulin C, Pineider F, Arrio MA, Cornia A, Gatteschi D (2008) XAS and XMCD investigation of Mn12 monolayers on gold. Chem Eur J 14:7530–7535Google Scholar
  15. 15.
    Mannini M, Pineider F, Sainctavit P, Joly L, Fraile‐Rodríguez A, Arrio MA, Cartier dit Moulin C, Wernsdorfer W, Cornia A, Gatteschi D (2009) X‐ray magnetic circular dichroism picks out single‐molecule magnets suitable for nanodevices. Adv Mater 21:167–171CrossRefGoogle Scholar
  16. 16.
    Novak R, Pineider F, de Julián Fernández C, Gorini L, Bogani L, Danieli C, Cavigli L, Cornia A, Sessoli R (2008) Magneto-optical studies on the molecular cluster Fe4 in different polymeric environments. Inorg Chim Acta 361:3970–3974CrossRefGoogle Scholar
  17. 17.
    Bradley JM, Thomson AJ, Inglis R, Milios CJ, Brechin EK, Piligkos S (2010) MCD spectroscopy of hexanuclear Mn (III) salicylaldoxime single-molecule magnets. Dalton Trans 39:9904–9911CrossRefGoogle Scholar
  18. 18.
    Timco GA, Faust TB, Tuna F, Winpenny RE (2011) Linking heterometallic rings for quantum information processing and amusement. Chem Soc Rev 40:3067–3075CrossRefGoogle Scholar
  19. 19.
    Kirchner N, Van Slageren J, Tsukerblat B, Waldmann O, Dressel M (2008) Antisymmetric exchange interactions in Ni 4 clusters. Phys Rev B 78:094426CrossRefGoogle Scholar
  20. 20.
    van Slageren J, Piligkos S, Neese F (2010) Magnetic circular dichroism spectroscopy on the Cr8 antiferromagnetic ring. Dalton Trans 39:4999–5004CrossRefGoogle Scholar
  21. 21.
    Coronado E, Makarewicz M, Prieto‐Ruiz JP, Prima‐García H, Romero FM (2011) Magneto‐optical properties of electrodeposited thin films of the molecule‐based magnet Cr5. 5 (CN) 12 · 11.5 H2O. Adv Mater 23:4323–4326CrossRefGoogle Scholar
  22. 22.
    Ishikawa N, Sugita M, Ishikawa T, Koshihara S-y, Kaizu Y (2003) Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J Am Chem Soc 125:8694–8695CrossRefGoogle Scholar
  23. 23.
    Gonidec M, Davies ES, McMaster J, Amabilino DB, Veciana J (2010) Probing the magnetic properties of three interconvertible redox states of a single-molecule magnet with magnetic circular dichroism spectroscopy. J Am Chem Soc 132:1756–1757CrossRefGoogle Scholar
  24. 24.
    Margheriti L, Chiappe D, Mannini M, Car PE, Sainctavit P, Arrio MA, de Mongeot FB, Cezar JC, Piras FM, Magnani A (2010) X‐ray detected magnetic hysteresis of thermally evaporated terbium double‐decker oriented films. Adv Mater 22:5488–5493CrossRefGoogle Scholar
  25. 25.
    Malavolti L, Mannini M, Car P-E, Campo G, Pineider F, Sessoli R (2013) Erratic magnetic hysteresis of TbPc 2 molecular nanomagnets. J Mater Chem C 1:2935–2942CrossRefGoogle Scholar
  26. 26.
    da Cunha TT, Jung J, Boulon ME, Campo G, Pointillart F, Pereira CL, Le Guennic B, Cador O, Bernot K, Pineider F, Golhen S, Ouahab L (2013) Magnetic poles determinations and robustness of memory effect upon solubilization in a Dy(III)-based single ion magnet. J Am Chem Soc 135:16332–16335CrossRefGoogle Scholar
  27. 27.
    Mack J, Stillman MJ, Kobayashi N (2007) Application of MCD spectroscopy to porphyrinoids. Coord Chem Rev 251:429–453CrossRefGoogle Scholar
  28. 28.
    Fronk M, Bräuer B, Kortus J, Schmidt O, Zahn D, Salvan G (2009) Determination of the Voigt constant of phthalocyanines by magneto-optical Kerr-effect spectroscopy. Phys Rev B 79:235305CrossRefGoogle Scholar
  29. 29.
    Birnbaum T, Hahn T, Martin C, Kortus J, Fronk M, Lungwitz F, Zahn DR, Salvan G (2014) Optical and magneto-optical properties of metal phthalocyanine and metal porphyrin thin films. J Phys Condens Matter 26:104201CrossRefGoogle Scholar
  30. 30.
    Bräuer BR, Fronk M, Lehmann D, Zahn DR, Salvan G (2009) Magneto-optical Kerr effect spectroscopy: a sensitive tool for investigating the molecular orientation in organic semiconductor films. J Phys Chem B 113:14957–14961CrossRefGoogle Scholar
  31. 31.
    Ishii K, Ozawa K (2009) Local-field-induced effective magnetic hysteresis of molecular magneto-optical effects in the visible region at room temperature: phthalocyanine thin films on ferromagnetic inorganic substrates. J Phys Chem C 113:18897–18901CrossRefGoogle Scholar
  32. 32.
    Wende H, Bernien M, Luo J, Sorg C, Ponpandian N, Kurde J, Miguel J, Piantek M, Xu X, Eckhold P (2007) Substrate-induced magnetic ordering and switching of iron porphyrin molecules. Nat Mater 6:516–520CrossRefGoogle Scholar
  33. 33.
    Fantechi E, Campo G, Carta D, Corrias A, de Julián Fernández C, Gatteschi D, Innocenti C, Pineider F, Rugi F, Sangregorio C (2012) Exploring the effect of Co doping in fine maghemite nanoparticles. J Phys Chem C 116:8261–8270CrossRefGoogle Scholar
  34. 34.
    Fontijn W, Van der Zaag P, Devillers M, Brabers V, Metselaar R (1997) Optical and magneto-optical polar Kerr spectra of Fe 3 O 4 and Mg 2 + -or Al 3 + -substituted Fe 3 O 4. Phys Rev B 56:5432CrossRefGoogle Scholar
  35. 35.
    Jain PK, Xiao Y, Walsworth R, Cohen AE (2009) Surface plasmon resonance enhanced magneto-optics (SuPREMO): faraday rotation enhancement in gold-coated iron oxide nanocrystals. Nano Lett 9:1644–1650CrossRefGoogle Scholar
  36. 36.
    He Y, Miao Y, Li C, Wang S, Cao L, Xie S, Yang G, Zou B, Burda C (2005) Size and structure effect on optical transitions of iron oxide nanocrystals. Phys Rev B 71:125411CrossRefGoogle Scholar
  37. 37.
    Tirosh E, Shemer G, Markovich G (2006) Optimizing cobalt ferrite nanocrystal synthesis using a magneto-optical probe. Chem Mater 18:465–470CrossRefGoogle Scholar
  38. 38.
    Campo G, Pineider F, Bonanni V, Albino M, Caneschi A, de Julián Fernández C, Innocenti C, Sangregorio C (2015) Magneto-optical probe for investigation of multiphase Fe oxide nanosystems. Chem Mater 27:466–473CrossRefGoogle Scholar
  39. 39.
    Ferré J, Meyer P, Nyvlt M, Visnovsky S, Renard D (1997) Magnetooptic depth sensitivity in a simple ultrathin film structure. J Magn Magn Mater 165:92–95CrossRefGoogle Scholar
  40. 40.
    Lin C, Tseng Y, Ovchinnikov S, Ivantsov R, Edelman I, Fedorov A, Kuzubov A, Fedorov D, Starchikov S, Lyubutin I (2014) Fe3S4 and Fe3O4 magnetic nanocrystals: magneto-optical and Mössbauer spectroscopy study. Mater Res Express 1:025033CrossRefGoogle Scholar
  41. 41.
    Bentivegna F, Nyvlt M, Ferré J, Jamet J, Brun A, Visnovsky S, Urban R (1999) Magnetically textured γ-Fe2O3 nanoparticles in a silica gel matrix: optical and magneto-optical properties. J Appl Phys 85:2270–2278. DobrowolskaCrossRefGoogle Scholar
  42. 42.
    Postava K, Sveklo I, Tekielak M, Mazalski P, Maziewski A, Stupakiewicz A, Urbaniak M, Szymanski B, Stobiecki F (2008) Material selective sensitivity of magneto-optical Kerr effect in NiFe/Au/Co/Au periodic multilayers. Magn IEEE Trans 44:3261–3264CrossRefGoogle Scholar
  43. 43.
    Li W, Fronk M, Albrecht M, Franke M, Zahn DR, Salvan G (2014) Field-dependent magneto-optical Kerr effect spectroscopy applied to the magnetic component diagnosis of a rubrene/Ni system. Opt Express 22:18454–18463CrossRefGoogle Scholar
  44. 44.
    Chiancone E, Ceci P, Ilari A, Ribacchi F, Stefanini S (2004) Iron and proteins for iron storage and detoxification. Biometals 17:197–202CrossRefGoogle Scholar
  45. 45.
    Gálvez N, Fernández B, Sánchez P, Cuesta R, Ceolín M, Clemente-León M, Trasobares S, López-Haro M, Calvino JJ, Stéphan O (2008) Comparative structural and chemical studies of ferritin cores with gradual removal of their iron contents. J Am Chem Soc 130:8062–8068CrossRefGoogle Scholar
  46. 46.
    Pankowska M, Dobek A (2009) Linear and nonlinear magneto-optics of ferritin. J Chem Phys 131:015105CrossRefGoogle Scholar
  47. 47.
    Koralewski M, Pochylski M, Mitróová Z, Timko M, Kopčanský P, Melníková L (2011) Magnetic birefringence of natural and synthetic ferritin. J Magn Magn Mater 323:2413–2417CrossRefGoogle Scholar
  48. 48.
    Koralewski M, Pochylski M, Gierszewski J (2013) Magnetic properties of ferritin and akaganeite nanoparticles in aqueous suspension. J Nanopart Res 15:1–20CrossRefGoogle Scholar
  49. 49.
    Pascu O, Caicedo JM, Fontcuberta J, Herranz G, Roig A (2010) Magneto-optical characterization of colloidal dispersions. application to nickel nanoparticles. Langmuir 26:12548–12552CrossRefGoogle Scholar
  50. 50.
    Lopez-Santiago A, Gangopadhyay P, Thomas J, Norwood R, Persoons A, Peyghambarian N (2009) Faraday rotation in magnetite-polymethylmethacrylate core@shell nanocomposites with high optical quality. Appl Phys Lett 95:143302CrossRefGoogle Scholar
  51. 51.
    Amekura H, Takeda Y, Kishimoto N (2004) Magneto-optical Kerr spectra of nickel nanoparticles in silica glass fabricated by negative-ion implantation. Thin Solid Films 464:268–272CrossRefGoogle Scholar
  52. 52.
    Edelman I, Petrov D, Ivantsov R, Zharkov S, Velikanov D, Gumarov G, Nuzhdin V, Valeev V, Stepanov A (2013) Study of morphology, magnetic properties, and visible magnetic circular dichroism of Ni nanoparticles synthesized in SiO 2 by ion implantation. Phys Rev B 87:115435CrossRefGoogle Scholar
  53. 53.
    Salvan G, Pacurariu R, Li W, Fronk M, Rosu D, Zahn D, Schubert S, Radons G, Schulze S, Hietschold M (2011) Nickel nanoparticles in fullerene matrix fabricated by co-evaporation: structural, magnetic, and magneto-optical properties. Appl Phys A 103:433–438CrossRefGoogle Scholar
  54. 54.
    Dietl T (2010) A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater 9:965–974CrossRefGoogle Scholar
  55. 55.
    Ando K (2006) Seeking room-temperature ferromagnetic semiconductors. Science 312:1883–1885CrossRefGoogle Scholar
  56. 56.
    Furdyna JK (1988) Diluted magnetic semiconductors. J Appl Phys 64:R29–R64CrossRefGoogle Scholar
  57. 57.
    Dietl T, Ohno H (2014) Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev Mod Phys 86:187CrossRefGoogle Scholar
  58. 58.
    Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y (1996) (Ga, Mn) As: a new diluted magnetic semiconductor based on GaAs. Appl Phys Lett 69:363–365CrossRefGoogle Scholar
  59. 59.
    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287:1019–1022CrossRefGoogle Scholar
  60. 60.
    Kolesnik S, Dabrowski B, Mais J (2004) Structural and magnetic properties of transition metal substituted ZnO. J Appl Phys 95:2582–2586CrossRefGoogle Scholar
  61. 61.
    Singh S, Rama N, Sethupathi K, Rao MR (2008) Correlation between electrical transport, optical, and magnetic properties of transition metal ion doped ZnO. J Appl Phys 103:07D108CrossRefGoogle Scholar
  62. 62.
    Ramachandran S, Tiwari A, Narayan J (2004) Zn0. 9Co0. 1O-based diluted magnetic semiconducting thin films. Appl Phys Lett 84:5255–5257CrossRefGoogle Scholar
  63. 63.
    Ball P (2000) Meet the spin doctors…. Nature 404:918–920CrossRefGoogle Scholar
  64. 64.
    Theodoropoulou N, Hebard A, Overberg M, Abernathy C, Pearton S, Chu S, Wilson R (2002) Unconventional carrier-mediated ferromagnetism above room temperature in ion-implanted (Ga, Mn) P: C. Phys Rev Lett 89:107203CrossRefGoogle Scholar
  65. 65.
    Thaler G, Overberg M, Gila B, Frazier R, Abernathy C, Pearton S, Lee J, Lee S, Park Y, Khim Z (2002) Magnetic properties of n-GaMnN thin films. Appl Phys Lett 80:3964–3966CrossRefGoogle Scholar
  66. 66.
    Edmonds K, Bogusławski P, Wang K, Campion R, Novikov S, Farley N, Gallagher B, Foxon C, Sawicki M, Dietl T (2004) Mn interstitial diffusion in (G a, M n) A s. Phys Rev Lett 92:037201CrossRefGoogle Scholar
  67. 67.
    Coey J, Venkatesan M, Fitzgerald C (2005) Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater 4:173–179CrossRefGoogle Scholar
  68. 68.
    Gaj JA, Kossut J (2010) Introduction to the Physics of Diluted Magnetic Semiconductors Springer-Verlag Berlin Heidelberg.CrossRefGoogle Scholar
  69. 69.
    Gaj J, Gałazka R, Nawrocki M (1978) Giant exciton Faraday rotation in Cd 1− x Mn x Te mixed crystals. Solid State Commun 25:193–195CrossRefGoogle Scholar
  70. 70.
    Kuno M, Nirmal M, Bawendi M, Efros A, Rosen M (1998) Magnetic circular dichroism study of CdSe quantum dots. J Chem Phys 108:4242–4247CrossRefGoogle Scholar
  71. 71.
    Beaulac R, Ochsenbein ST, Gamelin DR, Klimov V (2010) Colloidal transition-metal-doped quantum dots. In: Klimov VI (ed) Nanocrystal quantum dots, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  72. 72.
    Ando K, Saito H, Zayets V (2011) Anomalous Zeeman splittings of II–VI diluted magnetic semiconductors at L-critical points. J Appl Phys 109:07C304CrossRefGoogle Scholar
  73. 73.
    Ando K, Saito H, Debnath M, Zayets V, Bhattacharjee A (2008) Zeeman splittings near the L point of the Brillouin zone in zinc-blende semiconductors. Phys Rev B 77:125123CrossRefGoogle Scholar
  74. 74.
    Hartmann T, Ye S, Klar P, Heimbrodt W, Lampalzer M, Stolz W, Kurz T, Loidl A, Von Nidda H-AK, Wolverson D (2004) Tuning of the average p-d exchange in (Ga, Mn) As by modification of the Mn electronic structure. Phys Rev B 70:233201CrossRefGoogle Scholar
  75. 75.
    Ando K, Saito H, Agarwal K, Debnath M, Zayets V (2008) Origin of the anomalous magnetic circular dichroism spectral shape in ferromagnetic Ga 1-x Mn x As: impurity bands inside the band gap. Phys Rev Lett 100:067204CrossRefGoogle Scholar
  76. 76.
    Berciu M, Chakarvorty R, Zhou Y, Alam M, Traudt K, Jakiela R, Barcz A, Wojtowicz T, Liu X, Furdyna J (2009) Origin of magnetic circular dichroism in GaMnAs: giant Zeeman splitting versus spin dependent density of states. Phys Rev Lett 102:247202CrossRefGoogle Scholar
  77. 77.
    Dobrowolska M, Tivakornsasithorn K, Liu X, Furdyna J, Berciu M, Yu K, Walukiewicz W (2012) Controlling the Curie temperature in (Ga, Mn) As through location of the Fermi level within the impurity band. Nat Mater 11:444–449CrossRefGoogle Scholar
  78. 78.
    Yu JH, Liu X, Kweon KE, Joo J, Park J, Ko K-T, Lee DW, Shen S, Tivakornsasithorn K, Son JS (2010) Giant Zeeman splitting in nucleation-controlled doped CdSe: Mn2+ quantum nanoribbons. Nat Mater 9:47–53CrossRefGoogle Scholar
  79. 79.
    Beaulac R, Archer PI, Liu X, Lee S, Salley GM, Dobrowolska M, Furdyna JK, Gamelin DR (2008) Spin-polarizable excitonic luminescence in colloidal Mn2 + -doped CdSe quantum dots. Nano Lett 8:1197–1201CrossRefGoogle Scholar
  80. 80.
    Balet L, Ivanov S, Piryatinski A, Achermann M, Klimov V (2004) Inverted core/shell nanocrystals continuously tunable between type-I and type-II localization regimes. Nano Lett 4:1485–1488CrossRefGoogle Scholar
  81. 81.
    Bussian DA, Crooker SA, Yin M, Brynda M, Efros AL, Klimov VI (2009) Tunable magnetic exchange interactions in manganese-doped inverted core–shell ZnSe–CdSe nanocrystals. Nat Mater 8:35–40CrossRefGoogle Scholar
  82. 82.
    Vlaskin VA, Beaulac R, Gamelin DR (2009) Dopant − carrier magnetic exchange coupling in colloidal inverted core/shell semiconductor nanocrystals. Nano Lett 9:4376–4382CrossRefGoogle Scholar
  83. 83.
    Nawrocki M, Rubo YG, Lascaray J, Coquillat D (1995) Suppression of the Auger recombination due to spin polarization of excess carriers and Mn 2+ ions in the semimagnetic semiconductor Cd 0.95 Mn 0.05 S. Phys Rev B 52:R2241CrossRefGoogle Scholar
  84. 84.
    Viswanatha R, Pietryga JM, Klimov VI, Crooker SA (2011) Spin-polarized Mn 2+ emission from mn-doped colloidal nanocrystals. Phys Rev Lett 107:067402CrossRefGoogle Scholar
  85. 85.
    Viswanatha R, Brovelli S, Pandey A, Crooker SA, Klimov VI (2011) Copper-doped inverted core/shell nanocrystals with “permanent” optically active holes. Nano Lett 11:4753–4758CrossRefGoogle Scholar
  86. 86.
    Pandey A, Brovelli S, Viswanatha R, Li L, Pietryga J, Klimov V, Crooker S (2012) Long-lived photoinduced magnetization in copper-doped ZnSe-CdSe core@shell nanocrystals. Nat Nanotechnol 7:792–797CrossRefGoogle Scholar
  87. 87.
    Bhattacharjee A (1994) Orbital exchange in diluted magnetic semiconductors. J Cryst Growth 138:895–899CrossRefGoogle Scholar
  88. 88.
    Kossut J (2012) Diluted magnetic semiconductors: copper joins the family. Nat Nanotechnol 7:774–775CrossRefGoogle Scholar
  89. 89.
    Farvid SS, Hegde M, Radovanovic PV (2013) Influence of the host lattice electronic structure on dilute magnetic interactions in polymorphic Cr (III)-doped In2O3 nanocrystals. Chem Mater 25:233–244CrossRefGoogle Scholar
  90. 90.
    Farvid SS, Sabergharesou T, Hutfluss LN, Hegde M, Prouzet E, Radovanovic PV (2014) Evidence of charge-transfer ferromagnetism in transparent diluted magnetic oxide nanocrystals: switching the mechanism of magnetic interactions. J Am Chem Soc 136:7669–7679CrossRefGoogle Scholar
  91. 91.
    Tanaka A, Kamikubo H, Kataoka M, Hasegawa Y, Kawai T (2010) Size-controlled aggregation of cube-shaped EuS nanocrystals with magneto-optic properties in solution phase. Langmuir 27:104–108CrossRefGoogle Scholar
  92. 92.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Duyne RPV (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442CrossRefGoogle Scholar
  93. 93.
    Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857CrossRefGoogle Scholar
  94. 94.
    Armelles G, Cebollada A, García‐Martín A, González MU (2013) Magnetoplasmonics: combining magnetic and plasmonic functionalities. Adv Opt Mater 1:10–35CrossRefGoogle Scholar
  95. 95.
    Armelles G, Cebollada A, García-Martín A, García-Martín JM, González MU, González-Díaz JB, Ferreiro-Vila E, Torrado J (2009) Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties. J Opt A Pure Appl Opt 11:114023CrossRefGoogle Scholar
  96. 96.
    Zaitoun MA, Mason WR, Lin CT (2001) Magnetic circular dichroism spectra for colloidal gold nanoparticles in xerogels at 5.5 K. J Phys Chem B 105:6780–6784CrossRefGoogle Scholar
  97. 97.
    Artemyev M, Krutokhvostov R, Melnikau D, Oleinikov V, Sukhanova A, Nabiev I (2012) Low-field magnetic circular dichroism in silver and gold colloidal nanoparticles of different sizes, shapes, and aggregation states. In: SPIE nanoscience + engineering. International Society for Optics and Photonics, Bellingham WA, USA, pp 845729–845729-845710Google Scholar
  98. 98.
    Sokolov A, Ovchinnikov SGE, Zabluda V, Kal’sin A, Zubavichus YV (2013) Magnetic circular dichroism and the nature of ferromagnetism in colloidal gold nanoparticles. JETP Lett 97:98–101CrossRefGoogle Scholar
  99. 99.
    Nealon GL, Donnio B, Greget R, Kappler J-P, Terazzi E, Gallani J-L (2012) Magnetism in gold nanoparticles. Nanoscale 4:5244–5258CrossRefGoogle Scholar
  100. 100.
    Pineider F, Campo G, Bonanni V, Fernandez Cde J, Mattei G, Caneschi A, Gatteschi D, Sangregorio C (2013) Circular magnetoplasmonic modes in gold nanoparticles. Nano Lett 13:4785–4789CrossRefGoogle Scholar
  101. 101.
    Mayergoyz I, McAvoy P, Lang G, Bowen D, Krafft C (2009) Excitation and dephasing of circularly polarized plasmon modes in spherical nanoshells for application in all-optical magnetic recording. J Appl Phys 105:07B904CrossRefGoogle Scholar
  102. 102.
    Gu Y, Kornev KG (2010) Plasmon enhanced direct and inverse Faraday effects in non-magnetic nanocomposites. JOSA B 27:2165–2173CrossRefGoogle Scholar
  103. 103.
    Maccaferri N, Gregorczyk KE, de Oliveira TV, Kataja M, van Dijken S, Pirzadeh Z, Dmitriev A, Åkerman J, Knez M, Vavassori P (2015) Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas. Nat Commun 6150:1–8Google Scholar
  104. 104.
    Ishikawa Y, Yao H (2014) Surface magnetoplasmons in silver nanoparticles: apparent magnetic-field enhancement manifested by simultaneous deconvolution of UV–vis absorption and MCD spectra. Chem Phys Lett 609:93–97CrossRefGoogle Scholar
  105. 105.
    Sepúlveda B, González-Díaz JB, García-Martín A, Lechuga LM, Armelles G (2010) Plasmon-induced magneto-optical activity in nanosized gold disks. Phys Rev Lett 104:147401CrossRefGoogle Scholar
  106. 106.
    Fredriksson H, Alaverdyan Y, Dmitriev A, Langhammer C, Sutherland DS, Zäch M, Kasemo B (2007) Hole–mask colloidal lithography. Adv Mater 19:4297CrossRefGoogle Scholar
  107. 107.
    Chen J, Albella P, Pirzadeh Z, Alonso‐González P, Huth F, Bonetti S, Bonanni V, Åkerman J, Nogués J, Vavassori P (2011) Plasmonic nickel nanoantennas. Small 7:2341–2347CrossRefGoogle Scholar
  108. 108.
    Bonanni V, Bonetti S, Pakizeh T, Pirzadeh Z, Chen J, Nogués J, Vavassori P, Hillenbrand R, Åkerman J, Dmitriev A (2011) Designer magnetoplasmonics with nickel nanoferromagnets. Nano Lett 11:5333–5338CrossRefGoogle Scholar
  109. 109.
    Maccaferri N, González-Díaz JB, Bonetti S, Berger A, Kataja M, Van Dijken S, Nogués J, Bonanni V, Pirzadeh Z, Dmitriev A (2013) Polarizability and magnetoplasmonic properties of magnetic general nanoellipsoids. Opt Express 21:9875–9889CrossRefGoogle Scholar
  110. 110.
    Maccaferri N, Kataja M, Bonanni V, Bonetti S, Pirzadeh Z, Dmitriev A, van Dijken S, Åkerman J, Vavassori P (2014) Effects of a non‐absorbing substrate on the magneto‐optical Kerr response of plasmonic ferromagnetic nanodisks. Phys Status Solidi (a) 211:1067–1075Google Scholar
  111. 111.
    Lodewijks K, Maccaferri N, Pakizeh T, Dumas RK, Zubritskaya I, Åkerman J, Vavassori P, Dmitriev A (2014) Magnetoplasmonic design rules for active magneto-optics. Nano Lett 14:7207–7214Google Scholar
  112. 112.
    Papaioannou ET, Kapaklis V, Patoka P, Giersig M, Fumagalli P, García-Martín A, Ferreiro-Vila E, Ctistis G (2010) Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry. Phys Rev B 81:054424CrossRefGoogle Scholar
  113. 113.
    Papaioannou ET, Kapaklis V, Melander E, Hjörvarsson B, Pappas SD, Patoka P, Giersig M, Fumagalli P, Garcia-Martin A, Ctistis G (2011) Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays. Opt Express 19:23867–23877CrossRefGoogle Scholar
  114. 114.
    Valev VK, Silhanek AV, Gillijns W, Jeyaram Y, Paddubrouskaya H, Volodin A, Biris CG, Panoiu NC, Clercq BD, Ameloot M, Aktsipetrov OA, Moshchalkov VV, Verbiest T (2011) Plasmons reveal the direction of magnetization in nickel nanostructures. ACS Nano 5:91–96CrossRefGoogle Scholar
  115. 115.
    González-Díaz JB, García-Martín A, García-Martín JM, Cebollada A, Armelles G, Sepúlveda B, Alaverdyan Y, Käll M (2008) Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity. Small 4:202–205CrossRefGoogle Scholar
  116. 116.
    Toal B, McMillen M, Murphy A, Hendren W, Arredondo M, Pollard R (2014) Optical and magneto-optical properties of gold core cobalt shell magnetoplasmonic nanowire arrays. Nanoscale 6:12905–12911CrossRefGoogle Scholar
  117. 117.
    Armelles G, Cebollada A, García-Martín A, González MU, García F, Meneses-Rodríguez D, de Sousa N, Froufe-Pérez L (2013) Mimicking electromagnetically induced transparency in the magneto-optical activity of magnetoplasmonic nanoresonators. Opt Express 21:27356–27370CrossRefGoogle Scholar
  118. 118.
    de Sousa N, Froufe-Pérez L, Armelles G, Cebollada A, González M, García F, Meneses-Rodríguez D, García-Martín A (2014) Interaction effects on the magneto-optical response of magnetoplasmonic dimers. Phys Rev B 89:205419CrossRefGoogle Scholar
  119. 119.
    Armelles G, Caballero B, Prieto P, García F, Cebollada A, González MU, García-Martin A (2014) Magnetic field modulation of chirooptical effects in magnetoplasmonic structures. Nanoscale 6:3737–3741CrossRefGoogle Scholar
  120. 120.
    Train C, Gheorghe R, Krstic V, Chamoreau L-M, Ovanesyan NS, Rikken GL, Gruselle M, Verdaguer M (2008) Strong magneto-chiral dichroism in enantiopure chiral ferromagnets. Nat Mater 7:729–734CrossRefGoogle Scholar
  121. 121.
    Sessoli R, Boulon M-E, Caneschi A, Mannini M, Poggini L, Wilhelm F, Rogalev A (2014) Strong magneto-chiral dichroism in a paramagnetic molecular helix observed by hard X-rays. Nat Phys 11:69–74Google Scholar
  122. 122.
    Wagnière GH (2008) On chirality and the universal asymmetry: reflections on image and mirror image. Wiley. Hoboken, NJ, USAGoogle Scholar
  123. 123.
    Armelles G, Caballero B, Cebollada A, Garcia-Martin A, Meneses-Rodríguez D (2015) Magnetic field modification of optical magnetic dipoles. Nano Lett 15:2045–2049CrossRefGoogle Scholar
  124. 124.
    Shemer G, Markovich G (2002) Enhancement of magneto-optical effects in magnetite nanocrystals near gold surfaces. J Phys Chem B 106:9195–9197CrossRefGoogle Scholar
  125. 125.
    Wang L, Yang K, Clavero C, Nelson A, Carroll K, Carpenter E, Lukaszew R (2010) Localized surface plasmon resonance enhanced magneto-optical activity in core@shell Fe–Ag nanoparticles. J Appl Phys 107:09B303CrossRefGoogle Scholar
  126. 126.
    Wang L, Clavero C, Huba Z, Carroll KJ, Carpenter EE, Gu D, Lukaszew RA (2011) Plasmonics and enhanced magneto-optics in core − shell Co − Ag nanoparticles. Nano Lett 11:1237–1240CrossRefGoogle Scholar
  127. 127.
    Li Y, Zhang Q, Nurmikko AV, Sun S (2005) Enhanced magnetooptical response in dumbbell-like Ag-CoFe2O4 nanoparticle pairs. Nano Lett 5:1689–1692CrossRefGoogle Scholar
  128. 128.
    Tomita S, Takeshi K, Shigeru T, Satoshi I, Minoru F, Shinji H (2006) Magneto-optical Kerr effects of yttrium-iron garnet thin films incorporating gold nanoparticles. Phys Rev Lett 96:167402CrossRefGoogle Scholar
  129. 129.
    Du GX, Mori T, Saito S, Takahashi M (2010) Shape-enhanced magneto-optical activity: degree of freedom for active plasmonics. Phys Rev B 82:161403CrossRefGoogle Scholar
  130. 130.
    Meneses‐Rodríguez D, Ferreiro‐Vila E, Prieto P, Anguita J, González MU, García‐Martín JM, Cebollada A, García‐Martín A, Armelles G (2011) Probing the electromagnetic field distribution within a metallic nanodisk. Small 7:3317–3323CrossRefGoogle Scholar
  131. 131.
    Varytis P, Stefanou N, Christofi A, Papanikolaou N (2015) Strong circular dichroism of core-shell magnetoplasmonic nanoparticles. J Opt Soc Am B 32:1063–1069.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.INSTM and Department of Chemistry and Industrial ChemistryUniversity of PisaPisaItaly
  2. 2.INSTM and ICCOM-CNRSesto Fiorentino (FI)Italy

Personalised recommendations