Advertisement

Magnetic Characterization of Nanodendritic Platinum

  • Wenxian LiEmail author
  • Ziqi Sun
  • Shi-Xue Dou
Chapter

Abstract

The nanodentritic noble metals structure 3D spatial porous nanoclusters with high specific area. The magnetism of this kind of nanoparticles depends on fabrication techniques greatly.

Keywords

Electron Spin Resonance Electron Spin Resonance Spectrum Selected Area Electron Diffraction Coercive Force Vinyl Pyrrolidone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Chen AC, Holt-Hindle P (2010) Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem Rev 110(6):3767–3804CrossRefGoogle Scholar
  2. 2.
    Xia YN, Xiong YJ, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew Chem Int Ed 48(1):60–103CrossRefGoogle Scholar
  3. 3.
    Islam A, Anwarul Kabir Bhuiya M, Saidul Islam M (2014) A review on chemical synthesis process of platinum nanoparticles. Asia Pac J Energy Environ 1(2):107–120CrossRefGoogle Scholar
  4. 4.
    Shah A, Latif ur R, Qureshi R, Zia ur R (2012) Synthesis, characterization and applications of bimetallic (Au-Ag, Au-Pt, Au-Ru) alloy nanoparticles. Rev Adv Mater Sci 30(2):133–149Google Scholar
  5. 5.
    Stepanov AL, Golubev AN, Nikitin SI, Osin YN (2014) A review on the fabrication and properties of platinum nanoparticles. Rev Adv Mater Sci 38(2):160–175Google Scholar
  6. 6.
    He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD (2000) Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 122(38):9071–9077CrossRefGoogle Scholar
  7. 7.
    Shipway AN, Lahav M, Willner I (2000) Nanostructured gold colloid electrodes. Adv Mater 12(13):993–998CrossRefGoogle Scholar
  8. 8.
    Chen M, Wu BH, Yang J, Zheng NF (2012) Small adsorbate-assisted shape control of Pd and Pt nanocrystals. Adv Mater 24(7):862–879CrossRefGoogle Scholar
  9. 9.
    Terris BD, Thomson T (2005) Nanofabricated and self-assembled magnetic structures as data storage media. J Phys D-Appl Phys 38(12):R199–R222CrossRefGoogle Scholar
  10. 10.
    Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021CrossRefGoogle Scholar
  11. 11.
    Taniyama T, Ohta E, Sato T (1997) Observation of 4d ferromagnetism in free-standing Pd fine particles. Europhys Lett 38(3):195–200CrossRefGoogle Scholar
  12. 12.
    Li WX, Zeng R, Sun ZQ, Tian DL, Dou SX (2014) Uncoupled surface spin induced exchange bias in α-MnO2 nanowires. Sci Rep 4:6641CrossRefGoogle Scholar
  13. 13.
    Li WX, Cui XY, Zeng R, Du GD, Sun ZQ, Zheng RK, Ringer SP, Dou SX (2015) Performance modulation of α-MnO2 nanowires by crystal facet engineering. Sci Rep 5:8987CrossRefGoogle Scholar
  14. 14.
    Zhu MJ, Bylander DM, Kleinman L (1990) Ferromagnetic properties of Pd monolayers. Phys Rev B 42(5):2874–2877CrossRefGoogle Scholar
  15. 15.
    Blügel S (1992) Two-dimensional ferromagnetism of 3d, 4d, and 5d transition metal monolayers on noble metal (001) substrates. Phys Rev Lett 68(6):851–854CrossRefGoogle Scholar
  16. 16.
    Blügel S (1995) Magnetism of 4d and 5d transition metal adlayers on Ag(001): dependence on the adlayer thickness. Phys Rev B 51(3):2025–2028CrossRefGoogle Scholar
  17. 17.
    Sampedro B, Crespo P, Hernando A, Litrán R, Sánchez López JC, López Cartes C, Fernandez A, Ramírez J, González Calbet J, Vallet M (2003) Ferromagnetism in fcc twinned 2.4 nm size Pd nanoparticles. Phys Rev Lett 91(23):237203CrossRefGoogle Scholar
  18. 18.
    Shinohara T, Sato T, Taniyama T (2003) Surface ferromagnetism of Pd fine particles. Phys Rev Lett 91(19):197201CrossRefGoogle Scholar
  19. 19.
    Yamamoto Y, Miura T, Suzuki M, Kawamura N, Miyagawa H, Nakamura T, Kobayashi K, Teranishi T, Hori H (2004) Direct observation of ferromagnetic spin polarization in gold nanoparticles. Phys Rev Lett 93(11):116801CrossRefGoogle Scholar
  20. 20.
    Hori H, Yamamoto Y, Iwamoto T, Miura T, Teranishi T, Miyake M (2004) Diameter dependence of ferromagnetic spin moment in Au nanocrystals. Phys Rev B 69(17):174411CrossRefGoogle Scholar
  21. 21.
    Liu X, Bauer M, Bertagnolli H, Roduner E, van Slageren J, Phillipp F (2006) Structure and magnetization of small monodisperse platinum clusters. Phys Rev Lett 97(25):253401CrossRefGoogle Scholar
  22. 22.
    Garcia MA, Ruiz-Gonzalez ML, de la Fuente GF, Crespo P, Gonzalez JM, Llopis J, Gonzalez-Calbet JM, Vallet-Regi M, Hernando A (2007) Ferromagnetism in twinned Pt nanoparticles obtained by laser ablation. Chem Mater 19(4):889–893CrossRefGoogle Scholar
  23. 23.
    Teng XW, Feygenson M, Wang Q, He JQ, Du WX, Frenkel AI, Han WQ, Aronson M (2009) Electronic and magnetic properties of ultrathin Au/Pt nanowires. Nano Lett 9(9):3177–3184CrossRefGoogle Scholar
  24. 24.
    Selvan ST, Tan TTY, Yi DK, Jana NR (2010) Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir 26(14):11631–11641CrossRefGoogle Scholar
  25. 25.
    Huang XH, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostic and therapy. Nanomedicine 2(5):681–693CrossRefGoogle Scholar
  26. 26.
    Yavuz MS, Cheng YY, Chen JY, Cobley CM, Zhang Q, Rycenga M, Xie JW, Kim C, Song KH, Schwartz AG, Wang LHV, Xia YN (2009) Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater 8(12):935–939CrossRefGoogle Scholar
  27. 27.
    Thomas M, Klibanov AM (2003) Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proc Natl Acad Sci U S A 100(16):9138–9143CrossRefGoogle Scholar
  28. 28.
    Heath JR, Davis ME (2008) Nanotechnology and cancer. Annu Rev Med 59:251–265CrossRefGoogle Scholar
  29. 29.
    Nishiyama N (2007) Nanomedicine – Nanocarriers shape up for long life. Nat Nanotechnol 2(4):203–204CrossRefGoogle Scholar
  30. 30.
    Cullity BD, Graham CD (2009) Introduction to Magnetic Materials, 2nd edn. IEEE Press, PiscatawayGoogle Scholar
  31. 31.
    Wang L, Yamauchi Y (2009) Block copolymer mediated synthesis of dendritic platinum nanoparticles. J Am Chem Soc 131(26):9152–9153CrossRefGoogle Scholar
  32. 32.
    Wang L, Wang HJ, Nemoto Y, Yamauchi Y (2010) Rapid and efficient synthesis of platinum nanodendrites with high surface area by chemical reduction with formic acid. Chem Mater 22(9):2835–2841CrossRefGoogle Scholar
  33. 33.
    Li CL, Imura M, Yamauchi Y (2014) A universal approach to the preparation of colloidal mesoporous platinum nanoparticles with controlled particle sizes in a wide range from 20 nm to 200 nm. PCCP 16(19):8787–8790CrossRefGoogle Scholar
  34. 34.
    Escobar-Chávez JJ, López-Cervantes M, Naïk A, Kalia YN, Quintanar-Guerrero D, Ganem-Quintanar A (2006) Applications of thermo-reversible pluronic F-127 gels in pharmaceurical formulations. J Pharm Pharm Sci 99(3):339–358Google Scholar
  35. 35.
    Zhang HT, Ding J, Chow GM (2008) Morphological control of synthesis and anomalous magnetic properties of 3-D branched Pt nanoparticles. Langmuir 24(2):375–378CrossRefGoogle Scholar
  36. 36.
    Lim B, Jiang MJ, Camargo PHC, Cho EC, Tao J, Lu XM, Zhu YM, Xia YN (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324(5932):1302–1305CrossRefGoogle Scholar
  37. 37.
    Cheong S, Watt J, Ingham B, Toney MF, Tilley RD (2009) In situ and Ex situ studies of platinum nanocrystals: growth and evolution in solution. J Am Chem Soc 131(40):14590–14595CrossRefGoogle Scholar
  38. 38.
    Li WX, Sun ZQ, Tian DL, Nevirkovets IP, Dou SX (2014) Platinum dendritic nanoparticles with magnetic behavior. J Appl Phys 116(3):033911CrossRefGoogle Scholar
  39. 39.
    Kuribayashi K, Kitamura S (2001) Preparation of Pt-PtOx thin films as electrode for memory capacitors. Thin Solid Films 400(1–2):160–164CrossRefGoogle Scholar
  40. 40.
    Bancroft GM, Adams I, Coatsworth LL, Bennewitz CD, Brown JD, Westwood WD (1975) ESCA study of sputtered platinum films. Anal Chem 47(3):586–588CrossRefGoogle Scholar
  41. 41.
    Barr TL (1978) Esca study of termination of passivation of elemental metals. J Phys Chem 82(16):1801–1810CrossRefGoogle Scholar
  42. 42.
    Crespo P, Litrán R, Rojas TC, Multigner M, de la Fuente JM, Sánchez-López JC, García MA, Hernando A, Penadés S, Fernández A (2004) Permanent magnetism, magnetic anisotropy, and hysteresis of thiol-capped gold nanoparticles. Phys Rev Lett 93(8):087204CrossRefGoogle Scholar
  43. 43.
    Pereiro M, Baldomir D, Arias JE (2007) Unexpected magnetism of small silver clusters. Phys Rev A 75(6):063204CrossRefGoogle Scholar
  44. 44.
    Yang Y, Sugino O, Ohno T (2012) Possible magnetic behavior in oxygen-deficient β-PtO2. Phys Rev B 85(3):035204CrossRefGoogle Scholar
  45. 45.
    Bagaria HG, Ada ET, Shamsuzzoha M, Nikles DE, Johnson DT (2006) Understanding mercapto ligand exchange on the surface of FePt nanoparticles. Langmuir 22(18):7732–7737CrossRefGoogle Scholar
  46. 46.
    Sakamoto Y, Oba Y, Maki H, Suda M, Einaga Y, Sato T, Mizumaki M, Kawamura N, Suzuki M (2011) Ferromagnetism of Pt nanoparticles induced by surface chemisorption. Phys Rev B 83(10):104420CrossRefGoogle Scholar
  47. 47.
    Crespo P, de la Presa P, Marin P, Multigner M, Maria Alonso J, Rivero G, Yndurain F, Maria Gonzalez-Calbet J, Hernando A (2013) Magnetism in nanoparticles: tuning properties with coatings. J Phys-Condens Matter 25(48):484006CrossRefGoogle Scholar
  48. 48.
    Garitaonandia JS, Insausti M, Goikolea E, Suzuki M, Cashion JD, Kawamura N, Ohsawa H, Gil de Muro I, Suzuki K, Plazaola F, Rojo T (2008) Chemically induced permanent magnetism in Au, Ag, and Cu nanoparticles: localization of the magnetism by element selective techniques. Nano Lett 8(2):661–667CrossRefGoogle Scholar
  49. 49.
    Crespo P, Garcia MA, Pinel EF, Multigner M, Alcantara D, de la Fuente JM, Penades S, Hernando A (2006) Fe impurities weaken the ferromagnetic behavior in Au nanoparticles. Phys Rev Lett 97(17):4CrossRefGoogle Scholar
  50. 50.
    de la Venta J, Fernandez Pinel E, Crespo P, García MA, Hernando A (2009) Size dependent ferromagnetic-like behavior in thiol capped gold nanoparticles. Sci Adv Mater 1(3):241–248CrossRefGoogle Scholar
  51. 51.
    Sharma S, Kim B, Lee D (2012) Water-soluble Pd nanoparticles capped with glutathione: synthesis, characterization, and magnetic properties. Langmuir 28(45):15958–15965CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongongAustralia
  3. 3.School of Chemistry, Physics and Mechanical EngineeringQueensland University of Technology Gardens PointBrisbaneAustralia

Personalised recommendations