Advertisement

Characterization of Magnetism in Core–Shell Nanoparticles

  • Elizabeth SkoropataEmail author
  • Johan van Lierop
Chapter

Abstract

We discuss the characterization of magnetic core–shell nanoparticles by describing typical experimental techniques applied to nanoparticle characterization, in addition to more specialized atomic-scale and element-specific characterization techniques which provide in-depth insight to the origin and nature of the magnetism of core–shell nanoparticles. To demonstrate how a clear understanding of the total magnetism of the core–shell nanoparticle is obtained through the characterization techniques presented, we discuss how the magnetism of core–shell nanoparticles made of maghemite (γ-Fe2O3) cores and transition metal and metal oxide shells and identify how the overall nanoparticle magnetism is altered substantially by the interface, an extremely difficult region to characterize within the core–shell nanoparticle, which is critically important to the magnetism.

Keywords

Exchange Bias Shell Material Shell Nanoparticles Hyperfine Parameter Spin Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Foundation for Innovation (CFI) for funding. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the United States Department of Energy (contract DE-AC02-06CH11357), and the authors thank the beamline scientists (Drs. John W. Freeland and David Keavney) for their support and assistance. The authors also thank Prof. Hao Ouyang (Department of Materials Science and Engineering, National Tsing Hua University) and Dr. Shen-Chuan Lo (Material and Chemical Research Laboratories, Industrial Technology Research Institute, Taiwan) for their TEM-based work.

References

  1. 1.
    Antonov VN, Harmon BN, Yaresko AN (2003) Electronic structure and x-ray magnetic circular dichroism in Fe3O4 and Mn-, Co-, or Ni-substituted Fe3O4. Phys Rev B 67:024,417CrossRefGoogle Scholar
  2. 2.
    Béa H, Bibes M, Fusil S, Bouzehouane K, Jacquet E, Rode K, Bencok P, Barthélémy A (2006) Investigation on the origin of the magnetic moment of BiFeO3 thin films by advanced x-ray characterizations. Phys Rev B 74:020,101(R)CrossRefGoogle Scholar
  3. 3.
    Bottei RS, Schneggenburger RG (1970) Thermal and spectral study of some divalent metal chelates of cupferron and dicupferron. J Inorg Nucl Chem 32:1525CrossRefGoogle Scholar
  4. 4.
    Brice-Profeta S, Arrio MA, Tronc E, Menguy N, Letard I, Cartier dit Moulin C, Noguès M, Chanéac C, Jolivet JP, Sainctavit Ph (2005) Magnetic order in γ-Fe2O3 nanoparticles: a XMCD study. J Magn Magn Mater 288:354CrossRefGoogle Scholar
  5. 5.
    Carra P, Thole BT, Altarelli M, Wang X (1993) X-ray circular dichroism and local magnetic fields. Phys Rev Lett 70:694CrossRefGoogle Scholar
  6. 6.
    Chantrell RW, Wolfarth EP (1983) Dynamic and static properties of interacting fine ferromagnetic particles. J Magn Magn Mater 40:1CrossRefGoogle Scholar
  7. 7.
    Chatterjee K, Sarkar S, Rao KJ, Paria S (2014) Core/shell nanoparticles in biomedical applications. Adv Colloid Interface Sci 209:8CrossRefGoogle Scholar
  8. 8.
    Chaudhuri RG, Paria S (2011) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373CrossRefGoogle Scholar
  9. 9.
    Chen CT, Idzerda YU, Lin HJ, Smith NV, Meigs G, Chaban E (1995) Experimental confirmation of the x-ray magnetic circular dichroism sum rules for iron and cobalt. Phys Rev Lett 75:152CrossRefGoogle Scholar
  10. 10.
    Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, Heverhagen JT, Prosperi D, Parak WJ (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306CrossRefGoogle Scholar
  11. 11.
    Costi R, Saunders AE, Banin U (2010) Colloidal hybrid nanostructures: a new type of functional materials. Angew Chem Int Ed 49:4878CrossRefGoogle Scholar
  12. 12.
    De Grave E, Persoons RM, Vandenberghe RE, de Bakker PMA (1993) Mössbauer study of the high temperature phase of Co-substituted magnetites, CoxFe3–xO4. I. x ≤ 0.04. Phys Rev B 47:5881CrossRefGoogle Scholar
  13. 13.
    Desautels RD, Skoropata E, van Lierop J (2008) Moment fluctuations in 7 nm γ-Fe2O3 nanoparticles probed at the atomic level using Mössbauer spectroscopy. J Appl Phys 103:07D512CrossRefGoogle Scholar
  14. 14.
    Desautels RD, Skoropata E, Chen YY, Ouyang H, Freeland JW, van Lierop J (2011) Tuning the surface magnetism of γ-Fe2O3 nanoparticles with a Cu shell. Appl Phys Lett 99:262,501CrossRefGoogle Scholar
  15. 15.
    Desautels RD, Skoropata E, Chen YY, Ouyang H, Freeland JW, van Lierop J (2012) Increased surface spin stability in γ-Fe2O3 nanoparticles with a Cu shell. J Phys Condens Matter 24:146,001CrossRefGoogle Scholar
  16. 16.
    Desautels RD, Skoropata E, Rowe M, van Lierop J (2015) Investigating nanoparticle interactions from interparticle-to-nanocomposite. J Appl Phys 117:17C755CrossRefGoogle Scholar
  17. 17.
    Estradé S, Yedra L, López-Ortega A, Estrader M, Salazar-Alvarez G, Baró MD, Nogués J, Peiró F (2012) Distinguishing the core from the shell in MnOx/MnOy and FeOx/MnOx core/shell nanoparticles through quantitative electron energy loss spectroscopy (EELS) analysis. Micron 43:30CrossRefGoogle Scholar
  18. 18.
    Estrader M, López-Ortega A, Estradé S, Golosovsky IV, Salazar-Alvarez G, Vasilakaki M, Trohidou KN, Varela M, Stanley DC, Sinko M, Pechan MJ, Keavnet DJ, Peiró F, Suriñach S, Baró MD, Nogués J (2013) Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles. Nat Commun 4:2960CrossRefGoogle Scholar
  19. 19.
    Fantechi E, Campo G, Carta D, Corrias A, de Julián Fernández C, Getteschi D, Innocenti C, Pineider E, Rugi F, Sangregorio C (2012) Exploring the effect of Co doping in fine maghemite nanoparticles. J Phys Chem C 116:8261CrossRefGoogle Scholar
  20. 20.
    Fransden C, Ostenfeld CW, Xu M, Jacobsen CS, Keller L, Lefmann K, Mørup S (2004) Interparticle interactions in composites of nanoparticles of ferrimagnetic (γ-Fe2O3) and antiferromagnetic (CoO, NiO) materials. Phys Rev 70:134,416CrossRefGoogle Scholar
  21. 21.
    Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy. Chapman and Hall, LondonCrossRefGoogle Scholar
  22. 22.
    Gütlich P, Rainer L, Trautwein A (1978) Mössbauer spectrosopy and transition metal chemistry. Springer, BerlinCrossRefGoogle Scholar
  23. 23.
    Heyon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 8:927CrossRefGoogle Scholar
  24. 24.
    Iglesias Ò, Labarta A, Batlle X (2008) Exchange bias phenomenology and models of core/shell nanoparticles. J Nanosci Nanotechnol 8:2761Google Scholar
  25. 25.
    Juhin A, López-Ortega A, Sikora M, Carvallo C, Estrader M, Estradé S, Peiró F, Baró MD, Sainctavit P, Glatzel P, Nogués J (2014) Direct evidence for an interdiffused intermediate layer in bi-magnetic core–shell nanoparticles. Nanoscale 6:11,911CrossRefGoogle Scholar
  26. 26.
    Kiwi M (2001) Exchange bias theory. J Magn Magn Mater 234:584CrossRefGoogle Scholar
  27. 27.
    Krycka KL, Borchers JA, Salazar-Alvarez G, López-Ortega A, Estrader M, Estradé S, Winkler E, Zysler RD, Sort J, Peiró F, Baró MD, Kao CC, Nogués J (2013) Resolving material-specific structures within Fe3O4/γ-Mn2O3 core/shell nanoparticles using anomalous small-angle x-ray scattering. ACS Nano 7:921CrossRefGoogle Scholar
  28. 28.
    Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physiochemical characterizations, and biological applications. Chem Rev 108:2064CrossRefGoogle Scholar
  29. 29.
    Lee E, Kim DH, Hwang J, Lee K, Yoon S, Suh BJ, Kim KH, Kim JY, Zhang ZH, Kim B, Min BI, Kang JS (2013) Size dependent structural evolution of the biomineralized iron-core nanoparticles in ferritins. Appl Phys Lett 102:133,703CrossRefGoogle Scholar
  30. 30.
    Lee JH, Jang JT, Choi JS, Moon SH, Noh SH, Kim JW, Kim JG, Kim IS, Park KI, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6:418CrossRefGoogle Scholar
  31. 31.
    van Lierop J, Ryan DH (2001) Mössbauer spectra of single-domain fine particle systems described using a multiple-level relaxation model for superparamagnets. Phys Rev B 63:064,406CrossRefGoogle Scholar
  32. 32.
    López-Ortega A, Estrader M, Salazar-Alvarez G, Roca AG, Nogués J (2015) Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys Rep 553:1CrossRefGoogle Scholar
  33. 33.
    McCurrie RA (1994) Ferromagnetic materials: Structure and properties. Academic press, LondonGoogle Scholar
  34. 34.
    Meiklejohn WH, Bean CP (1957) New magnetic anisotropy. Phys Rev 105:904CrossRefGoogle Scholar
  35. 35.
    Melinon P, Begin-Colin S, Duvail JL, Gauffre F, Biome NH, Ledoux G, Plain J, Reiss P, Silly F, Warot-Fonrose B (2014) Engineered inorganic core/shell nanoparticles. Phys Rep 543:163CrossRefGoogle Scholar
  36. 36.
    Moyer JA, Kumah DP, Vaz CAF, Arena DA, Henrich VE (2013) Role of epitaxial strain on the magnetic structure of Fe-doped CoFe2O4. J Magn Magn Mater 345:180CrossRefGoogle Scholar
  37. 37.
    Mulders AM, Loosvelt H, Fraile Rodríguez A, Popova E, Konishi T, Temst K, Karis O, Arvantis D, van Haesendonck C (2009) On the interface magnetism of thin oxidized Co films: orbital and spin moments. J Phys:Condens Matter 21:124,211Google Scholar
  38. 38.
    Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S, Muñoz JS, Baró MD (2005) Exchange bias in nanostructures. Phys Rep 422:65CrossRefGoogle Scholar
  39. 39.
    Nogués J, Skumryev V, Sort J, Stoyanov S, Givord D (2006) Shell-driven magnetic stability in core-shell nanoparticles. Phys Rev Lett 97:157,203CrossRefGoogle Scholar
  40. 40.
    Noh S, Na W, Jang J, Lee JH, Lee EJ, Moon SH, Lim Y, Shin JS, Cheon J (2012) Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett 12:3176CrossRefGoogle Scholar
  41. 41.
    O’Handley RC (2000) Modern magnetic materials: principles and applications. Wiley, New YorkGoogle Scholar
  42. 42.
    Pankhurst QA, Thanh NTK, Jones SK, Dobson J (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 42:224,001CrossRefGoogle Scholar
  43. 43.
    Parker FT, Foster MW, Marguiles DT, Berkowitz AE (1993) Spin canting, surface magnetization, and finite-size effects in γ-Fe2O3 particles. Phys Rev B 47:7885CrossRefGoogle Scholar
  44. 44.
    Parveen S, Misra R, Sahoo SK (2012) Nanoparticles: a boon to drug delivery, theraputics, diagnostics, and imaging. Nanomedicine: NBM 8:147CrossRefGoogle Scholar
  45. 45.
    Peiris PM, Bauer L, Toy R, Tran E, Pansky J, Doolittle E, Schmidt E, Hayden E, Mayer A, Keri RA, Griswold MA, Karathanasis E (2012) Enhanced delivery of chemotherapy to tumors using a multicomponent nanochain with radio-frequency-tunable drug release. ACS Nano 6:4157CrossRefGoogle Scholar
  46. 46.
    Persoons RM, De Grave E, de Bakker PMA, Vandenberghe RE (1993) Mössbauer study of the high temperature phase of Co-substituted magnetites, CoxFe3–xO4. II. x ≥ 0.1. Phys Rev B 47:5894CrossRefGoogle Scholar
  47. 47.
    Piamonteze C, Miedema P, de Groot FMF (2009) Accuracy of the spin sum rule in XMCD for the transition-metal L edges from manganese to copper. Phys Rev B 80:184,410CrossRefGoogle Scholar
  48. 48.
    Popescu R, Leidinger P, Kind C, Feldman C, Gerthsen D (2013) Structure of hollow spheres analyzed by x-ray diffraction, transmission electron microscopy, and dynamic light scattering. J Nanopart Res 15:1648CrossRefGoogle Scholar
  49. 49.
    Rasband WS (2005) Image processing and analysis in java. URL http://rsb.info.nih.gov/ij/
  50. 50.
    Rockenberger J, Scher EC, Alivisatos AP (1999) A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc 121:11,595CrossRefGoogle Scholar
  51. 51.
    Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192:55CrossRefGoogle Scholar
  52. 52.
    Salazar-Alvarez G, Sort J, Uheida A, Muhammed M, Suriñach S, Baró MD, Nogués J (2007) Reversible post-synthesis tuning of the superparamagnetic blocking temperature of γ-Fe2O3 nanoparticles by adsorption and desorption of Co(II) ions. J Mater Chem 17:322CrossRefGoogle Scholar
  53. 53.
    Salgueiriño-Maceira V, Correa-Duarte MA (2007) Increasing the complexity of magnetic core/shell structured nanocomposites for biological applications. Adv Mater 19:4131CrossRefGoogle Scholar
  54. 54.
    Sawatzky GA, van der Woude F, Morrish AH (1968) Cation distributions in octahedral and tetrahedral sites of the ferrimagnetic spinel CoFe2O4. J Appl Phys 39:1204CrossRefGoogle Scholar
  55. 55.
    Sharrok MP, Picone PJ, Morrish AH (1983) Mössbauer emission spectroscopy study of cobalt-surface-doped acircular magnetite particles. IEEE Trans Magn MAG-19:1466CrossRefGoogle Scholar
  56. 56.
    Shendruk TN, Desautels RD, Southern BW, van Lierop J (2007) The effect of surface spin disorder on the magnetism of γ-Fe2O3 nanoparticle dispersions. Nanotechnology 18:455,704CrossRefGoogle Scholar
  57. 57.
    Shtrikman S, Wolfarth EP (1981) The theory of the Vogel-Fulcher law of spin glasses. Phys Lett 85A:467CrossRefGoogle Scholar
  58. 58.
    Skoropata E, Desautels RD, Chi CC, Ouyang H, Freeland JW, van Lierop J (2014) Magnetism of iron oxide based core-shell nanoparticles from interface mixing with enhanced spin-orbit coupling. Phys Rev B 89:024,410CrossRefGoogle Scholar
  59. 59.
    Skoropata E, Desautels RD, Falvo E, Ceci P, Kasyutich O, Freeland JW, van Lierop J (2014) Intra- and interparticle magnetism of cobalt-doped iron-oxide nanoparticles encapsulated in a synthetic ferritin cage. Phys Rev B 90:174,424CrossRefGoogle Scholar
  60. 60.
    Skoropata E, Su TT, Ouyang H, Freeland JW, van Lierop J (2015) Examination of the magnetism dynamics from intermixing effects in γ-Fe2O3/MnO core-shell nanoparticles. J Appl Phys 117:17A727CrossRefGoogle Scholar
  61. 61.
    Slonczewski JC (1958) Origin of magnetic anisotropy in cobalt-substituted magnetite. Phys Rev 110:1341CrossRefGoogle Scholar
  62. 62.
    Stavitski E, de Groot FMF (2010) The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. Micron 41:687CrossRefGoogle Scholar
  63. 63.
    Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252CrossRefGoogle Scholar
  64. 64.
    Tang YJ, Smith DJ, Zink BL, Hellman F, Berkowitz AE (2003) Finite size effects on the moment and ordering temperature in antiferromagnetic CoO layers. Phys Rev B 67:054,408CrossRefGoogle Scholar
  65. 65.
    Tartaj P, Morales MP, Gonzales-Carreño T, Veintemillas-Verdaguer S, Serna CJ (2011) The iron oxides strike back: from biomedical applications to energy storage devices and photoelectrochemical water splitting. Adv Mater 23:5243CrossRefGoogle Scholar
  66. 66.
    Thole BT, Carra P, Sette F, van der Laan G (1992) X-ray circular dichroism as a probe of orbital magnetization. Phys Rev Lett 68:1943CrossRefGoogle Scholar
  67. 67.
    Tuček J, Zobril R, Petridis D (2006) Maghemite nanoparticles by view of Mössbauer spectroscopy. J Nanosci Nanotechnol 6:926CrossRefGoogle Scholar
  68. 68.
    Vasilakaki M, Trohidou KN, Nogués J (2015) Enhanced magnetic properties in antifferomagnetic-core/ferrimagnetic-shell nanoparticles. Sci Rep 5:09,609CrossRefGoogle Scholar
  69. 69.
    Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG (2004) Chemically prepared magnetic nanoparticles. Int Mater Rev 49:125CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada

Personalised recommendations