Neutron Reflectivity to Characterize Nanostructured Films

  • Sirshendu GayenEmail author
  • Milan K. Sanyal
  • Max Wolff


Neutron reflectivity is a powerful nondestructive technique to characterize thin films and nanostructured materials. This technique works equally well for various types of systems like organic, inorganic, and biological materials both in solid and liquid forms. Neutron reflectivity measurements provide information regarding the thickness and density of a thin film as a function of depth and also about the roughness of the top surface and buried interfaces. In comparison with x-ray reflectivity study, the neutron reflectivity measurements provide much improved contrast for elements with close values of atomic numbers, even for isotopes of same element. Furthermore, the detail of the in-plane spin arrangement can be obtained from polarization analysis. Neutron reflectivity is more than a complementary technique to x-ray reflectivity measurement for structural and morphological studies and is essential for the study of magnetic ordering due to its capability to measure the average magnetic moment in absolute units simultaneously with the structural information. In this chapter we discuss the theory of neutron reflectivity technique and illustrate the merit of this technique with some recent examples. We explain also the analysis techniques of neutron reflectivity data in detail. Although the nature of interaction of neutron with matter is different from that of x-ray, the basic formalism for reflectivity presented here utilizing the wave nature of thermal/cold neutrons remain valid for both measurements.


Critical Angle Specular Reflectivity Diffuse Scattering Reflectivity Curve Scatter Length Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Halpern O, Johnson MH (1939) On the magnetic scattering of neutrons. Phys Rev 55(10):898–923CrossRefGoogle Scholar
  2. 2.
    Parratt LG (1954) Surface studies of solids by total reflection of x-rays. Phys Rev 95(2):359–369CrossRefGoogle Scholar
  3. 3.
    Moon RM, Riste T, Koehler WC (1969) Polarization analysis of thermal-neutron scattering. Phys Rev 181(2):920–931CrossRefGoogle Scholar
  4. 4.
    Russell TP (1990) X-ray and neutron reflectivity for the investigation of polymers. Materials Science Reports 5(4):171–271CrossRefGoogle Scholar
  5. 5.
    Penfold J, Thomas RK (1990) The application of the specular reflection of neutrons to the study of surfaces and interfaces. J Phys Condens Matter 2(6):1369–1412CrossRefGoogle Scholar
  6. 6.
    Majkrzak CF (1991) Polarized neutron reflectometry. Phys B 173(1–2):75–88; (1996) Neutron scattering studies of magnetic thin films and multilayers. Phys B 221(1–4):342–356CrossRefGoogle Scholar
  7. 7.
    Blundell SJ, Bland JAC (1992) Polarized Neutron reflection as a probe of magnetic films and multilayers. Phys Rev 46(6):3391–3400CrossRefGoogle Scholar
  8. 8.
    Felcher GP (1993) Magnetic depth profiling studies by polarized neutron reflection. Phys B 192(1–2):137–149CrossRefGoogle Scholar
  9. 9.
    Zhou X-L, Chen S-H (1995) Theoretical foundation of x-ray and neutron reflectometry. Phys Rep 257(4–5):223–348CrossRefGoogle Scholar
  10. 10.
    Dietrich S, Haase A (1995) Scattering of x-rays and neutrons at interfaces. Phys Rep 260(1–2):1–138CrossRefGoogle Scholar
  11. 11.
    Ankner JF, Felcher GP (1999) Polarized-neutron reflectometry. J Magn Magn Mater 200(1–3):741–754CrossRefGoogle Scholar
  12. 12.
    Basu JK, Sanyal MK (2002) Ordering and growth of Langmuir-Blodgett films: x-ray scattering studies. Phys Rep 363(1):1–84CrossRefGoogle Scholar
  13. 13.
    Fitzsimmons MR et al (2004) Neutron scattering studies of nanomagnetism and artificially structured materials. J Magn Magn Mater 271:103–146CrossRefGoogle Scholar
  14. 14.
    Daillant J, Gibaud A (1999) X-ray and neutron reflectivity: principle and applications, Lectures notes in physics. Springer, BerlinGoogle Scholar
  15. 15.
    Tolan M (1999) X-ray scattering from soft-matter thin films. Springer, Berlin, pp 5–89Google Scholar
  16. 16.
    Als-Nielsen J, McMorrow M (2001) Elements of modern x-ray physics. Wiley, Hoboken, pp 61–95Google Scholar
  17. 17.
    Zabel H, Theis-Bröhl K, Toperverg BP (2007) In: Kronmüller H, Parkin SPS (eds) The handbook of magnetism and advanced magnetic materials: vol 3 – novel techniques. Wiley, New York, pp 2327–2362Google Scholar
  18. 18.
    Sivia DS (2011) Elementary scattering theory: for x-ray and neutron users. Oxford University Press, Oxford, pp 93–112CrossRefGoogle Scholar
  19. 19.
    Gayen S, Sanyal MK, Sarma A, Wolff M, Zhernenkov K, Zabel H (2010) Polarized neutron reflectivity study of spin vortices formed in Gd-based Langmuir-Blodgett films. Phys Rev B 82:174429CrossRefGoogle Scholar
  20. 20.
    Zabel H (1994) X-ray and neutron reflectivity analysis of thin films and superlattices. Appl Phys A 58:159–168CrossRefGoogle Scholar
  21. 21.
    Sanyal MK, Hazra S, Basu JK, Datta A (1998) Extraction of density profile for near perfect multilayers. Phys Rev B 58:R4258CrossRefGoogle Scholar
  22. 22.
    Sanyal MK, Basu JK, Datta A, Banerjee S (1996) Determination of small fluctuations in electron density profiles of thin films: layer formation in polystyrene film. Europhys Lett 36:265CrossRefGoogle Scholar
  23. 23.
    Sinha SK, Sirota EB, Garoff S, Stanley HB (1988) X-ray and neutron scattering from rough surfaces. Phys Rev B 38:2297CrossRefGoogle Scholar
  24. 24.
    Basu JK, Sanyal MK (1997) Capillary waves in Langmuir-Blodgett interfaces and formation of confined CdS layers. Phys Rev Lett 79:4617CrossRefGoogle Scholar
  25. 25.
    Sanyal MK, Sinha SK, Huang KG, Ocko BM (1991) X-ray scattering study of capillary wave fluctuation at a liquid surface. Phys Rev Lett 66:628CrossRefGoogle Scholar
  26. 26.
    Sanyal MK (1998) X-ray scattering studies of surfaces and interfaces. Radiat Phys Chem 51(4–6):487–495CrossRefGoogle Scholar
  27. 27.
    Sanyal MK, Mukhopadhyay MK, Mukherjee M, Datta A, Basu JK, Penfold J (2002) Role of molecular self-assembling in Langmuir-Blodgett film Growth. Phys Rev B65:033409CrossRefGoogle Scholar
  28. 28.
    Radu F, Etzkorn M, Schmitte T, Siebrecht R, Schreyer A, Westerholt K, Zabel H (2002) Asymmetric magnetization reversal on exchange biased CoO/Co bilayers. J Magn Magn Mater 240:251–253CrossRefGoogle Scholar
  29. 29.
    Radu F, Leiner V, Wolff M, Ignatovitch VK, Zabel H (2005) Quantum states of neutrons in magnetic thin films. Phys Rev B 71:214423CrossRefGoogle Scholar
  30. 30.
    Felcher GP, Hilleke RO, Crawford RK, Haumann J, Kleb R, Ostrowski G (1987) Polarized neutron reflectometer: a new instrument to measure magnetic depth profiles. Rev Sci Instrum 58(4):609–619CrossRefGoogle Scholar
  31. 31.
    Leiner V, Westerholt K, Blixt AM, Zabel H, Hjörvarsson B (2003) Magnetic superlattices with variable interlayer exchange coupling: a new approach for the investigation of low-dimensional magnetism. Phys Rev Lett 91:037202CrossRefGoogle Scholar
  32. 32.
    Baltensperger S, Helman JS (1990) Ruderman-Kittel coupling between ferromagnets separated by a nonmagnetic layer. Appl Phys Lett 57:2954–2955CrossRefGoogle Scholar
  33. 33.
    Bruno P, Chappert C (1992) Ruderman-Kittel theory of oscillatory interlayer exchange coupling. Phys Rev B 46(1):261CrossRefGoogle Scholar
  34. 34.
    Bruno P (1993) Oscillations of interlayer exchange coupling vs. ferromagnetic-layers thickness. EPL 23(8):615–620CrossRefGoogle Scholar
  35. 35.
    Bounouh A, Beauvillain P, Bruno P, Chappert C, Mégy R, Veillet P (1996) Theoretical prediction and experimental evidence of a novel oscillatory behaviour of interlayer magnetic coupling. EPL 33(4):315–320CrossRefGoogle Scholar
  36. 36.
    Griffiths RB (1970) Dependence of critical indices on a parameter. Phys Rev Lett 24:1479–1482CrossRefGoogle Scholar
  37. 37.
    Meiklejohn W, Bean CP (1957) New magnetic anisotropy. Phys Rev 105:904CrossRefGoogle Scholar
  38. 38.
    Stamps RL (2000) Mechanisms for exchange bias. J Phys D Appl Phys 33:R247R268CrossRefGoogle Scholar
  39. 39.
    Kiwi M (2001) Exchange bias theory. J Magn Magn Mater 234:584–595CrossRefGoogle Scholar
  40. 40.
    Radu F, Etzkorn M, Siebrecht R, Schmitte T, Westerhold K, Zabel H (2003) Interfacial domain formation during magnetization reversal in exchange-biased CoO/Co bilayers. Phys Rev B 67:134409CrossRefGoogle Scholar
  41. 41.
    Bergmann A, Grabis J, Toperverg BP, Leiner V, Wolff M, Zabel H, Westerhold K (2005) Antiferromagnetic dipolar ordering in [Co2MnGe/V]N multilayers. Phys Rev B 72:214403CrossRefGoogle Scholar
  42. 42.
    Prinz GA (1998) Magnetoelectronics. Science 282:1660–1663CrossRefGoogle Scholar
  43. 43.
    Awschalom D, Kikkawa J (1999) Electron spin and optical coherence in semiconductors. Phys Today 52(6):33–38CrossRefGoogle Scholar
  44. 44.
    Gregg JF, Petej I, Jouguelet E, Dennis C (2002) Spin electronicsa review. J Phys D Appl Phys 35:R121CrossRefGoogle Scholar
  45. 45.
    Toperverg B. Polarized Neutron Scattering, edited by T. Bruckel and W. Schweika Schriften des Forschungszentrum Julich GmbH Jülich, Germany 2002. Matter and Materials, vol 12Google Scholar
  46. 46.
    Kentzinger URE, Toperverg B (2003) Simulations of off-specular scattering of polarized neutrons from laterally patterned magnetic multilayers. Phys B 335:82CrossRefGoogle Scholar
  47. 47.
    Hubert A, Schäfer R (1998) Magnetic domains. The analysis of magnetic microstructures. Springer, BerlinGoogle Scholar
  48. 48.
    Theis-Bröhl K, Wolff M, Westphalen A, Zabel H, McCord J, Höink V, Schmalhorst J, Reiss G, Rücker U, Toperverg BP (2006) Exchange-bias instability in a bilayer with an ion-beam imprinted stripe pattern of ferromagnetic/antiferromagnetic interfaces. Phys Rev B 73:174408CrossRefGoogle Scholar
  49. 49.
    Mukhopadhyay MK, Sanyal MK, Mukadam MD, Yusuf SM, Basu JK (2003) Field induced two-dimensional ferromagnetic ordering in a gadolinium stearate Langmuir-Blodgett film. Phys Rev B 68:174427CrossRefGoogle Scholar
  50. 50.
    Mukhopadhyay MK, Sanyal MK, Sakakibara T, Leiner V, Dalgliesh RM, Langridge S (2006) Polarized neutron scattering and sub-Kelvin magnetization measurements in two-dimensional gadolinium stearate Langmuir-Blodgett films. Phys Rev B 74:014402CrossRefGoogle Scholar
  51. 51.
    Wolff M, Scholz U, Hock R, Magerl A, Zabel H (2004) Crystallization of micelles at chemically terminated interfaces. Phys Rev Lett 92:255501CrossRefGoogle Scholar
  52. 52.
    Theis-Bröhl K, Wolff M, Ennen I, Dewhurst C, Htten A, Toperverg BP (2008) Self-ordering of nanoparticles in magneto-organic composite films. Phys Rev B 78:134426CrossRefGoogle Scholar
  53. 53.
    Zabel H (2014) Dynamics of spintronic materials: exploration in the time and frequency domain. J Appl Phys 116:22220CrossRefGoogle Scholar
  54. 54.
    Langner MC, Roy S, Mishra SK, Lee JCT, Shi XW, Hossain MA, Chuang YD, Seki S, Tokura Y, Kevan SD, Schoenlein RW (2014) Coupled Skyrmion sublattices in Cu2OSeO3. Phys Rev Lett 112:167202CrossRefGoogle Scholar
  55. 55.
    Pfleiderer C, Adams T, Bauer A, Biberacher W, Binz B, Birkelbach F, Bni P, Franz C, Georgii R, Janoschek M, Jonietz F, Keller T, Ritz R, Mhlbauer S, Mnzer W, Neubauer A, Pedersen B, Rosch A (2010) Skyrmion lattices in metallic and semiconducting B20 transition metal compounds. J Phys Condens Matter 22:164207CrossRefGoogle Scholar
  56. 56.
    Romming N, Kubetzka A, Hanneken C, Bergmann K, Wiesendanger R (2015) Field dependent size and shape of single magnetic skyrmions. Phys Rev Lett 114:177203CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Surface Physics and Material Science DivisionSaha Institute of Nuclear PhysicsKolkataIndia
  2. 2.Department of Physics and AstronomyUppsala UniversityUppsalaSweden

Personalised recommendations