Rotational Anisotropy Nonlinear Harmonic Generation

  • Darius H. TorchinskyEmail author
  • David Hsieh


Rotational anisotropy nonlinear harmonic generation (RA-NHG) is an all-optical technique by which crystallographic, magnetic, and electronic symmetries of crystalline materials’ bulk surface and interfaces may be examined. It also allows characterization of nanostructures and biological tissue as well as imaging applications. In this chapter, we describe the principles behind RA-NHG, discuss current experimental approaches, and review key experimental findings since 2009.


Harmonic Generation Topological Insulator Nonlinear Optical Response Incident Polarization Dipole Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge funding provided by the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center with support of the Gordon and Betty Moore Foundation through Grant GBMF1250, by ARO Grant #W911NF-13-1-0059, and by ARO DURIP Award #W911NF-13-1-0293.


  1. 1.
    Aït-Belkacem D, Guilbert M, Roche M, Duboisset J, Ferrand P, Sockalingum G, Jeannesson P, Brasselet S (2012) Microscopic structural study of collagen aging in isolated fibrils using polarized second harmonic generation. J Biomed Opt 17(8):0805061–0805063CrossRefGoogle Scholar
  2. 2.
    An YQ, Nelson F, Lee JU, Diebold AC (2013) Enhanced optical second-harmonic generation from the current-biased graphene/SiO2/Si(001) structure. Nano Lett 13(5):2104–2109CrossRefGoogle Scholar
  3. 3.
    An YQ, Rowe JE, Dougherty DB, Lee JU, Diebold AC (2014) Optical second-harmonic generation induced by electric current in graphene on Si and SiC substrates. Phys Rev B 89(11)Google Scholar
  4. 4.
    Andersen SV, Trolle ML, Pedersen K (2013) Growth direction of oblique angle electron beam deposited silicon monoxide thin films identified by optical second-harmonic generation. Appl Phys Lett 103(23):231906CrossRefGoogle Scholar
  5. 5.
    Awada C, Jonin C, Kessi F, Adam P, Kostcheev S, Bachelot R, Royer P, Samah M, Russier-Antoine I, Benichou E et al (2011) Polarized second harmonic response of square, hexagonal and random arrays of gold metallic nanocylinders. Opt Mater 33(9):1440–1444CrossRefGoogle Scholar
  6. 6.
    Awada C, Kessi F, Jonin C, Adam P, Kostcheev S, Bachelot R, Royer P, Russier-Antoine I, Benichou E, Bachelier G et al (2011) On-and off-axis second harmonic generation from an array of gold metallic nanocylinders. J Appl Phys 110(2):023109CrossRefGoogle Scholar
  7. 7.
    Barakat E, Bernal M-P, Baida FI (2013) Doubly resonant Ag–LiNbO3 embedded coaxial nanostructure for high second-order nonlinear conversion. JOSA B 30(7):1975–1980CrossRefGoogle Scholar
  8. 8.
    Berthelot J, Bachelier G, Song M, Rai P, Colas des Francs G, Dereux A, Bouhelier A (2012) Silencing and enhancement of second-harmonic generation in optical gap antennas. Opt Express 20(10):10498–10508CrossRefGoogle Scholar
  9. 9.
    Bloembergen N (1996) Nonlinear optics. World Scientific, SingaporeCrossRefGoogle Scholar
  10. 10.
    Bonda A, Uba S, Uba L (2012) Ultrafast magneto-optical and magnetization induced second harmonic generation techniques for studies of magnetic nanostructures. Acta Phys Pol-Ser A Gen Phys 121(5):1225CrossRefGoogle Scholar
  11. 11.
    Bonda A, Uba S, Uba L (2013) Nonlinear magnetization-induced terms in garnet film polarization in the second-harmonic generation effect: Theory and experiment. Phys Rev B 87(2)Google Scholar
  12. 12.
    Bonda A, Uba S, and Uba L (2014) Second-harmonic generation studies of implantation defects depth profile in hydrogen implanted garnet film. Appl Phys Lett 105(19)Google Scholar
  13. 13.
    Borys NJ, Walter MJ, Lupton JM (2009) Intermittency in second-harmonic radiation from plasmonic hot spots on rough silver films. Phys Rev B 80(16):161407CrossRefGoogle Scholar
  14. 14.
    Boseggia S, Walker HC, Vale J, Springell R, Feng Z, Perry RS, Sala MM, Rønnow HM, Collins SP, McMorrow DF (2013) Locking of iridium magnetic moments to the correlated rotation of oxygen octahedra in Sr2IrO4 revealed by x-ray resonant scattering. J Phys Condens Matter 25(42):422202CrossRefGoogle Scholar
  15. 15.
    Boyd RW (2008) Nonlinear Optics. Academic, New YorkGoogle Scholar
  16. 16.
    Brevet P (2010) Second harmonic generation in nanostructures. Amsterdam, ElsevierGoogle Scholar
  17. 17.
    Brewer J, Schiek M, Rubahn H-G (2010) Nonlinear optical properties of CNHP4 nanofibers: molecular dipole orientations and two photon absorption cross-sections. Opt Commun 283(7):1514–1518CrossRefGoogle Scholar
  18. 18.
    Brown CP, Houle M-A, Popov K, Nicklaus M, Couture C-A, Lalibertée M, Brabec T, Ruediger A, Carr AJ, Price AJ et al (2014) Imaging and modeling collagen architecture from the nano to micro scale. Biomed Opt Express 5(1):233–243CrossRefGoogle Scholar
  19. 19.
    Butcher PN, Cotter D (1991) The elements of nonlinear optics, volume 9. Cambridge University Press, CambridgeGoogle Scholar
  20. 20.
    Butet J, Duboisset J, Bachelier G, Russier-Antoine I, Benichou E, Jonin C, Brevet P-F (2010) Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium. Nano Lett 10(5):1717–1721CrossRefGoogle Scholar
  21. 21.
    Butet J, Russier-Antoine I, Jonin C, Lascoux N, Benichou E, Brevet P-F (2012) Sensing with multipolar second harmonic generation from spherical metallic nanoparticles. Nano Lett 12(3):1697–1701CrossRefGoogle Scholar
  22. 22.
    Bykov AY, Murzina TV, Rybin MG, Obraztsova ED (2012) Second harmonic generation in multilayer graphene induced by direct electric current. Phys Rev B 85(12):121413CrossRefGoogle Scholar
  23. 23.
    Capretti A, Walsh GF, Minissale S, Trevino J, Forestiere C, Miano G, Dal Negro L (2012) Multipolar second harmonic generation from planar arrays of Au nanoparticles. Opt Express 20(14):15797–15806CrossRefGoogle Scholar
  24. 24.
    Capretti A, Pecora EF, Forestiere C, Dal Negro L, Miano G (2014) Size dependent second-harmonic generation from gold nanoparticles. Phys Rev B 89(12):125414CrossRefGoogle Scholar
  25. 25.
    Chandra M, Das PK (2009) Small-particle limit in the second harmonic generation from noble metal nanoparticles. Chem Phys 358(3):203–208CrossRefGoogle Scholar
  26. 26.
    Chaudhuri S (2001) Super-resolution imaging. Springer Science & Business Media, New YorkGoogle Scholar
  27. 27.
    Chen R, Crankshaw S, Tran T, Chuang LC, Moewe M, Chang-Hasnain C (2010) Second-harmonic generation from a single wurtzite GaAs nanoneedle. Appl Phys Lett 96(5):051110CrossRefGoogle Scholar
  28. 28.
    Chen W-L, Li T-H, Su P-J, Chou C-K, Fwu PT, Lin S-J, Kim D, So PT, Dong C-Y (2009) Second harmonic generation χ tensor microscopy for tissue imaging. Appl Phys Lett 94(18):183902CrossRefGoogle Scholar
  29. 29.
    Choi J, Bellec M, Royon A, Bourhis K, Papon G, Cardinal T, Canioni L, Richardson M (2012) Three-dimensional direct femtosecond laser writing of second-order nonlinearities in glass. Opt Lett 37(6):1029–1031CrossRefGoogle Scholar
  30. 30.
    Cisek R, Barzda V, Ruda HE, Shik A (2011) Nonlinear optical properties of semiconductor nanowires. IEEE J Sel Top Quantum Electron 17(4):915–921CrossRefGoogle Scholar
  31. 31.
    Cisek R, Tokarz D, Hirmiz N, Saxena A, Shik A, Ruda HE, Barzda V (2014) Crystal lattice determination of ZnSe nanowires with polarization dependent second harmonic generation microscopy. Nanotechnology 25(50):505703CrossRefGoogle Scholar
  32. 32.
    Clark D, Senthilkumar V, Le C, Weerawarne D, Shim B, Jang J, Shim J, Cho J, Sim Y, Seong M-J et al (2014) Strong optical nonlinearity of cvd-grown MoS2 monolayer as probed by wavelength-dependent second-harmonic generation. Phys Rev B 90(12):121409CrossRefGoogle Scholar
  33. 33.
    Corn RM, Higgins DA (1994) Optical second harmonic generation as a probe of surface chemistry. Chem Rev 94(1):107–125CrossRefGoogle Scholar
  34. 34.
    Das SK, Biswas M, Byrne D, Bock M, McGlynn E, Breusing M, Grunwald R (2010) Multiphoton-absorption induced ultraviolet luminescence of ZnO nanorods using low-energy femtosecond pulses. J Appl Phys 108(4):043107CrossRefGoogle Scholar
  35. 35.
    Dean JJ, van Driel HM (2009) Second harmonic generation from graphene and graphitic films. Appl Phys Lett 95(26):261910CrossRefGoogle Scholar
  36. 36.
    Dean JJ, van Driel HM (2010) Graphene and few-layer graphite probed by second-harmonic generation: Theory and experiment. Phys Rev B 82(12):125411CrossRefGoogle Scholar
  37. 37.
    Delahaye E, Sandeau N, Tao Y, Brasselet S, Clement R (2009) Synthesis and second harmonic generation microscopy of nonlinear optical efficient hybrid nanoparticles embedded in polymer films. Evidence for intra-and internanoparticles orientational synergy. J Phys Chem C 113(21):9092–9100CrossRefGoogle Scholar
  38. 38.
    Denev SA, Lummen TT, Barnes E, Kumar A, Gopalan V (2011) Probing ferroelectrics using optical second harmonic generation. J Am Ceram Soc 94(9):2699–2727CrossRefGoogle Scholar
  39. 39.
    DeWalt EL, Sullivan SZ, Schmitt PD, Muir RD, Simpson GJ (2014) Polarization-modulated second harmonic generation ellipsometric microscopy at video rate. Anal Chem 86(16):8448–8456CrossRefGoogle Scholar
  40. 40.
    Dhara S, Imakita K, Mizuhata M, Fujii M (2014) Europium doping induced symmetry deviation and its impact on the second harmonic generation of doped ZnO nanowires. Nanotechnology 25(22):225202CrossRefGoogle Scholar
  41. 41.
    Dhital C, Hogan T, Yamani Z, de la Cruz C, Chen X, Khadka S, Ren Z, Wilson SD (2013) Neutron scattering study of correlated phase behavior in Sr2IrO4. Phys Rev B 87:144405CrossRefGoogle Scholar
  42. 42.
    Diziain S, Geiss R, Zilk M, Schrempel F, Kley E-B, Tünnermann A, Pertsch T (2013) Second harmonic generation in free-standing lithium niobate photonic crystal l3 cavity. Appl Phys Lett 103(5):051117CrossRefGoogle Scholar
  43. 43.
    Doras C, Taupier G, Barsella A, Mager L, Boeglin A, Bulou H, Bousquet P, Dorkenoo KD (2011) Polarization state studies in second harmonic generation signals to trace atherosclerosis lesions. Opt Express 19(16):15062–15068CrossRefGoogle Scholar
  44. 44.
    Downer M, Mendoza BS, Gavrilenko V (2001) Optical second harmonic spectroscopy of semiconductor surfaces: advances in microscopic understanding. Surf Interface Anal 31(10):966–986CrossRefGoogle Scholar
  45. 45.
    Dutto F, Raillon C, Schenk K, Radenovic A (2011) Nonlinear optical response in single alkaline niobate nanowires. Nano Lett 11(6):2517–2521CrossRefGoogle Scholar
  46. 46.
    Dutto F, Heiss M, Lovera A, Lόpez-Sánchez O, Fontcuberta i Morral A, Radenovic A (2013) Enhancement of second harmonic signal in nanofabricated cones. Nano Lett 13(12):6048–6054CrossRefGoogle Scholar
  47. 47.
    Ehlert R, Kwon J, Loumakos L, Sharia O, Demkov AA, Downer M (2010) Optical second-harmonic and reflectance-anisotropy spectroscopy of clean and hydrogen-terminated vicinal Si(001) surfaces. J Opt Soc Am B 27(5):981–989CrossRefGoogle Scholar
  48. 48.
    Eisenthal KB (1992) Equilibrium and dynamic processes at interfaces by second harmonic and sum frequency generation. Annu Rev Phys Chem 43(1):627–661CrossRefGoogle Scholar
  49. 49.
    Fan C, Poumellec B, Lancry M, He X, Zeng H, Erraji-Chahid A, Liu Q, Chen G et al (2012) Three-dimensional photoprecipitation of oriented LiNbO3- like crystals in silica-based glass with femtosecond laser irradiation. Opt Lett 37(14):2955–2957CrossRefGoogle Scholar
  50. 50.
    Fang M, Baldelli S (2015) Grain structures and boundaries on microcrystalline copper covered with an octadecanethiol monolayer revealed by sum frequency generation microscopy. J Phys Chem Lett 6:1454–1460CrossRefGoogle Scholar
  51. 51.
    Fernández-Suárez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9(12):929–943CrossRefGoogle Scholar
  52. 52.
    Fiebig M (2012) Phase engineering in oxides by interfaces. Philos Trans R Soc A: Math Phys Eng Sci 370(1977):4972–4988CrossRefGoogle Scholar
  53. 53.
    Fiebig M, Pavlov VV, Pisarev RV (2005) Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review. J Opt Soc Am B 22(1):96–118.Google Scholar
  54. 54.
    Fita P, Fedoseeva M, Vauthey E (2011) Hydrogen-bond-assisted excited-state deactivation at liquid/water interfaces. Langmuir 27(8):4645–4652CrossRefGoogle Scholar
  55. 55.
    Gentile M, Hentschel M, Taubert R, Guo H, Giessen H, Fiebig M (2011) Investigation of the nonlinear optical properties of metamaterials by second harmonic generation. Appl Phys B 105(1):149–162CrossRefGoogle Scholar
  56. 56.
    Ghita R, Negrila C, Cotirlan C, Logofatu C (2013) On the passivation of GaAs surface by sulfide compounds. Digest J Nanomater Biostruct 8:1335–1344Google Scholar
  57. 57.
    Ghita R, Grigorescu C, Secu M, Predoi D, Frumosu F, Cotirlan C, Feraru I (2014) Optical characteristics of sulphur-passivated n-GaAs (100) surface. Digest J Nanomater Biostruct 9(4):1471–1478Google Scholar
  58. 58.
    Glavic A, Becher C, Voigt J, Schierle E, Weschke E, Fiebig M, Brückel T (2013) Stability of spin-driven ferroelectricity in the thin-film limit: coupling of magnetic and electric order in multiferroic TbMnO3 films. Phys Rev B 88(5):054401CrossRefGoogle Scholar
  59. 59.
    Glinka Y, Tolk N, Furdyna J (2011) Time-resolved second harmonic generation study of buried semiconductor heterointerfaces using soliton-induced transparency. Phys Rev B 84(15):153304CrossRefGoogle Scholar
  60. 60.
    Gonella G, Dai H-L, Fry HC, Therien MJ, Krishnan V, Tronin A, Blasie JK (2010) Control of the orientational order and nonlinear optical response of the “push-pull” chromophore RuPZn via specific incorporation into densely packed monolayer ensembles of an amphiphilic 4-helix bundle peptide: second harmonic generation at high chromophore densities. J Am Chem Soc 132(28):9693–9700CrossRefGoogle Scholar
  61. 61.
    Gonella G, Gan W, Xu B, Dai H-L (2012) The effect of composition, morphology, and susceptibility on nonlinear light scattering from metallic and dielectric nanoparticles. J Phys Chem Lett 3(19):2877–2881CrossRefGoogle Scholar
  62. 62.
    Gu J, Yan Y, Zhang C, Yao J, Zhao YS (2014) Inclusion induced second harmonic generation in low dimensional supramolecular crystals. J Mater Chem C 2(17):3199–3203CrossRefGoogle Scholar
  63. 63.
    Günter T, Bousquet E, David A, Boullay P, Ghosez P, Prellier W, Fiebig M (2012) Incipient ferroelectricity in 2.3% tensile-strained CaMnO3 films. Phys Rev B 85(21):214120CrossRefGoogle Scholar
  64. 64.
    Günter T, Rubano A, Paparo D, Lilienblum M, Marrucci L, Granozio FM, di Uccio US, Jany R, Richter C, Mannhart J et al (2012) Spatial inhomogeneities at the LaAlO3/SrTiO3 interface: evidence from second harmonic generation. Phys Rev B 86(23):235–418CrossRefGoogle Scholar
  65. 65.
    Hardhienata H, Alejo-Molina A, Prylepa A, Reitboeck C, Stifter D, Hingerl K (2014) Bond model and group theory of second harmonic generation in GaAs (001). arXiv preprint arXiv:1408.1185Google Scholar
  66. 66.
    He H, Zhang X, Yan X, Huang L, Gu C, Hu M-l, Zhang X, min Ren X, Wang C (2013) Broadband second harmonic generation in GaAs nanowires by femtosecond laser sources. Appl Phys Lett 103(14):143110CrossRefGoogle Scholar
  67. 67.
    He K, Poole C, Mak KF, Shan J (2013) Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett 13(6):2931–2936CrossRefGoogle Scholar
  68. 68.
    Heinz TF (1991) Second-order nonlinear optical effects at surfaces and interfaces. In: Nonlinear surface electromagnetic phenomena. Elsevier Science Publishing Company New York, NY, pp 353–416Google Scholar
  69. 69.
    Henriques A, Abramof E, Rappl P (2009) Theory of near-gap second harmonic generation in centrosymmetric magnetic semiconductors: europium chalcogenides. Phys Rev B 80(24):245206CrossRefGoogle Scholar
  70. 70.
    Hieu HC, Tuan NA, Li H, Miyauchi Y, Mizutani G (2011) Sum frequency generation microscopy study of cellulose fibers. Appl Spectrosc 65(11):1254–1259CrossRefGoogle Scholar
  71. 71.
    Hirata Y, Nakajima M, Nomura Y, Tajima H, Matsushita Y, Asoh K, Kiuchi Y, Eguiluz AG, Arita R, Suemoto T et al (2013) Mechanism of enhanced optical second-harmonic generation in the conducting pyrochlore-type Pb2Ir2O7−x oxide compound. Phys Rev Lett 110(18):187402CrossRefGoogle Scholar
  72. 72.
    Hoffmann T, Kimura K, Kimura T, Fiebig M (2012) Second harmonic generation spectroscopy and domain imaging of the high-temperature multiferroic CuO. J Phys Soc Jpn 81(12)Google Scholar
  73. 73.
    Honma T, Komatsu T (2010) Patterning of two-dimensional planar lithium niobate architectures on glass surface by laser scanning. Opt Express 18(8):8019–8024CrossRefGoogle Scholar
  74. 74.
    Hristu R, Stanciu SG, Tranca DE, Matei A, Stanciu GA (2014) Nonlinear optical imaging of defects in cubic silicon carbide epilayers. Scientific Reports 4Google Scholar
  75. 75.
    Hsieh C-L, Grange R, Pu Y, Psaltis D (2009) Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging. Opt Express 17(4):2880–2891CrossRefGoogle Scholar
  76. 76.
    Hsieh C-L, Pu Y, Grange R, Psaltis D (2010) Second harmonic generation from nanocrystals under linearly and circularly polarized excitations. Opt Express 18(11):11917–11932CrossRefGoogle Scholar
  77. 77.
    Hsieh D, Mahmood F, McIver JW, Gardner DR, Lee YS, Gedik N (2011) Selective probing of photoinduced charge and spin dynamics in the bulk and surface of a topological insulator. Phys Rev Lett 107(7). doi: 10.1103/PhysRevLett.107.077401
  78. 78.
    Hsieh D, McIver JW, Torchinsky DH, Gardner DR, Lee YS, Gedik N (2011) Nonlinear optical probe of tunable surface electrons on a topological insulator. Phys Rev Lett 106(5)Google Scholar
  79. 79.
    Hu H, Wang K, Long H, Liu W, Wang B, Lu P (2015) Precise determination of the crystallographic orientations in single ZnS nanowires by second harmonic generation microscopy. Nano Lett 15(5):3351–3357Google Scholar
  80. 80.
    Huang B, Bates M, Zhuang X (2009) Super resolution fluorescence microscopy. Annu Rev Biochem 78:993CrossRefGoogle Scholar
  81. 81.
    Huttunen MJ, Mäkitalo J, Bautista G, Kauranen M (2012) Multipolar second-harmonic emission with focused gaussian beams. New J Phys 14(11):113005CrossRefGoogle Scholar
  82. 82.
    Ihlefeld J, Kumar A, Gopalan V, Schlom D, Chen Y, Pan X, Heeg T, Schubert J, Ke X, Schiffer P, Orenstein J, Martin LW, Chu YH, Ramesh R (2007) Adsorption-controlled molecular-beam epitaxial growth of BiFeO3. Appl Phys Lett 91(7):71922–72100CrossRefGoogle Scholar
  83. 83.
    Isakov D, de Matos Gomes E, Belsley M, Almeida B, Martins A, Neves N, Reis R (2010) High nonlinear optical anisotropy of urea nanofibers. EPL (Europhys Lett) 91(2):28007CrossRefGoogle Scholar
  84. 84.
    Isakov DV, de Matos Gomes E, Vieira LG, Dekola T, Belsley MS, Almeida BG (2010) Oriented single-crystal-like molecular arrangement of optically nonlinear 2-methyl-4-nitroaniline in electrospun nanofibers. ACS Nano 5(1):73–78CrossRefGoogle Scholar
  85. 85.
    Ito K, Sato Y, Takasu R, Mase N, Kawata Y, Tasaka S, Sugita A (2014) Second-order nonlinear optical susceptibilities in nonelectrically poled guest–host polymers with tricyanofuran chromophores. Jpn J Appl Phys 53(1S):01AD09CrossRefGoogle Scholar
  86. 86.
    Janisch C, Wang Y, Ma D, Mehta N, Elías AL, Perea-Lόpez N, Terrones M, Crespi V, Liu Z (2014) Extraordinary second harmonic generation in tungsten disulfide monolayers. Sci Rep 4Google Scholar
  87. 87.
    Jarrett JW, Chandra M, Knappenberger KL Jr (2013) Optimization of nonlinear optical localization using electromagnetic surface fields (noles) imaging. J Chem Phys 138(21):214202CrossRefGoogle Scholar
  88. 88.
    Jarrett JW, Herbert PJ, Dhuey S, Schwartzberg AM, Knappenberger KL Jr (2014) Chiral nanostructures studied using polarization-dependent noles imaging. J Phys Chem A 118(37):8393–8401CrossRefGoogle Scholar
  89. 89.
    Jeong M-Y, Brasselet S, Lim T-K, Cho BR (2012) Octupolar films with large second harmonic generation and electro-optical effects. Adv Funct Mater 22(4):788–796CrossRefGoogle Scholar
  90. 90.
    Jiang T, Liu H, Huang D, Zhang S, Li Y, Gong X, Shen Y-R, Liu W-T, Wu S (2014) Valley and band structure engineering of folded MoS2 bilayers. Nat Nanotechnol 9(10):825–829CrossRefGoogle Scholar
  91. 91.
    Jones J, Zhu L, Tolk N, Mu R (2013) Investigation of ferroelectric properties and structural relaxation dynamics of polyvinylidene fluoride thin film via second harmonic generation. Appl Phys Lett 103(7):072901CrossRefGoogle Scholar
  92. 92.
    Jung Y, Tong L, Tanaudommongkon A, Cheng J-X, Yang C (2009) In vitro and in vivo nonlinear optical imaging of silicon nanowires. Nano Lett 9(6):2440–2444CrossRefGoogle Scholar
  93. 93.
    Kaminski B, Lafrentz M, Pisarev RV, Yakovlev DR, Pavlov VV, Lukoshkin VA, Henriques AB, Springholz G, Bauer G, Abramof E, Rappl PHO, Bayer M (2009) Spin-induced optical second harmonic generation in the centrosymmetric magnetic semiconductors EuTe and EuSe. Phys Rev Lett 103(5)Google Scholar
  94. 94.
    Kaminski B, Lafrentz M, Pisarev R, Yakovlev D, Pavlov V, Lukoshkin V, Henriques A, Springholz G, Bauer G, Abramof E et al (2010) Optical second harmonic generation in the centrosymmetric magnetic semiconductors EuTe and EuSe. Phys Rev B 81(15):155201CrossRefGoogle Scholar
  95. 95.
    Kaneshiro J, Uesu Y (2010) Domain structure analysis of Pb(Zn1/3Nb2/3)O3- 9% PbTiO3 single crystals using optical second harmonic generation microscopy. Phys Rev B 82(18):184116CrossRefGoogle Scholar
  96. 96.
    Kawamura I, Imakita K, Kitao A, Fujii M (2014) Polarization-sensitive second harmonic generation microscopy of α-quartz like GeO2 (α-GeO2) polycrystal. J Phys D Appl Phys 47(45):455305CrossRefGoogle Scholar
  97. 97.
    Kim C-J, Brown L, Graham MW, Hovden R, Havener RW, McEuen PL, Muller DA, Park J (2013) Stacking order dependent second harmonic generation and topological defects in h-BN bilayers. Nano Lett 13(11):5660–5665CrossRefGoogle Scholar
  98. 98.
    Kim DH, Lim D (2015) Optical second-harmonic generation in few-layer MoSe2. J Kor Phys Soc 66(5):816–820CrossRefGoogle Scholar
  99. 99.
    Kim J-W, Schultz L, Dorr K, Van Aken B, Fiebig M (2007) Growth and multiferroic properties of hexagonal HoMnO3 films. Appl Phys Lett 90(1):012502-1–012502-3Google Scholar
  100. 100.
    Kim S-H, Jeong J-W, Lee J-W, Shin S-C (2009) Enhancement of saturation magnetization in epitaxial (111) BiFeO3 films by magnetic annealing. Thin Solid Films 517(8):2749–2752CrossRefGoogle Scholar
  101. 101.
    Kirilyuk A, Rasing T (2005) Magnetization-induced-second-harmonic generation from surfaces and interfaces. JOSA B 22(1):148–167CrossRefGoogle Scholar
  102. 102.
    Kitao A, Imakita K, Kawamura I, Fujii M (2014) An investigation into second harmonic generation by si-rich SiNx thin films deposited by rf sputtering over a wide range of Si concentrations. J Phys D Appl Phys 47(21):215101CrossRefGoogle Scholar
  103. 103.
    Kolkowski R, Szeszko J, Dwir B, Kapon E, Zyss J (2014) Effects of surface plasmon polariton-mediated interactions on second harmonic generation from assemblies of pyramidal metallic nano-cavities. Opt Express 22(25):30592–30606CrossRefGoogle Scholar
  104. 104.
    Kolmychek IA, Murzina TV (2011) Magnetization-induced anisotropy of second harmonic generation in thin cobalt films. J Magn Magn Mater 323(23):2973–2976CrossRefGoogle Scholar
  105. 105.
    Kordel T, Wehrenfennig C, Meier D, Lottermoser T, Fiebig M, Gelard I, Dubourdieu C, Kim JW, Schultz L, Doerr K (2009) Nanodomains in multiferroic hexagonal RMnO3 films (r = Y,Dy,Ho,Er). Phys Rev B 80(4)Google Scholar
  106. 106.
    Krutyanskiy V, Kolmychek I, Lobanov S, Murzina T (2013) Second order nonlinear spectroscopy of nickel nanorods. Bull Russ Acad Sci: Phys 77(1):63–65CrossRefGoogle Scholar
  107. 107.
    Krutyanskiy VL, Kolmychek IA, Gribkov BA, Karashtin EA, Skorohodov EV, Murzina TV (2013) Second harmonic generation in magnetic nanoparticles with vortex magnetic state. Phys Rev B 88(9)Google Scholar
  108. 108.
    Kudryavtsev A, Shvyrkov K, Mishina E, Sigov A, Handelman A, Amdursky N, Rosenman G (2012) Bioferroelectricity and biopiezelectricity. Phys Solid State 54(6):1263–1268CrossRefGoogle Scholar
  109. 109.
    KumagaiY, Belik AA, Lilienblum M, Leo N, Fiebig M, Spaldin NA (2012) Observation of persistent centrosymmetricity in the hexagonal manganite family. Phys Rev B 85(17)Google Scholar
  110. 110.
    Kumar A, Rai RC, Podraza NJ, Denev S, Ramirez M, Chu Y-H, Martin LW, Ihlefeld J, Heeg T, Schubert J, Schlom DG, Orenstein J, Ramesh R, Collins RW, Musfeldt JL, Gopalan V (2008) Linear and nonlinear optical properties of BiFeO3. Appl Phys Lett 92(12):121915-1–121915-3Google Scholar
  111. 111.
    Kumar A, Denev S, Zeches RJ, Vlahos E, Podraza NJ, Melville A, Schlom DG, Ramesh R, Gopalan V (2010) Probing mixed tetragonal/rhombohedral-like monoclinic phases in strained bismuth ferrite films by optical second harmonic generation. Appl Phys Lett 97(11):112903CrossRefGoogle Scholar
  112. 112.
    Kumar N, Najmaei S, Cui Q, Ceballos F, Ajayan PM, Lou J, Zhao H (2013) Second harmonic microscopy of monolayer MoS2. Phys Rev B 87(16):161403CrossRefGoogle Scholar
  113. 113.
    Kundu A, Watanabe H, Yamaguchi S, Tahara T (2013) Agreement between experimentally and theoretically estimated orientational distributions of solutes at the air/water interface. J Phys Chem C 117(17):8887–8891CrossRefGoogle Scholar
  114. 114.
    Lafrentz M, Brunne D, Kaminski B, Pavlov VV, Henriques AB, Pisarev RV, Yakovlev DR, Springholz G, Bauer G, Abramof E, Rappl PHO, Bayer M (2010) Optical third-harmonic spectroscopy of the magnetic semiconductor EuTe. Phys Rev B 82(23)Google Scholar
  115. 115.
    Lafrentz M, Brunne D, Kaminski B, Pavlov VV, Pisarev RV, Henriques AB, Yakovlev DR, Springholz G, Bauer G, Bayer M (2012) Optical third harmonic generation in the magnetic semiconductor EuSe. Phys Rev B 85(3):035206CrossRefGoogle Scholar
  116. 116.
    Lafrentz M, Brunne D, Kaminski B, Pavlov V, Rodina A, Pisarev R, Yakovlev D, Bakin A, Bayer M (2013) Magneto-stark effect of excitons as the origin of second harmonic generation in ZnO. Phys Rev Lett 110(11):116402CrossRefGoogle Scholar
  117. 117.
    Lafrentz M, Brunne D, Rodina A, Pavlov V, Pisarev R, Yakovlev D, Bakin A, Bayer M (2013) Second-harmonic generation spectroscopy of excitons in ZnO. Phys Rev B 88(23):235207CrossRefGoogle Scholar
  118. 118.
    Lazarescu V, Scurtu R, Lazarescu MF, Toader AM, Volanschi E, Santos E, Jones H, Gotz G, Bauerle P (2009) Potential-induced conformational changes in an α-CN-terthiophene thiolate film on GaAs (110). Langmuir 25(11):6522–6531CrossRefGoogle Scholar
  119. 119.
    Li Y, Rao Y, Mak KF, You Y, Wang S, Dean CR, Heinz TF (2013) Probing symmetry properties of few-layer MoS2 and h-BN by optical second harmonic generation. Nano Lett 13(7):3329–3333CrossRefGoogle Scholar
  120. 120.
    Lien C-H, Tilbury K, Chen S-J, Campagnola PJ (2013) Precise, motion free polarization control in second harmonic generation microscopy using a liquid crystal modulator in the infinity space. Biomed Opt Express 4(10):1991–2002CrossRefGoogle Scholar
  121. 121.
    Lin L, Wang T, Lu Z, Liu M, Guo Y (2014) In situ measurement of the supramolecular chirality in the langmuir monolayers of achiral porphyrins at the air/aqueous interface by second harmonic generation linear dichroism. J Phys Chem C 118(13):6726–6733CrossRefGoogle Scholar
  122. 122.
    Liu F, Li Y, Xing Q, Wang C, Hu M, Chai L, Wang C (2011) Study on nonlinear processes affecting terahertz radiation generation from undoped GaP crystal. Chin Opt Lett 9(Suppl 1):S10201Google Scholar
  123. 123.
    Lv K, Lin L, Wang X, Zhang L, Guo Y, Lu Z, Liu M (2015) Significant chiral signals amplification of langmuir monolayers probed by second harmonic generation. J Phys Chem Lett 6(9):1719–1723Google Scholar
  124. 124.
    Malard LM, Alencar TV, Barboza APM, Mak KF, de Paula AM (2013) Observation of intense second harmonic generation from MoS2 atomic crystals. Phys Rev B 87(20):201401CrossRefGoogle Scholar
  125. 125.
    Malyk S, Shalhout FY, OLeary LE, Lewis NS, Benderskii AV (2013) Vibrational sum frequency spectroscopic investigation of the azimuthal anisotropy and rotational dynamics of methyl-terminated silicon (111) surfaces. J Phys Chem C 117(2):935–944CrossRefGoogle Scholar
  126. 126.
    Mannebach EM, Duerloo K-AN, Pellouchoud LA, Sher M-J, Nah S, Kuo Y-H, Yu Y, Marshall AF, Cao L, Reed EJ et al (2014) Ultrafast electronic and structural response of monolayer MoS2 under intense photoexcitation conditions. ACS Nano 8(10):10734–10742CrossRefGoogle Scholar
  127. 127.
    Mansfield J, Yu J, Attenburrow D, Moger J, Tirlapur U, Urban J, Cui Z, Winlove P (2009) The elastin network: its relationship with collagen and cells in articular cartilage as visualized by multiphoton microscopy. J Anat 215(6):682–691CrossRefGoogle Scholar
  128. 128.
    Martin-Gassin G, Arrachart G, Gassin P-M, Lascoux N, Russier-Antoine I, Jonin C, Benichou E, Pellet-Rostaing S, Diat O, Brevet P-F (2012) Palmitateluciferin: a molecular design for the second harmonic generation study of ion complexation at the air–water interface. J Phys Chem C 116(13):7450–7456CrossRefGoogle Scholar
  129. 129.
    Martins C, Aichhorn M, Vaugier L, Biermann S (2011) Reduced effective spin-orbital degeneracy and spin-orbital ordering in paramagnetic transition metal oxides: Sr2IrO4 versus Sr2RhO4. Phys Rev Lett 107(26):266404CrossRefGoogle Scholar
  130. 130.
    Matteini P, Ratto F, Rossi F, Cicchi R, Stringari C, Kapsokalyvas D, Pavone FS, Pini R (2009) Photothermally-induced disordered patterns of corneal collagen revealed by shg imaging. Opt Express 17(6):4868–4878CrossRefGoogle Scholar
  131. 131.
    McGilp J (1996) A review of optical second-harmonic and sum-frequency generation at surfaces and interfaces. J Phys D Appl Phys 29(7):1812CrossRefGoogle Scholar
  132. 132.
    McGilp J (2010) Probing surface and interface structure using optics. J Phys Condens Matter 22(8):084018CrossRefGoogle Scholar
  133. 133.
    McIver JW, Hsieh D, Drapcho SG, Torchinsky DH, Gardner DR, Lee YS, Gedik N (2012) Theoretical and experimental study of second harmonic generation from the surface of the topological insulator Bi2Se3. Phys Rev B 86:035327CrossRefGoogle Scholar
  134. 134.
    Meier D, Leo N, Yuan G, Lottermoser T, Fiebig M, Becker P, Bohatý L (2010) Second harmonic generation on incommensurate structures: The case of multiferroic MnWO4. Phys Rev B 82(15):155112CrossRefGoogle Scholar
  135. 135.
    Meng ZY, Kim YB, Kee H-Y (2014) Odd-parity triplet superconducting phase in multiorbital materials with a strong spin-orbit coupling: Application to doped Sr2IrO4. Phys Rev Lett 113(17):177003CrossRefGoogle Scholar
  136. 136.
    Meyer KA, Ng KC, Gu Z, Pan Z, Whitten WB, Shaw RW (2010) Combined apertureless near-field optical second-harmonic generation/atomic force microscopy imaging and nanoscale limit of detection. Appl Spectrosc 64(1):1–7CrossRefGoogle Scholar
  137. 137.
    Mishina E, Semin S, Shvyrkov K, Kudryavtsev A, Ilin N, Sherstyuk N, Mukhortov V (2012) Nonlinear optical microscopy and spectroscopy of ferroelectric and multiferroic materials. Phys Solid State 54(5):887–893CrossRefGoogle Scholar
  138. 138.
    Mitchell S (2009) Indole adsorption to a lipid monolayer studied by optical second harmonic generation. J Phys Chem B 113(31):10693–10707CrossRefGoogle Scholar
  139. 139.
    Mitryukovskiy SI, Nikulin AA, Stognij AI, Murzina TV (2013) Magneto and electroinduced effects in optical second-harmonic generation from a planar Au/Co/Si nanostructure. Appl Phys Lett 103(15)Google Scholar
  140. 140.
    Nadiarnykh O, Campagnola PJ (2009) Retention of polarization signatures in shg microscopy of scattering tissues through optical clearing. Opt Express 17(7):5794–5806CrossRefGoogle Scholar
  141. 141.
    Neacsu CC, van Aken BB, Fiebig M, Raschke MB (2009) Second harmonic near-field imaging of ferroelectric domain structure of YMnO3. Phys Rev B 79(10):100107CrossRefGoogle Scholar
  142. 142.
    Neethling P, Scheidt T, Rohwer E, Von Bergmann H, Stafast H (2009) Second harmonic generation as a technique to probe buried interfaces. S Afr J Sci 105(7–8):282–284Google Scholar
  143. 143.
    Nelson CA, Luo J, Jen A-Y, Laghumavarapu RB, Huffaker DL, Zhu X-Y (2014) Time-, energy-, and phase-resolved second-harmonic generation at semiconductor interfaces. J Phys Chem C 118(48):27981–27988CrossRefGoogle Scholar
  144. 144.
    Ning T, Hyvärinen O, Pietarinen H, Kaplas T, Kauranen M, Genty G (2013) Third-harmonic uv generation in silicon nitride nanostructures. Opt Express 21(2):2012–2017CrossRefGoogle Scholar
  145. 145.
    Ogawa N, Satoh T, Ogimoto Y, Miyano K (2009) Half-metallic spin dynamics at a single LaMnO3/SrMnO3 interface studied with nonlinear magnetooptical kerr effect. Phys Rev B 80(24):241104CrossRefGoogle Scholar
  146. 146.
    Ogawa N, Ogimoto Y, Miyano K (2013) Ultrafast dynamics of orbital-order induced polarization. Appl Phys Lett 102(25):251911CrossRefGoogle Scholar
  147. 147.
    Oliveira CK, Gomes EF, Prado MC, Alencar TV, Nascimento R, Malard LM, Batista RJ, de Oliveira AB, Chacham H, de Paula AM, et al (2015) Crystal-oriented wrinkles with origami-type junctions in few-layer h- BN. Nano Res 8:1680Google Scholar
  148. 148.
    Pant DD, Joshi S, Girault HH (2011) Surface second harmonic generation from coumarin 343 dye-attached TiO2 nanoparticles at liquid–liquid interface. J Nanopart Res 13(12):7057–7064CrossRefGoogle Scholar
  149. 149.
    Papon G, Marquestaut N, Petit Y, Royon A, Dussauze M, Rodriguez V, Cardinal T, Canioni L (2014) Femtosecond single-beam direct laser poling of stable and efficient second-order nonlinear optical properties in glass. J Appl Phys 115(11):113103CrossRefGoogle Scholar
  150. 150.
    Park H, Qi J, Xu Y, Lüpke G, Tolk N (2011) Polarization-dependent temporal behaviour of second harmonic generation in Si/SiO2 systems. J Opt 13(5):055202CrossRefGoogle Scholar
  151. 151.
    Park H, Gutierrez M, Wu X, Kim W, Zhu X-Y (2013) Optical probe of charge separation at organic/inorganic semiconductor interfaces. J Phys Chem C 117(21):10974–10979CrossRefGoogle Scholar
  152. 152.
    Pashkevich M, Stupakiewicz A, Kirilyuk A, Stognij A, Maziewski A, Rasing T (2014) Magneto-optical spectroscopy of surface/interfaces in Co/garnet heterostructures. Appl Surf Sci 305:117–123CrossRefGoogle Scholar
  153. 153.
    Pedersen K, Schiek M, Rafaelsen J, Rubahn H-G (2009) Second-harmonic generation spectroscopy on organic nanofibers. Appl Phys B 96(4):821–826CrossRefGoogle Scholar
  154. 154.
    Pisarev R (2013) Second harmonic generation spectroscopy in magnetic and multiferroic materials. J Lumin 133:169–174CrossRefGoogle Scholar
  155. 155.
    Prasad PN, Williams DJ (1991) Introduction to nonlinear optical effects in molecules and polymers. Wiley, New York, etcGoogle Scholar
  156. 156.
    Priimagi A, Ogawa K, Virkki M, Mamiya J-i, Kauranen M, Shishido A (2012) High-contrast photoswitching of nonlinear optical response in crosslinked ferroelectric liquid-crystalline polymers. Adv Mater 24(48):6410–6415CrossRefGoogle Scholar
  157. 157.
    Quang NK, Miyauchi Y, Mizutani G, Charlton MD, Chen R, Boden S, Rutt H (2014) Optical second harmonic generation from V-shaped chromium nanohole arrays. Jpn J Appl Phys 53(2, SI)Google Scholar
  158. 158.
    Rafaelsen J, Kristensen PK, Pedersen K (2013) Interface resonances in optical second-harmonic generation from oxide-covered Ge (111) and Ge (100). J Opt Soc Am B 30(10):2758–2764CrossRefGoogle Scholar
  159. 159.
    Ramirez MO, Kumar A, Denev SA, Podraza NJ, Xu XS, Rai RC, Chu YH, Seidel J, Martin LW, Yang S-Y, Saiz E, Ihlefeld JF, Lee S, Klug J, Cheong SW, Bedzyk MJ, Auciello O, Schlom DG, Ramesh R, Orenstein J, Musfeldt JL, Gopalan V (2009) Magnon sidebands and spin charge coupling in bismuth ferrite probed by nonlinear optical spectroscopy. Phys Rev B 79(22):224106CrossRefGoogle Scholar
  160. 160.
    Ray PC (2010) Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem Rev 110(9):5332–5365CrossRefGoogle Scholar
  161. 161.
    Razdolski I, Parchenko S, Stupakiewicz A, Semin S, Stognij A, Maziewski A, Kirilyuk A, Rasing T (2015) Second harmonic generation from a magnetic buried interface enhanced by an interplay of surface plasma resonances. ACS Photonics 2(1):20–26Google Scholar
  162. 162.
    Recher G, Rouede D, Richard P, Simon A, Bellanger J-J, Tiaho F (2009) Three distinct sarcomeric patterns of skeletal muscle revealed by shg and tpef microscopy. Opt Express 17(22):19763–19777CrossRefGoogle Scholar
  163. 163.
    Ren M-L, Liu S-Y, Wang B-L, Chen B-Q, Li J, Li Z-Y (2014) Giant enhancement of second harmonic generation by engineering double plasmonic resonances at nanoscale. Opt Express 22(23):28653–28661CrossRefGoogle Scholar
  164. 164.
    Richmond GL, Robinson J, Shannon V (1988) Second harmonic generation studies of interfacial structure and dynamics. Prog Surf Sci 28(1):1–70CrossRefGoogle Scholar
  165. 165.
    Sanatinia R, Swillo M, Anand S (2012) Surface second-harmonic generation from vertical GaP nanopillars. Nano Lett 12(2):820–826CrossRefGoogle Scholar
  166. 166.
    Schmidt S, Piglosiewicz B, Sadiq D, Shirdel J, Lee JS, Vasa P, Park N, Kim D-S, Lienau C (2012) Adiabatic nanofocusing on ultrasmooth single crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution. ACS Nano 6(7):6040–6048CrossRefGoogle Scholar
  167. 167.
    Schmutzler J, Fröhlich D, Bayer M (2013) Signatures of coherent propagation of blue polaritons in Cu2O. Phys Rev B 87(24):245202CrossRefGoogle Scholar
  168. 168.
    Schmutzler J, Aßmann M, Czerniuk T, Kamp M, Schneider C, Höfling S, Bayer M (2014) Nonlinear spectroscopy of exciton-polaritons in a GaAs-based microcavity. Phys Rev B 90(7):075103CrossRefGoogle Scholar
  169. 169.
    Schön P, Bonod N, Devaux E, Wenger J, Rigneault H, Ebbesen TW, Brasselet S (2010) Enhanced second-harmonic generation from individual metallic nanoapertures. Opt Lett 35(23):4063–4065CrossRefGoogle Scholar
  170. 170.
    Schürmann S, Von Wegner F, Fink RH, Friedrich O, Vogel M (2010) Second harmonic generation microscopy probes different states of motor protein interaction in myofibrils. Biophys J 99(6):1842–1851CrossRefGoogle Scholar
  171. 171.
    Schwung S, Rogov A, Clarke G, Joulaud C, Magouroux T, Staedler D, Passemard S, Juestel T, Badie L, Galez C, Wolf JP, Volkov Y, Prina-Mello A, Gerber-Lemaire S, Rytz D, Mugnier Y, Bonacina L, Le Dantec R (2014) Nonlinear optical and magnetic properties of BiFeO3 harmonic nanoparticles. J Appl Phys 116(11)Google Scholar
  172. 172.
    Seyler KL, Schaibley JR, Gong P, Rivera P, Jones AM, Wu S, Yan J, Mandrus DG, Yao W, Xu X (2015) Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nature Nanotechnol 10:407–411Google Scholar
  173. 173.
    Shen Y-R (1984) Principles of nonlinear optics. Wiley-Interscience, New YorkGoogle Scholar
  174. 174.
    Shen Y-R (1989) Optical second harmonic generation at interfaces. Annu Rev Phys Chem 40(1):327–350CrossRefGoogle Scholar
  175. 175.
    Sheng Z, Ogawa N, Ogimoto Y, Miyano K (2010) Multiple stable states with in-plane anisotropy in ultrathin YMnO3 films. Adv Mater 22(48):5507–5511CrossRefGoogle Scholar
  176. 176.
    Sheu YM, Trugman SA, Yan L, Jia QX, Taylor AJ, Prasankumar RP (2014) Using ultrashort optical pulses to couple ferroelectric and ferromagnetic order in an oxide heterostructure. Nat Commun 5Google Scholar
  177. 177.
    Shultz MJ, Bisson P, Vu TH (2013) Molecular dance: waters collective modes. Chem Phys Lett 588:1–10CrossRefGoogle Scholar
  178. 178.
    Singh AK, Senapati D, Neely A, Kolawole G, Hawker C, Ray PC (2009) Nonlinear optical properties of triangular silver nanomaterials. Chem Phys Lett 481(1):94–98CrossRefGoogle Scholar
  179. 179.
    Stupakiewicz A, Kirilyuk A, Fleurence A, Gieniusz R, Maroutian T, Beauvillain P, Maziewski A, Rasing T (2009) Interface magnetic and optical anisotropy of ultrathin Co films grown on a vicinal Si substrate. Phys Rev B 80(9):094423CrossRefGoogle Scholar
  180. 180.
    Su P-J, Chen W-L, Hong J-B, Li T-H, Wu R Jr, Chou C-K, Chen S-J, Hu C, Lin S-J, Dong C-Y (2009) Discrimination of collagen in normal and pathological skin dermis through second-order susceptibility microscopy. Opt Express 17(13):11161–11171CrossRefGoogle Scholar
  181. 181.
    Su P-J, Chen W-L, Li T-H, Chou C-K, Chen T-H, Ho Y-Y, Huang C-H, Chang S-J, Huang Y-Y, Lee H-S et al (2010) The discrimination of type i and type ii collagen and the label-free imaging of engineered cartilage tissue. Biomaterials 31(36):9415–9421CrossRefGoogle Scholar
  182. 182.
    Suhalim JL, Chung C-Y, Lilledahl MB, Lim RS, Levi M, Tromberg BJ, Potma EO (2012) Characterization of cholesterol crystals in atherosclerotic plaques using stimulated raman scattering and second harmonic generation microscopy. Biophys J 102(8):1988–1995CrossRefGoogle Scholar
  183. 183.
    Svechkarev D, Kolodezny D, Mosquera-Vazquez S, Vauthey E (2014) Complementary surface second harmonic generation and molecular dynamics investigation of the orientation of organic dyes at a liquid/liquid interface. Langmuir 30(46):13869–13876CrossRefGoogle Scholar
  184. 184.
    Torchinsky DH, Chu H, Qi T, Cao G, Hsieh D (2014) A low temperature nonlinear optical rotational anisotropy spectrometer for the determination of crystallographic and electronic symmetries. Rev Sci Instrum 85(8)Google Scholar
  185. 185.
    Torchinsky DH, Chu H, Zhao L, Perkins NB, Sizyuk Y, Qi T, Cao G, Hsieh D (2015) Structural distortion-induced magnetoelastic locking in Sr2IrO4 revealed through nonlinear optical harmonic generation. Phys Rev Lett 114(9)Google Scholar
  186. 186.
    Train C, Nuida T, Gheorghe R, Gruselle M, Ohkoshi S-i (2009) Large magnetization-induced second harmonic generation in an enantiopure chiral magnet. J Am Chem Soc 131(46):16838–16843CrossRefGoogle Scholar
  187. 187.
    Tuer AE, Krouglov S, Prent N, Cisek R, Sandkuijl D, Yasufuku K, Wilson BC, Barzda V (2011) Nonlinear optical properties of type i collagen fibers studied by polarization dependent second harmonic generation microscopy. J Phys Chem B 115(44):12759–12769CrossRefGoogle Scholar
  188. 188.
    Tuer AE, Akens MK, Krouglov S, Sandkuijl D, Wilson BC, Whyne CM, Barzda V (2012) Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue. Biophys J 103(10):2093–2105CrossRefGoogle Scholar
  189. 189.
    Valev V, Silhanek A, Verellen N, Gillijns W, Van Dorpe P, Aktsipetrov O, Vandenbosch G, Moshchalkov V, Verbiest T (2010) Asymmetric optical second-harmonic generation from chiral g-shaped gold nanostructures. Phys Rev Lett 104(12):127401CrossRefGoogle Scholar
  190. 190.
    Valev VK, Silhanek AV, Smisdom N, De Clercq B, Gillijns W, Aktsipetrov OA, Ameloot M, Moshchalkov VV, Verbiest T (2010) Linearly polarized second harmonic generation microscopy reveals chirality. Opt Express 18(8):8286–8293CrossRefGoogle Scholar
  191. 191.
    Valev VK, Baumberg J, De Clercq B, Braz N, Zheng X, Osley E, Vandendriessche S, Hojeij M, Blejean C, Mertens J et al (2014) Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale. Adv Mater 26(24):4074–4081CrossRefGoogle Scholar
  192. 192.
    Van Cleuvenbergen S, Hennrich G, Willot P, Koeckelberghs G, Clays K, Verbiest T, van der Veen MA (2012) All optical determination of microscopic and macroscopic structure of chiral, polar microcrystals from achiral, nonpolar molecules. J Phys Chem C 116(22):12219–12225CrossRefGoogle Scholar
  193. 193.
    van der Veen MA, Vermoortele F, De Vos DE, Verbiest T (2012) Point group symmetry determination via observables revealed by polarized second harmonic generation microscopy:(1) theory. Anal Chem 84(15):6378–6385CrossRefGoogle Scholar
  194. 194.
    van der Veen MA, Vermoortele F, De Vos DE, Verbiest T (2012) Point group symmetry determination via observables revealed by polarized second harmonic generation microscopy:(2) applications. Anal Chem 84(15):6386–6390CrossRefGoogle Scholar
  195. 195.
    Vandendriessche S, Valev VK, Verbiest T (2012) Characterization of magnetization-induced second harmonic generation in iron oxide polymer nanocomposites. Appl Optics 51(2):209–213CrossRefGoogle Scholar
  196. 196.
    Vanmaekelbergh D, van Vugt LK (2011) ZnO nanowire lasers. Nanoscale 3(7):2783–2800CrossRefGoogle Scholar
  197. 197.
    Velarde L, Wang H-f (2013) Unique determination of the–CN group tilt angle in langmuir monolayers using sum-frequency polarization null angle and phase. Chem Phys Lett 585:42–48CrossRefGoogle Scholar
  198. 198.
    von Bilderling C, Tagliazucchi M, Calvo EJ, Bragas AV (2009) Molecular orientation in self-assembled multilayers measured by second harmonic generation using femtosecond pulses. Opt Express 17(13):10642–10647CrossRefGoogle Scholar
  199. 199.
    Wang F, Senthil T (2011) Twisted hubbard model for Sr2IrO4: magnetism and possible high temperature superconductivity. Phys Rev Lett 106(13):136402CrossRefGoogle Scholar
  200. 200.
    Wang FX, Rodríguez FJ, Albers WM, Kauranen M (2010) Enhancement of bulk-type multipolar second-harmonic generation arising from surface morphology of metals. New J Phys 12(6):063009CrossRefGoogle Scholar
  201. 201.
    Wang K, Zhou J, Yuan L, Tao Y, Chen J, Lu P, Wang ZL (2012) Anisotropic third-order optical nonlinearity of a single ZnO micro/nanowire. Nano Lett 12(2):833–838CrossRefGoogle Scholar
  202. 202.
    Wark A, McErlean K, Cruickshank F, Berlouis L, Brevet P (2010) Enhancement of the second harmonic signal from Hg1−xCdxTe (MCT) in the presence of an anodic oxide film. J Electroanal Chem 646(1):133–141CrossRefGoogle Scholar
  203. 203.
    Watanabe H, Yamaguchi S, Sen S, Morita A, Tahara T (2010) Half hydration at the air/water interface revealed by heterodyne-detected electronic sum frequency generation spectroscopy, polarization second harmonic generation, and molecular dynamics simulation. J Chem Phys 132(14):144701CrossRefGoogle Scholar
  204. 204.
    Watanabe H, Shirakawa T, Yunoki S (2013) Monte Carlo study of an unconventional superconducting phase in iridium oxide J eff = 1/2 mott insulators induced by carrier doping. Phys Rev Lett 110(2):027002CrossRefGoogle Scholar
  205. 205.
    Winters DG, Smith DR, Schlup P, Bartels RA (2012) Measurement of orientation and susceptibility ratios using a polarization-resolved second harmonic generation holographic microscope. Biomed Opt Express 3(9):2004–2011CrossRefGoogle Scholar
  206. 206.
    Witczak-Krempa W, Chen G, Kim YB, Balents L (2014) Correlated quantum phenomena in the strong spin-orbit regime. Ann Rev Condens Matter Phys 5(1):57–82CrossRefGoogle Scholar
  207. 207.
    Wu S, Mao L, Jones AM, Yao W, Zhang C, Xu X (2012) Quantum enhanced tunable second-order optical nonlinearity in bilayer graphene. Nano Lett 12(4):2032–2036CrossRefGoogle Scholar
  208. 208.
    Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz TF et al (2014) Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514(7523):470–474CrossRefGoogle Scholar
  209. 209.
    Wunderlich S, Peschel U (2013) Plasmonic enhancement of second harmonic generation on metal coated nanoparticles. Opt Express 21(16):18611–18623CrossRefGoogle Scholar
  210. 210.
    Xiao Q, Lin W, Chen G, Ding C, Dong G, Lin C, Wu B, Wu E, Zeng H, Qiu J (2015) Morphology and polarization-dependent second harmonic generation in single hexagonal sodium niobate micro/nano-crystals. J Mater Chem C 3(16):4070–4076CrossRefGoogle Scholar
  211. 211.
    Xie XS, Trautman JK (1998) Optical studies of single molecules at room temperature. Annu Rev Phys Chem 49(1):441–480CrossRefGoogle Scholar
  212. 212.
    Xu C, Hewitt A, Wang J, Guan T, Boltersdorf J, Maggard PA, Dougherty DB, Gundogdu K (2014) Intrinsic and extrinsic effects on the electrostatic field at the surface of Bi2Se3. J Appl Phys 116(4):043519CrossRefGoogle Scholar
  213. 213.
    Xu J, Semin S, Niedzialek D, Kouwer PH, Fron E, Coutino E, Savoini M, Li Y, Hofkens J, Uji-I H et al (2013) Self-assembled organic microfibers for nonlinear optics. Adv Mater 25(14):2084–2089CrossRefGoogle Scholar
  214. 214.
    Xu Y-Y, Rao Y, Zheng D-S, Guo Y, Liu M-H, Wang H-F (2009) Inhomogeneous and spontaneous formation of chirality in the langmuir monolayer of achiral molecules at the air/water interface probed by in situ surface second harmonic generation linear dichroism. J Phys Chem C 113(10):4088–4098CrossRefGoogle Scholar
  215. 215.
    Yamaguchi S, Hosoi H, Yamashita M, Sen P, Tahara T (2010) Physisorption gives narrower orientational distribution than chemisorption on a glass surface: a polarization-sensitive linear and nonlinear optical study. J Phys Chem Lett 1(18):2662–2665CrossRefGoogle Scholar
  216. 216.
    Ye F, Chi S, Chakoumakos BC, Fernandez-Baca JA, Qi T, Cao G (2013) Magnetic and crystal structures of Sr2IrO4: a neutron diffraction study. Phys Rev B 87:140406CrossRefGoogle Scholar
  217. 217.
    Yin X, Ye Z, Chenet DA, Ye Y, OBrien K, Hone JC, Zhang X (2014) Edge nonlinear optics on a MoS2 atomic monolayer. Science 344(6183):488–490CrossRefGoogle Scholar
  218. 218.
    Zernike F, Midwinter JE (2006) Applied nonlinear optics. Dover Publications, Inc. Mineola, New YorkGoogle Scholar
  219. 219.
    Zhao H, Fan Y, Lüpke G, Hanbicki A, Li C, Jonker B (2011) Detection of coherent acoustic phonons by time-resolved second-harmonic generation. Phys Rev B 83(21):212302CrossRefGoogle Scholar
  220. 220.
    Zheng C, Xu S, Ning J, Chen Y, Lu X, Ling C-C, Che C, Gao G, Hao J, Brauer G et al (2011) Ion-implantation induced nano distortion layer and its influence on nonlinear optical properties of ZnO single crystals. J Appl Phys 110(8):083102CrossRefGoogle Scholar
  221. 221.
    Zheng M-L, Fujita K, Chen W-Q, Duan X-M, Kawata S (2011) Two photon excited fluorescence and second-harmonic generation of the dast organic nanocrystals. J Phys Chem C 115(18):8988–8993CrossRefGoogle Scholar
  222. 222.
    Zhu D, Zhang C, Qin Y, Lv X, Zhu Y (2013) Polarization tuning of third-harmonic generation by coupling of two types of quasi-phase-matched quadratic processes. Solid State Commun 163:37–40CrossRefGoogle Scholar
  223. 223.
    Zhuo Z-Y, Liao C-S, Huang C-H, Yu J-Y, Tzeng Y-Y, Lo W, Dong C-Y, Chui H-C, Huang Y-C, Lai H-M et al (2010) Second harmonic generation imaging–a new method for unraveling molecular information of starch. J Struct Biol 171(1):88–94CrossRefGoogle Scholar
  224. 224.
    Zimmerley M, Younger R, Valenton T, Oertel DC, Ward JL, Potma EO (2010) Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-stokes raman scattering microscopy study. J Phys Chem B 114(31):10200–10208CrossRefGoogle Scholar
  225. 225.
    Zimmerley M, Mahou P, Débarre D, Schanne-Klein M-C, Beaurepaire E (2013) Probing ordered lipid assemblies with polarized third-harmonic generation microscopy. Phys Rev X 3(1):011002Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of PhysicsCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Temple University Department of Physics and Temple Materials InstituteTemple UniversityPhiladelphiaUSA

Personalised recommendations