Skip to main content

Zusammenfassung

Im zweiten Kapitel werden spezielle Aspekte der Prothesen erläutert. Hier wird ein nahezu vollständiges Bild der zurzeit auf dem deutschen Markt vorhandenen und angebotenen Kurzschaftprothesen dargestellt. Für jedes Implantat werden die Design-Rationale, das Konstruktionsprinzip, die biomechanischen Grundlagen, Indikation und Kontraindikation, mögliche operative Zugänge sowie klinische oder andere Daten und Untersuchungsergebnisse dargestellt, sodass der Leser einen guten Überblick über die im deutschsprachigen Markt befindlichen Prothesen gewinnen kann.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

Literatur zu Abschn. 2.1

  • Birkenhauer B (2012) Report to the Spiron prosthesis (clininical results and 11 years experience). 11th annual scientific congress for orthopaedics and traumatology, Vietnamese Association of Orthopaedics and Trauma, 2-4. August 2012, Nah Tran/Vietnam

    Google Scholar 

  • Birkenhauer B (2013) Spiron-Prothese. Vortrag anlässlich des 7. CoST OP-Kurs Hüftgelenk, Kurzschaft-Prothesen, 12.-13. April 2013, MEDucation Center Rhein-Ruhr

    Google Scholar 

  • Birkenhauer B, Kistmacher H, Ries J (2004) Zementfreie Schenkelhalsprothese Typ Spiron - Konzeption und erste klinische Ergebnisse. Orthop 33: 1259-1266

    Article  CAS  Google Scholar 

  • Bornebursch L (2006) Der Keramik-Duokopf, ein neues Implantat in der Hüftchirurgie. Humanmedizinische Inaugural-Dissertation, Universität Heidelberg

    Google Scholar 

  • Buckup K (2005) Hüftstudie zur individuellen Patientenzufriedenheit Dortmund (HipDo). Orthopädie, Klinikum Dortmund gGmbH

    Google Scholar 

  • DOT (2000) Bonit. Die 2. Generation bioaktiver Calcium-Phosphat-Beschichtungen auf Implantaten - Eine zusammenfassnde Charakterisierung. DOT Dünnschicht und Oberflächentechnologie GmbH, Rostock

    Google Scholar 

  • Ebbecke B (2003a) Knochenwachstum - Endlich verständlich. Universität Hannover, Institut für Baumechanik und Numerische Mechanik

    Google Scholar 

  • Ebbecke B (2003b) Numerische Untersuchungen der Spiron-Prothese. Universität Hannover, Institut für Baumechanik und Numerische Mechanik

    Google Scholar 

  • Fink U, Ungethüm M (1992) Metallische Prothesenwerkstoffe. In: Hipp E, Gradinger R, Ascherl R (Hrsg) Die zementlose Hüftprothese. Demeter, Gräfeling, S 14-17

    Google Scholar 

  • Götze C (2014) Fitmore-Schaft. Vortrag anlässlich des 8. CoST OP-Kurs Hüftgelenk, Kurzschaft-Prothesen, 16.-17. Mai 2014, MEDucation Center Rhein-Ruhr

    Google Scholar 

  • Götze C, Ehrenbrink J, Ehrenbrink H (2010) Bleibt der Krafteinfluss der Kurzschaftprothese auf den methaphysären proximalen Femur begrenzt? Osteodensitometrische Analysen der Nanos-Schaftendoprothese. Z Orthop Unfall 148 (4): 398-405

    Article  PubMed  Google Scholar 

  • Hach V (2009) Die HELICA-Endoprothese - eine neue zementlose Hüft-Endoprothese beim Hund. Tierärztliche Praxis Kleintiere 2: 69-74

    Google Scholar 

  • Henning F (2006) Trends in der Endoprothetik. Doppelt drehfähig, mit Keramik bleibt der Duokopfeffekt erhalten. Ceranews 1: 6

    Google Scholar 

  • Hühn F (2005) Vergleich der Primärstabilität einer Schenkelhalsendoprothese Typ Spiron mit der einer konventionellen Geradschaftprothese Typ Zweymüller (Alloclassic TM SL) am Hundefemur - Eine biomechanische Studie. Veterinärmedizinische Inaugural-Dissertation, Universität Hannover

    Google Scholar 

  • Hühn F, Gösling T, Engelke E, Birkenhauer B, Gerich T, Waibl H (2005) In-vitro-Vergleich der Maximalbelastung und Frakturformen von Femora des Hundes ohne oder mit zwei unterschiedlichen zementfreien Hüftendoprothesen. Kleintierprax 11: 683-694

    Google Scholar 

  • Huggler A, Jacob H (1995) Die Entwicklung der Druckscheibenprothese (DSP). In: Morscher E (Hrsg) Endoprothetik. Springer, Heidelberg, S 267-277

    Chapter  Google Scholar 

  • Kutzner K, Kovacevic M, Roeder C, et al. (2015) Reconstruction of femoro-acetabular offsets using a short-stem. International Orthopaedics (SICOT) 39: 1269-1275

    Article  Google Scholar 

  • Lerch M, Windhagen H, Ettinger M, et al. (2014) Reduziert die medial kurvierte Form der Nanos Kurzschaft Prothese das „stress shielding“? Eine Analyse der Knochenumbauprozesse basierend auf einem in-vivo validierten Finite Element Modell. German Medical Science GMS Publishing House, Düsseldorf, DocWI60-236

    Google Scholar 

  • Lubinus P (2005) Die SP2-Schaft Endoprothese. Frankfurter Orthopädie Symposium

    Google Scholar 

  • Menge M (2000) Acht Jahre Druckscheibenprothese - eine mittelfristige Bewertung. Orthop Praxis 36 (3): 143-151

    Google Scholar 

  • Nackenhorst U (1997) Ein effizientes Finite Element Verfahren zur Simulation des beanspruchungsstimulierten Knochenwachstums. Tagungsband des Workshops „Die Methode der Finiten Elemente in der Biomedizin, Biomechanik und angrenzenden Gebieten“, Ulm

    Google Scholar 

  • Nackenhorst U, Schröder U (1997) Numerische Simulation des beanspruchungsinduzierten Knochenumbaus am Beispiel endoprothetisch versorgter Femura. Institut für Mechanik, Hamburg

    Google Scholar 

  • Pipino F, Keller A (2006) Tissue-sparing surgery: 25 years' experience with femoral neck preserving hip arthroplasty. J Orthopaed Traumatol 7 (1): 36-41

    Article  Google Scholar 

  • Pipino F, Molfetta L (1993). Femoral neck preservation in total hip replacement. Ital J Orthop Traum 19 (1): 5-12

    CAS  Google Scholar 

  • Pipino F, Molfetta L, Grandizio M (2000) Preservation of the femoral neck in hip arthroplasty: results of a 13- to 17-year follow-up. J Orthopaed Traumatol 1: 31-39

    Article  Google Scholar 

  • Renken S (2011) Vergleich der Implantation eines Hüftgelenkschaftes mit Bipolarkopf nach Schenkelhalsfraktur in konventioneller Technik nach Watson-Jones versus minimal invasiv direkt vorderem Zugang (DAA) in Bezug auf die Frühmobilisationsphase - Eine prospektiv randomisierte Studie. Inauguraldissertation, Universität zu Lübeck

    Google Scholar 

  • Schenk RK, Wehrli U (1989) Zur Reaktion des Knochens auf eine zementfreie SL-Femur-Revisionsprothese. Histologische Befunde an einem fünfeinhalb Monate post operationem gewonnenen Autopsiepräparat. Orthopäde 18: 454-462

    CAS  PubMed  Google Scholar 

  • Sculco TP, Boettner F (2006) Minimally invasive total hip arthroplasty: the posterior approach. Instr Course Lect 55: 205-214

    PubMed  Google Scholar 

  • Statistisches Bundesamt (2012) Demographischer Wandel. Bundeszentrale für politische Bildung, Berlin

    Google Scholar 

  • Sulzer Medica (1999) Allospine posterior - technical information biomechanical investigations. Sulzer Orthopedics, Winterthur

    Google Scholar 

  • Wagner H, Wagner M (1995) Konische Schaftverankerung zementfreier Hüftprothese - Primärimplantation und Prothesenwechsel. In: Morscher E (Hrsg.) Endoprothetik. Springer, Heidelberg, S 278-288

    Chapter  Google Scholar 

  • Walker N, Alt F (1999) Klinische und radilogische Resultate der Druckscheibenprothese im Vergleich zur ESKA-Schenkelhalsprothese. Orthop Praxis 35 (7): 419-427

    Google Scholar 

  • Wiebking U, Birkenhauer B, Krettek C, Gösling T (2011) Initial stability of a new uncemented short-stem prosthesis, Spiron, in dog bone. Technology and Health Care 19: 271-282

    PubMed  Google Scholar 

  • Ziefle M (2002) Numerische Untersuchungen der Druckscheiben Prothese. Universität Hannover, Institut für Baumechanik und Numerische Mechanik

    Google Scholar 

  • Zweymüller K, Lintner F, Böhm G (1995) Die Entwicklung der zementfreien Hüftendoprothese von 1979-1994. In: Morscher E (Hrsg) Endoprothetik. Springer, Heidelberg, S 333-350

    Chapter  Google Scholar 

Literatur zu Abschn. 2.2

  • Bishop NE, Burton A, Maheson M, Morlock MM (2010) Biomechanics of short hip endoprostheses-the risk of bone failure increases with decreasing implant size. Clin Biomech (Bristol) 25: 666-74

    Article  Google Scholar 

  • Effenberger H, Imhof M, Witzel U et al (2005) Zementfreie Hüftschäfte. Aktueller Stand. Orthopäde 34: 477-500

    Article  CAS  PubMed  Google Scholar 

  • Eingartner C, Heigele T, Dieter J et al (2003) Long-term results with the BiCONTACT system - aspects to investigate and to learn from. Int Orthop 27: 11-15

    Google Scholar 

  • Maheson M, Honl M, Sullivan J, Kurth A, Pace N, Piriou P, Verheul R, Waller C (2009) The Silent Hip - a new solution in primary total hip arthroplasty. Manchester, BOA Meeting

    Google Scholar 

  • Morgan EF, Lee JJ, Keaveny TM (2005) Sensitivity of multiple damage parameters to compressive overload in cortical bone. J Biomech Eng 127: 557-62

    Article  PubMed  Google Scholar 

  • Reigstad O, Siewers P, Røkkum M et al (2008) Excellent long-term survival of an uncemented press-fit stem and screw cup in young patients: follow-up of 75 hips for 15-18 years. Acta Orthop 79: 194-202

    Article  PubMed  Google Scholar 

  • Ries C, Schopf W, Dietrich F et al (2013) Anatomic reconstruction of hip joint biomechanics with the bone preserving Silent Micro Hip prosthesis. Z Orthop Unfall 151 (5): 497-502

    Article  CAS  PubMed  Google Scholar 

  • Westphal FM, Bishop N, Honl M, et al (2006a) Migration and cyclic motion of a new short-stemmed hip prosthesis - a biomechanical in vitro study. Clin Biomech 21 834-40

    Article  CAS  Google Scholar 

  • Westphal FM, Bishop N, Puschel K, Morlock MM (2006b) Biomechanics of a new short-stemmed uncemented hip prosthesis: An in-vitro study in human bone. Hip Int 16 Suppl 3: 22-30

    Article  PubMed  Google Scholar 

Literatur zu Abschn. 2.3

  • Anderl C (2015) 2-Jahres-Ergebnisse mit dem Optimys-Kurzschaft über den direkten anterolateralen Zugang. Orthopädie Rheumatol 5: 32-34

    Google Scholar 

  • Babisch J (2012) Möglichkeiten der patientenindividuellen Hüftgelenkrekonstruktion und Knochenresektion bei Kurzschaftprothesen. In: Jerosch J (Hrsg) Kurzschaftendoprothesen: Wo liegen die Unterschiede? Deutscher Ärzte-Verlag, Köln

    Google Scholar 

  • Bieger R, Ignatius A, Reichel H, Dürselen L (2013) Biomechanics of a short stem: In vitro primary stability and stress shielding of a conservative cementless hip stem. J Orthop Res 31: 1180-6

    Article  PubMed  Google Scholar 

  • Brooker AF, Bowerman JW, Robinson RA, Riley LH (1973) Ectopic ossification following total hip replacement. Incidence and a method of classification. J Bone Joint Surg Am 55: 1629-32

    Article  CAS  PubMed  Google Scholar 

  • Cinotti G, Della Rocca A, Sessa P, et al (2013) Thigh pain, subsidence and survival using a short cementless femoral stem with pure metaphyseal fixation at minimum 9-year follow-up. Orthop Traumatol Surg Res 99: 30-6

    Article  CAS  PubMed  Google Scholar 

  • Freitag T, Kappe T, Fuchs M, et al (2014) Migration pattern of a femoral short-stem prosthesis: a 2-year EBRA-FCA-study. Arch Orthop Trauma Surg 134: 1003-8

    Article  PubMed  Google Scholar 

  • Gruen TA, McNeice GM, Amstutz HC (1979) „Modes of failure“ of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res 17-27

    Google Scholar 

  • Gustke K (2012) Short stems for total hip arthroplasty: initial experience with the Fitmore stem. J Bone Joint Surg Br 94: 47-51

    Article  CAS  PubMed  Google Scholar 

  • Höhle P, Schröder SM, Pfeil J (2014) Comparison between preoperative digital planing and postoperative outcomes in 197 hip endoprosthesis cases using short stem prostheses. Clin Biomech 30 (1): 46-52

    Article  Google Scholar 

  • Jerosch J (2012) Kurzschaftendoprothesen: Wo liegen die Unterschiede? Deutscher Ärzte-Verlag, Köln

    Google Scholar 

  • Kovacevic MP, Kutzner KP, Rehbein P, Pfeil J (2014a) Defining anatomic range of short-stem implantation - Calcar-guided restoration of individual CCD angle. EHS 11th Congress, Stockholm

    Google Scholar 

  • Kovacevic MP, Pfeil J, Kutzner KP (2014b) Implantation of a new short stem in simultaneous bilateral hip arthroplasty - a prospective study on clinical and radiographic data of 54 consecutive patients. OUP 10: 456-461

    Google Scholar 

  • Krismer M, Biedermann R, Stöckl B, et al (1999) The prediction of failure of the stem in THR by measurement of early migration using EBRA-FCA. Einzel-Bild-Roentgen-Analyse-femoral component analysis. J Bone Joint Surg Br 81: 273-80.

    Article  CAS  PubMed  Google Scholar 

  • Kutzner KP, Kovacevic MP, Roeder C, et al (2014) Reconstruction of femoro-acetabular offsets using a short-stem. Int Orthop 39 (7): 1269-75

    Article  PubMed  Google Scholar 

  • Kutzner KP, Pfeil D, Kovacevic MP, et al (2016a) Radiographic alterations in short-stem total hip arthroplasty: a 2-year follow-up study of 216 cases. Hip Int 26: 278-83

    Article  PubMed  Google Scholar 

  • Kutzner KP, Hechtner M, Pfeil D, et al (2016b) Incidence of heterotopic ossification in minimal invasive short-stem THA using the modified anterolateral approach. Hip Int [Zur Publikation akzeptiert]

    Google Scholar 

  • Kutzner KP, Kovacevic MP, Freitag T, et al (2016c) Influence of patient-related characteristics on early migration in calcar-guided short-stem total hip arthroplasty: a 2-year migration analysis using EBRA-FCA. J Orthop Surg Res 11: 29

    Article  PubMed  PubMed Central  Google Scholar 

  • Kutzner KP, Freitag T, Kovacevis MP, et al (2016d) One-stage bilateral versus unilateral short-stem total hip arthroplasty: comparison of migration patterns using Ein-Bild-Roentgen-Analysis Femoral-Component-Analysis. Int Orthop 1-6

    Google Scholar 

  • Mai S, Pfeil J, Siebert W, Kutzner KP (2016) Kalkar-geführte Kurzschäfte in der Hüftendoprothetik - eine Übersicht. OUP 5: 342-347

    Google Scholar 

  • Mai, S, Bosson D, Hein W, et al (2013) Erfahrungsbericht über 2 Jahre Anwendung des Kurzschafts Optimys. OUP online, doi: 10.3238/oup.2013.0180-0184

  • Pfeil J (2014) Comment je pose la prothèse optimys. Maitrise Orthopedique

    Google Scholar 

  • Pfeil J, Siebert W, Grieshaber H (2012) Optimys. In: Jerosch J (Hrsg) Kurzschaftendoprothesen - Wo liegen die Unterschiede? Deutscher Ärzte-Verlag, Köln

    Google Scholar 

  • Pfeil J (2010) Minimally Invasive Surgery in Total Hip Arthroplasty. Springer, Heidelberg

    Book  Google Scholar 

  • Salemyr M, Muren O, Ahl T, et al (2015) Lower periprosthetic bone loss and good fixation of an ultra-short stem compared to a conventional stem in uncemented total hip arthroplasty. Acta Orthop 1-8

    Google Scholar 

  • Singh M, Nagrath AR, Maini PS (1970) Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg Am 52: 457-67

    Article  CAS  PubMed  Google Scholar 

Literatur zu Abschn. 2.5

  • Albanese CV, et al (2006) Bone remodelling in THA: A comparative DXA scan study between conventional implants and a new stemless femoral component. A preliminary report. Hip International 1 (Suppl 3): S9-S15

    Google Scholar 

  • Chen H, Morrey BF, et al (2009) Bone remodeling characteristics of a short-stemmed total hip replacement. J Arthroplast 24 (6): 945-950

    Article  CAS  Google Scholar 

  • Dabby D, et al. (2006) Metaphyseal prosthesis: An alternative to resurfacing total hip arthroplasty. The Israeli experience. JBJS Br 88-B (Supp 2): 338

    Google Scholar 

  • Esslinger T, et al (2002) 2 years of clinical experience with the Mayo short-stem in hip arthroplasty. Abstract, 5th Congress of the European Hip Society, Baveno (Italy), 2002

    Google Scholar 

  • Falez F, et al (2008) Perspectives on metaphyseal conservative stems. J Orthopaed Traumatol 9: 49-54

    Article  CAS  Google Scholar 

  • Gulow J, et al (2007) Kurzschäfte in der Hüftendoprothetik. Orthopäde 36: 353-359

    Article  CAS  PubMed  Google Scholar 

  • Hagel A, et al (2008) Experience with the Mayo conservative hip system. Acta Chir Orthop Traumatol Cech 75: 288-292

    CAS  PubMed  Google Scholar 

  • Hein W, et al (2002) The Mayo hip system - clinical early results with a conservative femoral component. Abstract, 5th Congress of the European Hip Society, Baveno (Italy), 2002

    Google Scholar 

  • Horton GA, et al (2001) Conservative hip replacement surgery, Current Opinion in Orthopedics 12: 60-63

    Article  Google Scholar 

  • Hube R, et al (2004) Frühfunktionelle Ergebnisse einer Kurzschaftprothese des Hüftgelenks mit metaphysär-intertrochantärer Verankerung. Orthopäde 33: 1249-1258

    Article  CAS  PubMed  Google Scholar 

  • Jakubowitz E, et al (2009) Do short-stemmed-prostheses induce periprosthetic fractures earlier than standard hip stems? A biomechanical ex-vivo study of two diVerent stem designs. Arch Orthop Trauma Surg 129 (6): 849-55

    Article  PubMed  Google Scholar 

  • Kamada S, et al (2011) Total hip arthroplasty using a short stem Stem design, position and size influence the development of bone trabeculae and appearance of radiolucent lines around the stem. Current Orthopedic Practice 22 (1): 52-58

    Google Scholar 

  • Learmonth L, et al (2005) Conservative hip implants. Current Orthopedics 19: 255-262

    Article  Google Scholar 

  • Meldrum J, et al (2003) An assessment of the biological fixation. Iowa Orthop J 23: 103-107

    PubMed  PubMed Central  Google Scholar 

  • Morrey BF, et al (1989) Short-stemmed uncemented femoral component. Clin Orthop Relat Res 249: 169-75

    Google Scholar 

  • Morrey BF, et al (2000) Experimental and clinical performance of porous tantalum in orthopedic surgery. JBJS 82-B (7): 952-958

    Article  Google Scholar 

  • Oehme S, et al (2002) Erfahrungen mit der Mayo Schenkelhalsprothese. Orthopädische Praxis 38 (8): 526-30

    Google Scholar 

  • Oehme S, et al (2006) Minimal invasive hip replacement with the Mayo hip stem. Hip International 14 (2): 117

    Google Scholar 

  • Roth A, et al (2005) Verlauf der periprothetischen Knochendichte nach Hüfttotalendoprothesenimplantation in Abhängigkeit von Prothesentyp und knöcherner Ausgangssituation. Orthopäde 34: 334-344

    Article  CAS  PubMed  Google Scholar 

  • Spotorno L, et al. (1993) The CLS system. Theoretical concept and results. Acta Orthop Belg 59 (Suppl 1): 144-48

    PubMed  Google Scholar 

  • Tadeusz AN, et al (2007) Total hip replacement in young patients with use of Mayo prosthesis - early result of treatment. Chir Narzadow Ruchu Ortop Pol 72: 319-321

    PubMed  Google Scholar 

  • Tsao A, et al (2003) Bone sparing surgical options for total hip replacemen. Biomed Sci Instrum Paper 050: 284-288

    Google Scholar 

  • Wedemeyer C, et al (2008) Digital templating in total hip arthroplasty with the Mayo stem, Arch Orthop Trauma Surg 128: 1023-1029

    Article  PubMed  Google Scholar 

  • Wohlrab D, et al (2004) Vorteile der minimalinvasiven Implantation von Hüfttotalendoprothesen in der frühen postoperativen Rehabilitationsphase. Z Orthop 142: 685-690

    Article  CAS  PubMed  Google Scholar 

  • Zeh A, et al (2011) Mittelfristige Ergebnisse der Mayo-Kurzschaftprothese bei Hüftkopfnekrose. Z Orthop Unfall 149: 200-205

    Article  CAS  PubMed  Google Scholar 

Literatur zu Abschn. 2.4

  • Briem D, Schneider M, Bogner N, Botha N, Gebauer M, Gehrke T, Schwantes B (2011) Mid-term results of 155 patients treated with a collum femoris preserving (cfp) short stem prosthesis. Int Orthop 35 (5): 655-60

    Article  PubMed  Google Scholar 

  • Chen HH, Morrey BF, An KN, Luo ZP (2009) Bone remodeling characteristics of a short-stemmed total hip replacement. J Arthroplasty 24: 945-950

    Article  CAS  PubMed  Google Scholar 

  • Gill IR, Gill K, Jayasekera N, Miller J (2008) Medium term results of the collum femoris preserving hydroxyapatite coated total hip replacement. Hip Int 18: 75-80

    Article  CAS  PubMed  Google Scholar 

  • Gillies RM, Kohan L, Cordingley R (2007) Periprosthetic bone remodelling of a collum femoris preserving cementless titanium femoral hip replacement. Comput Methods Biomech Biomed Engin 10: 97-102

    Article  CAS  PubMed  Google Scholar 

  • Hutt J, Harb Z, Gill I, Kashif F, Miller J, Dodd M (2014) Ten year results of the collum femoris preserving total hip replacement: a prospective cohort study of seventy five patients. Int Orthop 38 (5): 917-22

    Article  PubMed  Google Scholar 

  • Jakubowitz E, Seeger JB, Lee C, Heisel C, Kretzer JP, Thomsen MN (2009) Do short-stemmed-prostheses induce periprosthetic fractures earlier than standard hip stems? A biomechanical ex-vivo study of two different stem designs. Arch Orthop Trauma Surg 129: 849-855

    Article  PubMed  Google Scholar 

  • Kendoff D, Egidy C, Gebauer M, Gehrke T (2011) 11 year results of the CFP short stem prothesis in primary THA. Clinical and radiographic follow up. (unpublished data 2011)

    Google Scholar 

  • Li M, Hu Y, Xie J (2014) Analysis of the complications of the collum femoris preserving (CFP) prostheses. Acta Orthop Traumatol Turc 48 (6): 623-7

    Article  PubMed  Google Scholar 

  • Pipino F, Molfetta L (1993) Femoral neck preservation in total hip replacement. Ital J Orthop Traumatol 19: 5-12

    CAS  PubMed  Google Scholar 

  • Rohrl SM, Li MG, Pedersen E, Ullmark G, Nivbrant B (2006) Migration pattern of a short femoral neck preserving stem. Clin Orthop Relat Res 448: 73-78

    Article  CAS  PubMed  Google Scholar 

  • Stea S, Bordini B, De Clerico M, Petropulacos K, Toni A (2009) First hip arthroplasty register in italy: 55,000 cases and 7 year follow-up. Int Orthop 33: 339-346

    Article  CAS  PubMed  Google Scholar 

  • Stukenborg-Colsman C (2007) Femoral neck prostheses. Orthopäde 36: 347-352

    Article  CAS  PubMed  Google Scholar 

  • Sumner DR, Galante JO (1992) Determinants of stress shielding: Design versus materials versus interface. Clin Orthop Relat Res 202-212

    Google Scholar 

Literatur zu Abschn. 2.6

  • Australian Orthopaedic Association (2015) National Joint Replacement Registry. Demographics of Hip Arthroplasty, https://aoanjrr.sahmri.com

  • Bause L (2015) Short stem total hip arthroplasty in patients with rheumatoid arthritis. Orthopedics 38 (3 Suppl): S46-50

    Article  PubMed  Google Scholar 

  • Braun A, Lazovic D, Zigan R (2007) Modular short stem prosthesis - implant positioning and the impact of navigation. Orthopedics 30 (10, Suppl): 144-7

    Google Scholar 

  • Braun A, Sabah A (2009) Two-year results of a modular short hip stem prosthesis - a prospective study. Z Orthop Unfall 47: 700-6

    Article  Google Scholar 

  • Chammaï Y, Brax M (2015) Medium-term comparison of results in obese patients and non-obese hip prostheses with Metha short stem. Eur J Orthop Surg Traumatol 25 (3): 503-8

    Article  PubMed  Google Scholar 

  • Chen D, Bertollo N, Lau A, Taki N, Nishino T, Mishima H, Kawamura H and Walsh WR (2011) Osseointegration of porous titanium implants with and without electrochenically deposited DCPD coating in an ovine model. J Orthop Surg Res 6: 56

    Article  PubMed  PubMed Central  Google Scholar 

  • Falez F, Casella F, Papalia M (2015) Current concepts, classification, and results in short stem hip arthroplasty. Orthopedics 38 (3 Suppl): S6-S13

    Article  PubMed  Google Scholar 

  • Feyen H, Shimmin AJ (2014) Is the length of the femoral component important in primary total hip replacement? Bone Joint J 96-B (4): 442-448

    Article  CAS  PubMed  Google Scholar 

  • Floerkemeier T, Gronewold J, Berner S, Olender G, Hurschler C, Windhagen H, von Lewinski G (2013) The influence of resection height on proximal femoral strain patterns after Metha short stem hip arthroplasty: an experimental study on composite femora. Int Orthop 37 (3): 369-77

    Article  PubMed  Google Scholar 

  • Floerkemeier T, Tscheuschner N, Callies T, Ezechieli M, Floerkemeier S, Budde S, Windhagen H, Lewinski G (2012) Cementless short stem hip arthroplasty METHA as an encouraging option in adults with osteonecrosis of the femoral head. Arch Orthop Trauma Surg 132 (8): 1125-31

    Article  PubMed  Google Scholar 

  • Fottner A et al (2011) Biomechanical evaluation of different offset versions of a cementless hip prosthesis by 3-dimensional measurement of micromotions. Clin Biomech (Bristol) 26 (8): 830-835

    Article  Google Scholar 

  • Götze C, Ehrenbrink J, Ehrenbrink H (2010) Is there a bone-preserving bone remodelling in short-stem prosthesis? DEXA analysis with the Nanos total hip arthroplasty. Z Orthop Unfall 148 (4): 398-405

    Article  PubMed  Google Scholar 

  • Gronewold J, Berner S, Olender G, Hurschler C, Windhagen H, Lewinski G, Floerkemeier T (2014) Changes in strain patterns after implantation of a short stem with metaphyseal anchorage compared to a standard stem: an experimental study in synthetic bone. Ortho Rev 6: 5211

    Article  Google Scholar 

  • Gruner A, Heller KD (2015) Patient selection for shorter femoral stems. Orthopedics 38 (3 Suppl): S27-32

    Article  PubMed  Google Scholar 

  • Grupp TM et al (2010) Modular titanium alloy neck adapter failures in hip replacement, failure mode analysis and influence of implant material. BMC Musculoskelet Disord 4 (11): 3

    Article  CAS  Google Scholar 

  • Gustke K (2012) Short stems for total hip arthroplasty: initial experience with the Fitmore stem. J Bone Joint Surg Br 94 (11 Suppl A): 47-51

    Article  CAS  PubMed  Google Scholar 

  • Jahnke A, Engl S, Altmeyer C, Jakubowitz E, Seeger JB, Rickert M, Ishaque BA (2014) Changes of periprosthetic bone density after a cementless short hip stem: a clinical and radiological analysis. Int Orthop 38 (10): 2045-2050

    Article  PubMed  Google Scholar 

  • Kohler S, Ratayski H, Zacher J (2010) Implant-related fractures of the femoral neck cone adapter of a modular shortstem hip prosthesis - patient management and operative technique. Z Orthop Unfall 149 (2): 185-90

    Article  PubMed  Google Scholar 

  • Lazovic D, Zigan R (2006) Navigation of short-stem implants. Orthopedics 29 (10, Suppl): 125-9

    Google Scholar 

  • Lerch M, Haar-Tran A, Windhagen A, Behrens BA, Wefstaedt P, Stukenborg-Colsman CM (2012) Bone remodelling around the Metha short stem in total hip arthroplasty: a prospective dual-energy X-ray absorptiometry study. International Orthopedics 36 (3): 533-538

    Article  Google Scholar 

  • Lewinski von G, Floerkemeier T (2015) 10-year experience with short stem total hip arthroplasty. Orthopedics 38 (3 Suppl): S51-6

    Article  Google Scholar 

  • Oh KJ, Mishra A, Yang JH (2014) Radiologic bone remodeling pattern around DCPD-coated, metaphyseal-loading cementless short stems in elderly patients. Orthopedics 37 (7): e649-55

    Article  PubMed  Google Scholar 

  • Pozowski A, Ścigala K, Kierzek A, Paprocka-Borowicz M, Kuciel-Lewandowska J (2013) Analysis of the influence of a metha-type metaphysical stem on biomechanical parameters. Acta Bioeng Biomech 15 (2): 13-21

    PubMed  Google Scholar 

  • Schmidutz F, Graf T, Mazoochian F, Fottner A, Bauer-Melnyk A, Jansson V (2012) Migration analysis of a metaphyseal anchored short-stem hip prosthesis. Acta Orthop 83 (4): 360-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Suksathien Y, Narkbunnam R, Sueajui J (2012) Initial clinical and radiographic results with the short stem THA. J Med Assoc Thai 95 Suppl 10: 26-31

    Google Scholar 

  • Suksathien Y, Sueajui J (2015) The Short Stem THA Provides Promising Results in Patients with Osteonecrosis of the Femoral Head. J Med Assoc Thai 98 (8): 768-74

    PubMed  Google Scholar 

  • Synder M, Krajewski K, Sibinski M, Drobniewski M (2015) Periprosthetic bone remodeling around short stem. Orthopedics 38 (3 Suppl): S40-5

    Article  PubMed  Google Scholar 

  • Thorey F, Hoefer C, Abdi-Tabari N, Lerch M, Budde S, Windhagen H (2013) Clinical results of the Metha short hip stem: a perspective for younger patients? Ortho Rev 5: E34

    Article  Google Scholar 

  • Walde HJ, Walde TA (2006) Minimally invasive orthopedic surgery: first results in navigated total hip arthroplasty. Orthopedics 29 (10, Suppl): 139-41

    Google Scholar 

  • Wittenberg RH, Steffen R (2015) Comparative 5-year results of short hip total hip arthroplasty with Ti- or CoCr-Neck adapters. Orthopedics 38 (3 Suppl): S33-9

    Article  PubMed  Google Scholar 

  • Wittenberg RH, Steffen R, Windhagen H, Bücking P, Wilcke A (2013) Five-year results of a cementless short-hip-stem prosthesis. Ortho Rev 5: E4

    Article  Google Scholar 

Literatur zu Abschn. 2.7

  • Amenabar T, Marimuthu K, Hawdon G et al (2015) Total hip arthroplasty using a short-stem prosthesis: Restoration of hip anatomy Journal of Orthopedic Surgery 23 (1): 90-4

    Article  Google Scholar 

  • Brinkmann V, Radetzki F, Delank K S et al (2015) A prospective randomized and dual energy X-ray absorptiometric study of migration and bone remodeling after implantation of two modern short-stemmes femoral prostheses. J Orthoped Traumatol 16: 237-243

    Article  Google Scholar 

  • Dangles CJ, Altstetter CJ (2010) Failure of the modular neck in a total hip arthroplasty. J Arthroplasty 25 (7): e5-7

    Article  Google Scholar 

  • Ehrenbrink J (2009) Einfluss des Kurzschaftdesigns der Nanos-Hüfttotalendoprothese auf den periprothetischen Knochenumbau. Eine osteodensitometrische Untersuchung 3 und 12 Monate postoperativ im Vergleich mit einem Standard-Geradschaftsystem. Dissertation, Universität Münster

    Google Scholar 

  • Engelmann L (2010) Results after Implantation of the Nanos neck preserving stem. Presentation at the 58th Annual VSO Meeting Baden-Baden

    Google Scholar 

  • Ettinger M, Ettinger P, Lerch M, Radtke K, Budde S, Ezechieli M, Becher C, Thorey F (2011) The Nanos short stem in total hip arthroplasty; a mid term follow-up. Hip Int 21 (5): 583-6

    Article  PubMed  Google Scholar 

  • Ettinger M, Ettinger P, Ezechieli M et al (2013) CCD and offset after Nanos short stem in total hop arthroplasty. Technology and Health Care 21: 149-155

    CAS  PubMed  Google Scholar 

  • Fuchs GA (2006) Schnelle Beschwerdefreiheit, sehr gutes funktionelles Ergebnis. Erste Erfahrungen mit der neuen Nanos-Schenkelhalsprothese. Orthopädische Nachrichten 2: 10

    Google Scholar 

  • Goetze C, Ehrenbrink J, Ehrenbrink H (2010) Bleibt der Krafteinfluss der Kurzschaftprothese auf den methaphysären proximalen Femur begrenzt? Osteodensitometrische Analysen der Nanos-Schaftendoprothese. Z Orthop Unfall 148: 398-405

    Article  Google Scholar 

  • Gruen TA, McNeice GM, Amstutz HC (1979) „Modes of failure“ of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res 141: 17-27

    Google Scholar 

  • Kamada S, Naito M, Nakamura Y, Kiyama T (2011) Hip abductor muscle strength after total hip arthroplasty with short stems Arch Orthop Trauma Surg 131 (12): 1723-9

    Article  PubMed  Google Scholar 

  • Kaptein, B. L., E. R. Valstar, et al (2003) A new model-based RSA method validated using CAD models and models from reversed engineering. J Biomech 36 (6): 873-882

    Article  CAS  PubMed  Google Scholar 

  • Kaptein BL, Valstar ER, et al (2004) Evaluation of three pose estimation algorithms for model-based roentgen stereophotogrammetric analysis. Proc Inst Mech Eng H 218 (4): 231-238

    Article  CAS  PubMed  Google Scholar 

  • Kaptein BL, Valstar ER, et al (2006) Model-based RSA of a femoral hip stem using surface and geometrical shape models. Clin Orthop Relat Res 448: 92-97

    Article  PubMed  Google Scholar 

  • Kaipel M, Grabowieki P, Sinz K, Sinz G (2015) Migration characteristics and early clinicalresults of Nanos short-stem hip arthroplasty. Wien Klin Wochenschr 127 (9-10): 375-8

    Article  PubMed  Google Scholar 

  • Kop AM, Swarts E (2009) Corrosion of a hip stem with a modular neck taper junction: a retrieval study of 16 cases. J Arthroplasty 24: 1019-1023

    Article  PubMed  Google Scholar 

  • Kuhn H (2010) Nanos: protesi a stelo corto, a conservazione del collo. In: Falez (ed) La protesi d´anca nel paziente giovane attivo. CIC Edizioni Internazionali, p 123-134

    Google Scholar 

  • Kuhn H (2011a) Total Hip Arthopasty through an anterolateral minimally invasive approach using the Nanos neck preserving hip stem. Podcast und Video (DVD), English/Deutsch. Smith& Nephew Germany, www.smith-nephew.com

  • Kuhn H (2011b) The Nanos Experience. Presentation at H.I.P. International Congress, Hip Improvements and Proceedings, Toulouse, France September 2011

    Google Scholar 

  • Kuhn H, Olivier A (2011) Using the Nanos Neck Preserving Stem Through an Anterolateral MIS Approach. In: Malhotra R (ed) Mastering Orthopedic Techniques - Total Hip Arthroplasty. Jaypee Brothers Medical Publishers Pvt. Ltd, p 279-297

    Google Scholar 

  • Logroscino G, Ciriello V, D´Antonio E et al (2011) Bone integration of new stemless hip implants (proxima versus nanos) A DXA study: prelimimary results. Int J Immunopathol Pharmacol 24: 113-116

    Article  CAS  PubMed  Google Scholar 

  • Manca A, Marchesini Reggiani L, Donzelli O (2010) La protesizzazione dell’anca in età pediatrica; 1° Italian User Meeting Stelo Nanos, Rome

    Google Scholar 

  • Moussa K, Dinges H (2010) Nanos neck preserving stem, an alternative system in endoprothetic implantation in younger patients. Presentation at the 58th Annual VSO Meeting Baden-Baden

    Google Scholar 

  • Oldenrijk van J, Molleman J, Klaver M et al (2014) Revision rate after short stem total hip arthroplasty. Acta Orthopaedica 85 (3): 250-258

    Article  PubMed  PubMed Central  Google Scholar 

  • Parente F (2010) 5 years clinical experience of a neck preserving stem. Mediterranean Hip Meeting, Athens

    Google Scholar 

  • Speirs AD, Heller MO, Taylor WR, Duda GN, Perka C (2007) Influence of changes in stem positioning on femoral loading after THR using a short-stemmed hip implant. Clin Biomech (Bristol) 22 (4): 431-439

    Article  Google Scholar 

  • Szmuckler-Moncler S, Ahossi V, Pointaire P (2000) Evaluation of BONIT, a fully resorbable CaP coating obtained by electrochemical deposition, after 6 weeks of healing: A pilot study in the pig maxilla. Key Engineering Materials 162-165: 395-398

    Google Scholar 

  • Tohtz SW, Heller MO, Taylor WR, Perka C, Duda, GN (2008) Zur Biomechanik der Hüfte - Relevanz der Schafttorsion für Hüftkontaktkraft und Krafteinleitung bei Kurzschaftprothesen. Orthopäde 37: 923-930

    Article  CAS  PubMed  Google Scholar 

  • Turelli L (2010) Lo stelo Nanos nelle fratture mediali del collo femore nel paziente anziano; 1° Italian User Meeting Stelo Nanos; Rom

    Google Scholar 

  • Valstar ER (2001) Digital roentgen stereophotogrammetry: development, validation, and clinical application. Dissertation, University Leiden. Pasmans, Den Haag

    Google Scholar 

  • Willmund A (2007) Morphologische, spannungsoptimetrische und radiologische Untersuchungen mit dem Nanos Schaft. Inaugural-Dissertation, Universität Köln

    Google Scholar 

  • Zeggel P (2000) A summarizing characterization of BONIT-FBR. Implants - International Magazine of Oral Implantology 1: 52-57

    Google Scholar 

  • Zeh A et al (2013) A prospective dual-energy X-ray absorptiometry study of bone remodeling after implantation of the Nanos short-stem prostesis Acta Orthop (Belg) 79: 174-180

    Google Scholar 

Literatur zu Abschn. 2.8

  • Aldinger C, Fischer A, Kurtz B (1983) Computer aided manufacturing of individual endoprotheses (Preliminary report). Arch Orthop Traumat Surg 102: 31-35

    Google Scholar 

  • Aldinger P, Tsai S, Bergin A (2009) CoCr and Ti-6AL-4 V Modular Neck Fatigue testing. Smith & Nephew Society for Biomaterials, San Antonio, April 22-25, Poster No. 479. http://www.fda.gov/cdrh/maude.html

  • Gruber G (2003) Die Adaptiva-Hüftendoprothese - ein robotergefräster Individualschaft. In: Konermann W, Haaker R (Hrsg) Navigation und Robotik in der Gelenk- und Wirbelsäulenchirurgie. Springer, Heidelberg, S 173-180

    Chapter  Google Scholar 

  • Haaker R et al (2007) Der direkt anteriore minimalinvasive Zugang (AMIS) mit Extensionshilfe und Navigation. MOT 5: 7-14

    Google Scholar 

  • Haaker R (2013) Der SMF-Schaft von Smith & Nephew. In: Jerosch J (Hrsg) Kurzschaftprothesen - wo liegen die Unterschiede. Deutscher Ärzte-Verlag, Köln, S 87-98

    Google Scholar 

  • Widmer KH, Zurfluh B (2004) Compliant positioning of total hip components for optimal range of motion. J Orthop Res 22: 815-821

    Article  PubMed  Google Scholar 

Literatur zu Abschn. 2.9

  • Ebbecke B (2006) Theoretische und algorithmische Konzepte zur Beschreibung des beanspruchungsadaptiven Knochenwachstums. Dissertation, Institut für Baumechanik und Numerische Mechanik, Universität Hannover

    Google Scholar 

  • Ebbecke B, Nackenhorts U (2005) Simulation of stress adaptive bone remodelling. Journal of Structural Mechanics 38: 177-180

    Google Scholar 

  • Engh CA, Bobyn JD, Glassman AH (1987) Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. JBJS Br 69 (1): 45-55

    CAS  PubMed  Google Scholar 

  • Implantcast (2008) ACCIS Design-Rationale. www.implantcast.de

  • Krämer KL, Maichl FP (1993) Scores, Bewertungsschemata und Klassifikationen in Orthopädie und Traumatologie. Thieme, Stuttgart

    Google Scholar 

  • Morrey BF, Adams RA, Kessler M (2000) A conservative femoral replacement for total hip arthroplasty. JBJS-Br 82-B: 952-958

    Article  Google Scholar 

Literatur zu Abschn. 2.10

  • Barrack RL, Butler RA, Laster DR, Andrews P (2001) Stem design and dislocation after revision total hip arthroplasty: clinical results and computer modeling. J Arthroplasty 16 (8): 8-12

    Article  CAS  PubMed  Google Scholar 

  • Brodén C, Mukka S, Muren O, Eisler T, Boden H, Stark A, Sköldenberg O (2015) High risk of early periprosthetic fractures after primary hip arthroplasty in elderly patients using a cemented, tapered, polished stem - An observational, prospective cohort study on 1,403 hips with 47 fractures after mean follow-up time of 4 years. Acta Orthopaedica 86 (2): 169-174

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown TE, Larson B, Shen F, Moskal JT (2002) Thigh pain after cementless total hip arthroplasty: evaluation and management. J Am Acad Orthop Surg 10: 385-392

    Article  PubMed  Google Scholar 

  • Burkart BC, Bourne RB, Rorabeck CH, Kirk PG (1993) Thigh pain in cementless total hip arthroplasty. A comparison of two systems at 2 years' follow-up. Clin North Am 24: 645-653

    CAS  Google Scholar 

  • Chen HH, Morrey BF, An KN, Luo ZP (2009) Bone remodeling characteristics of a short-stemmed total hip replacement. J Arthroplasty 24: 945-950

    Article  CAS  PubMed  Google Scholar 

  • Engh CA, Bobyn JD, Glassman AH (1987) Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. J Bone Joint Surg Br 69: 45-55

    CAS  PubMed  Google Scholar 

  • Götze C (2013) Fitmore. In: Jerosch J (Hrsg) Kurzschaftendoprothesen - Wo liegen die Unterschiede. Deutscher Ärzte-Verlag, Köln, S 177

    Google Scholar 

  • Hughes SS, Furia JP, Smith P, Pellegrini VD Jr (1995) Atrophy of the proximal part of the femur after total hip arthroplasty without cement. A quantitative comparison of cobalt-chromium and titanium femoral stems with use of dual x-ray absorptiometry. J Bone Joint Surg Am 77: 231-239

    Article  CAS  PubMed  Google Scholar 

  • Huiskes R, Weinans H, van Rietbergen B (1992) The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res 274: 124-134

    Google Scholar 

  • Jahnke A, Engl S, Altmeyer C, Jakubowitz E, Seeger JB, Rickert M, Ishaque BA (2014) Changes of periprosthetic bone density after a cementless short hip stem: a clinical and radiological analysis. Int Orthop 38 (10): 2045-2050

    Article  PubMed  Google Scholar 

  • Janda W, Hübl M, Stöckl B, Thaler M, Labek G (2010) Performance of the Zweymüller total hip arthroplasty system: a literature review including arthroplasty register data. Eur Orthop Traumatol 1: 9-15

    Article  Google Scholar 

  • Jerosch J (2011) Is shorter really better? Philosophy of short stem prosthesis designs. Orthopade 40: 1075-1083

    Article  CAS  PubMed  Google Scholar 

  • Jerosch J, Theising C, Fadel ME (2006) Antero-lateral minimal invasive (ALMI) approach for total hip arthroplasty technique and early results. Arch Orthop Trauma Surg 126 (3):164-173

    Article  PubMed  Google Scholar 

  • Kawamura H, Dunbar MJ, Murray P, Bourne RB, Rorabeck CH (2001) The porous coated anatomic total hip replacement. A ten to fourteen-year follow-up study of a cementless total hip arthroplasty. J Bone Joint Surg Am 83: 1333-1338

    Article  PubMed  Google Scholar 

  • Korovessis P, Repantis T, Zafiropoulos A (2011) High medium-term survivorship and durability of Zweymüller-Plus total hip arthroplasty. Arch Orthop Trauma Surg 131: 603-611

    Article  PubMed  Google Scholar 

  • Mishra AK, Skinner HB, Davidson JA (1997) Stem loosening and thigh pain in THA: are they related to prosthesis stiffness? Orthopedics 20: 58-61

    CAS  PubMed  Google Scholar 

  • Raj D, Coupe BD, Keene GS (2008) Stem fracture of a collarless, polished, double-taper cemented femoral prosthesis: A case report. Acta Orthop Belg 74: 697-699

    Google Scholar 

  • Scifert CF, Noble PC, Brown TD, Bartz RL, Kadakia N, Sugano N, Johnston RC, Pedersen DR, Callaghan JJ (2001) Experimental and computational simulation of total hip arthroplasty dislocation. Orthop Clin North Am 32 (4): 553-567

    Article  CAS  PubMed  Google Scholar 

  • Watts CD, Abdel MP, Lewallen DG, Berry DJ, Hanssen AD (2015) Increased risk of periprosthetic femur fractures associated with a unique cementless stem design. Clin Orthop Relat Res 473 (6): 2045-2053

    Article  PubMed  Google Scholar 

  • Widmer KH, Zurfluh B (2004) Compliant positioning of total hip components for optimal range of motion. J Orthop Res 22 (4): 815-821

    Article  PubMed  Google Scholar 

Literatur zu Abschn. 2.11

  • Bergmann G, Graichen F, Rohlmann A (1993) Hip joint loading during walking and running, measured in two patients. J Biomech 26 (8): 969-90

    Article  CAS  PubMed  Google Scholar 

  • Breil-With A, von Engelhardt LV, Grasselli C, Jerosch J (2016) 5- bis 6 Jahresergebnisse einer MiniHip-Kurzschaftprothese. OUP 5: 370-375

    Google Scholar 

  • Carter DR, Hayes WC (1977) The compressive behaviour of bone as a two-phase porous structure. J Bone Joint Surg Am 59: 954-962

    Article  CAS  PubMed  Google Scholar 

  • Duda GN, Heller M, Albinger J, Schluz O, Schneider E, Claes L (1998) Influence of muscle forces on femoral strain distribution. J Biomech 31: 841-846

    Article  CAS  PubMed  Google Scholar 

  • Effenberger H, Imhoff M, Witzel W, Rehat S (2005) Zementfreie Hüftschäfte - aktueller Stand. Orthopäde 34: 477-502

    Article  CAS  PubMed  Google Scholar 

  • Ercan A (2015) Postoperative Knochendichteveränderung bei einer schenkelhalsteilerhaltenden Kurzschaftprothese MiniHip. Dissertation, Universität Düsseldorf

    Google Scholar 

  • Green JR, Nemzek JA, Arnoczky SP, Johnson LL, Balas MS (1999) The effect of bone compaction on early fixation of porous-coated implants. J Arthroplasty 14 (1): 91-7

    Article  CAS  PubMed  Google Scholar 

  • Heller MO, Bergmann G, Deuretzbacher G, Dürselen L, Pohl M, Claes L, Haas NP, Duda GN (2001) Musculo-skeletal loading conditions at the hip during walking and stair climbing. J Biomech 34: 883-893

    Article  CAS  PubMed  Google Scholar 

  • Heller MO, Bergmann G, Kassi J-P, Claes L, Haas NP, Duda GN (2004) Determination of muscle loading at the hip joint for use in pre-clinical testing. Journal of Biomechnics 38: 1155-1163

    Article  Google Scholar 

  • Jerosch J (2011) Ist kürzer wirklich besser? Philosophie der Kurzschaftendoporthesen. Orthopäde 40: 1075-1083

    Article  CAS  PubMed  Google Scholar 

  • Jerosch J, Funken S (2004) Veränderung des Offsets nach Implantation von Hüftalloarthroplastiken? Unfallchirurg 107: 475-482

    Article  CAS  PubMed  Google Scholar 

  • Jerosch J, Glameyer H (2009) Anatomische Anforderungen an ein Kurzschaftsystem (Mini-Hip). Orthopädische Praxis 45: 74-81

    Google Scholar 

  • Jerosch J, Plitz W (2009) Anatomische und biomechanische Grundlagen eines neuen Kurzschaftsystems. 57. Jahrestagung der Vereinigung Süddeutscher Orthopäden, 30.4.-3.5.2009, Baden-Baden

    Google Scholar 

  • Jerosch J, Grasselli C, Kothny PC, Litzkow D, Hennecke T (2011) Reproduction of the anatomy (offset, CCD, leg length) with a modern short stem hip design - a radiological study. Z Orthop Unfal 150 (1): 206

    Article  Google Scholar 

  • Schidlo C, Becker C, Jansson V, Refior J (1999) Änderung des CCD-Winkels sowie des femoralen Antetorsionswinkels durch Hüftprothesenimplantation. Z Orthop 137: 259-264

    Article  CAS  PubMed  Google Scholar 

  • Seeger JB, Stallmann N, Jerosch J (2015) Short and medium term results of cementless short stem prosthesis MiniHip. Deutscher Kongress für Orthopädie und Unfallchirurgie, Berlin, 20.-23.10.2015

    Google Scholar 

  • Steinberg B, Harris WH (1992) The offset problem in total hip arthroplasty. Cont Orthop 24: 556-562

    Google Scholar 

Literatur zu Abschn. 2.12

  • Aldinger G, Fischer A, Kurtz B (1984) Computer assisted production of individual anatomic endoprosthesis. Z Orthop Ihre Grenzgeb 122: 733-6

    Article  CAS  PubMed  Google Scholar 

  • Asayama I, Chamnongkich S, Simpson KJ, Kinsey TL, Mahoney OM (2005) Reconstructed hip joint position and abductor muscle strength after total hip arthroplasty. J Arthroplasty 20: 414-420

    Article  PubMed  Google Scholar 

  • Babisch J (2013) Möglichkeiten der patientenindividuellen Hüftgelenksrekonstruktion und Knochenresektion bei Kurzschaftprothesen. In: Jerosch J (Hrsg) Kurzschaftendoprothesen. Wo liegen die Unterschiede? Deutscher Ärzte-Verlag, Köln

    Google Scholar 

  • Bieger R, Ignatius A, Decking R, Reichel H, Dürselen L (2011) Primary stability and strain distribution of cementless hip stems as a function of implant design. Clin Biomech 27: 158-164

    Article  Google Scholar 

  • Freitag T, Hein MA, Wernerus D, Reichel H, Bieger R (2016) Bone remodelling after femoral short stem implantation in total hip arthroplasty: 1-year results from a randomized DEXA study. Arch Orthop Trauma Surg 136: 125-130

    Article  PubMed  Google Scholar 

  • Götze C, Steens W, Vieth V, Premba C, Claes L, Steinbeck J (2002) Primary stability in cementless femoral stems: custom-made versus conventional femoral prosthesis. Clin Biomech 17: 267-273

    Article  Google Scholar 

  • Götze C, Rosenbaum D, Hoedemaker J, Böttner F, Steens W (2009) Is there a need of custom-made prosthesis for total hip arthroplasty. Gait analysis, clinical, and radiographic analysis of customized femoral components. Arch Orthop Trauma Surg 129: 267-74

    Article  PubMed  Google Scholar 

  • Lecerf G, Fessy M, Philippot R, Massin P, Giraud F, Flecher X (2009) Femoral offset: Anatomical concept, definition, assessment, implications for preoperative templating and hip arthroplasty. Orthop Traumatol Surg 95: 210-219

    Article  CAS  Google Scholar 

  • Noble PC, Lindahl LJ, Jay JL, Davidson J, Tullos HS (1986). Analysis of the design variables for optimizing the fit of press-fit femoral stem. Orthop Trans 10: 398

    Google Scholar 

  • Maier MW, Streit MR, Innmann MM, Krüger M, Nadorf J, Kretzer JP, Ewerbeck V, Gotterbarm T (2015) Cortical hypertrophy with a short, curved uncemented hip stem does not have any clinical impact during early follow-up. BMC 16: 371

    Google Scholar 

  • Pepke W, Nadorf J, Everbeck V, Streit MR, Kinikel S, Gotterbaum T, Maier MW, Kretzer JP (2014) Primary stability of the Fitmore stem: biomechanical comparison. Int Orthop 38: 483-488

    Article  PubMed  Google Scholar 

  • Roth P, Perka C, Mayer HO, Preininger B, Ziebula F, Matziolis G, Hube R (2014). Reproducibility of femoral offset following short stem and straight stem total hip arthroplasty. Orthopedics 37: 678-84

    Article  Google Scholar 

  • Sakalkale D, Sharkey P, Eng K, Hozack W, Rothman R (2001). Effect of femoral component offset on polyethylene wear in total hip arthroplasty. Clin Orthop Relat Res 388: 125

    Article  Google Scholar 

  • Sarin VK, Pratt WR, Bradley GW (2005) Accurate femur repositioning is critical during intraoperative total hip arthroplasty length and offset assessment. J Arthroplasty 20: 887-891

    Article  PubMed  Google Scholar 

  • Yerasimides JG (2010) Use of the Fitmore hip stem bone-preserving system for the minimally invasive anterior-supine approach in hip replacement. Am J Orthop 39: 13-16

    PubMed  Google Scholar 

  • Widmer KH, Majewski M (2005) The impact of the CCD-angle on range of motion and cup positioning in total hip arthroplasty. Clin Biomech 20: 723-728

    Article  Google Scholar 

Literatur zu Abschn. 2.13

  • Aldinger PR, Jung AW, Pritsch M, Breusch S, Thomsen M, Ewerbeck V, Parsch D (2009) Uncemented grit-blasted straight tapered titanium stems in patients younger than fifty-five years of age. Fifteen to twenty-year results. J Bone Joint Surg (Am) 91 (6): 1432-1439

    Article  Google Scholar 

  • Bergmann G, Graichen F, Rohlmann A, Bender A, Heinlein B, Duda GN, Heller MO, Morlock MM (2010) Realistic loads for testing hip implants. Biomed Mater Eng 20: 65-75

    CAS  PubMed  Google Scholar 

  • Bishop NE, Burton A, Maheson M, Morlock MM (2010) Biomechanics of short hip endoprostheses-the risk of bone failure increases with decreasing implant size. Clin Biomech (Bristol, Avon) 25: 666-674

    Article  Google Scholar 

  • Brinkmann V, Radetzki F, Delank KS, Wohlrab D, Zeh AJ (2015) A prospective randomized radiographic and dual-energy X-ray absorptiometric study of migration and bone remodeling after implantation of two modern short-stemmed femoral prostheses. Orthop Traumatol 16: 237-243

    Google Scholar 

  • Cassidy KA, Noticewala MS, Macaulay W, Lee JH, Geller JA (2012) Effect of femoral offset on pain and function after total hip arthroplasty. J Arthroplasty 27: 1863-1869

    Article  PubMed  Google Scholar 

  • Chen HH, Morrey BF, An KN, Luo ZP (2009) Bone remodeling characteristics of a short-stemmed total hip replacement. J Arthroplasty 24: 945-950

    Article  CAS  PubMed  Google Scholar 

  • Falez F, Casella G, Panegrossi F, Favetti F, Barresi C (2008) Perspectives on metaphyseal conservative stems. J Orthopaed Traumatol 9: 49-54

    Article  CAS  Google Scholar 

  • Götze C, Ehrenbrink J, Ehrenbrink H (2010) Bleibt der Krafteinfluss der Kurzschaftprothese auf den methaphysären proximalen Femur begrenzt? Osteodensitometrische Analysen der Nanos-Schaftendoprothese. Z Orthop Unfall 148: 398-405

    Article  PubMed  Google Scholar 

  • Ha SW, Wintermantel E (2009) Biokompatible keramische Werkstoffe. Hydroxylapatit. In: Wintermantel E, Ha SW (Hrsg) Medizintechnik Life Science Engineering. Springer, Heidelberg, S 281-291

    Google Scholar 

  • Head WC, Bauk DJ, Emerson RH Jr (1995) Titanium as the material of choice for cementless femoral components in total hip arthroplasty. Clin Orthop Relat Res 311: 85-90

    Google Scholar 

  • Hube R, Zaage M, Hein W, Reichel H (2004) Frühfunktionelle Ergebnisse einer Kurzschaftprothese des Hüftgelenks mit metaphysär-intertrochantärer Verankerung. Orthopäde 33: 1249-1258

    Article  CAS  PubMed  Google Scholar 

  • Jerosch J, Grasselli C, Kothny C, Litzkow D, Hennecke T (2012) Postoperative Veränderungen von Offset, CCD-Winkel und Beinlänge nach Implantation einer metaphysär fixierten Kurzschaftprothese - eine radiologische Untersuchung. Z Orthop Unfall 150: 20-26

    Article  CAS  PubMed  Google Scholar 

  • Kolb A, Grübl A, Schneckener CD, Chiari C, Kaider A, Lass R, Windhager R (2012). Cementless total hip arthroplasty with the rectangular titanium Zweymüller stem: a concise follow-up, at a minimum of twenty years, of previous reports. J Bone Joint Surg Am 94 (18): 1681-1684

    Article  PubMed  Google Scholar 

  • Köster G, Sofer D, Rühl M, Rading S (2007) Knochenumbauvorgänge nach Implantation einer Kurzschaftprothese. Deutscher Kongress für Orthopädie und Unfallchirurgie, Berlin, 24.-27. Oktober 2007

    Google Scholar 

  • Lecerf G, Fessy MH, Philippot R, Massin P, Giraud F, Flecher X, Girard J, Mertl P, Marchetti E, Stindel E (2009) Femoral offset: anatomical concept, definition, assessment, implications for preoperative templating and hip arthroplasty. Orthop Traumatol Surg Res 95: 210-219

    Article  CAS  PubMed  Google Scholar 

  • Lerch M, von der Haar-Tran A, Windhagen H, Behrens BA, Wefstaedt P, Stukenborg-Colsman CM (2012) Bone remodelling around the Metha short stem in total hip arthroplasty: a prospective dual-energy X-ray absorptiometry study. Int Orthop 36: 533-538

    Article  PubMed  Google Scholar 

  • Matsushita A, Nakashima Y, Jingushi S, Yamamoto T, Kuraoka A, Iwamoto Y (2009) Effects of the femoral offset and the head size on the safe range of motion in total hip arthroplasty. J Arthroplasty 24: 646-651

    Article  PubMed  Google Scholar 

  • Mihalko WM, Saleh KJ, Heller MO, Mollard B, König C, Kammerzell S (2009) Femoral neck cut level affects positioning of modular short-stem implant. Orthopedics 32 (10 Suppl): 18-21

    Article  PubMed  Google Scholar 

  • Morlock MM, Bishop N (2011) Zur Biomechanik von Kurzschaftprothesen. Orthopädie im Profil 1: 10-11

    Google Scholar 

  • Rading S, Köster G (2011) Knochenremodeling 6 Jahre nach Implantation der Kurzschaftprothese Typ Mayo. 59. Jahrestagung der Vereinigung Süddeutscher Orthopäden und Unfallchirurgen e.V., Baden-Baden, 28.4-1.5.2011

    Google Scholar 

  • Salemyr M, Muren O, Ahl T, Bodén H, Eisler T, Stark A, Sköldenberg O (2015) Lower periprosthetic bone loss and good fixation of an ultra-short stem compared to a conventional stem in uncemented total hip arthroplasty. Acta Orthop 14: 1-8

    Google Scholar 

  • Sariali E, Klouche S, Mouttet A, Pascal-Moussellard H (2014) The effect of femoral offset modification on gait after total hip arthroplasty. Acta Orthop 85 (2): 123-127

    Article  PubMed  PubMed Central  Google Scholar 

  • Sykes A, Hill J, Orr J, Humphreys P, Rooney A, Morrow E, Beverland D (2015) Patients' perception of leg length discrepancy post total hip arthroplasty. Hip Int [Epub ahead of print]

    Google Scholar 

  • Vidalain JP (2011) Twenty-year results of the cementless Corail stem. Int Orthop 35 (2): 189-94

    Article  PubMed  Google Scholar 

  • Whiteside LA, White SE, McCarthy DS (1995) Effect of neck resection on torsional stability of cementless total hip replacement. Am J Orthop 24: 766-770

    CAS  PubMed  Google Scholar 

  • Wohlrab D, Droege JW, Mendel T, Brehme K, Riedl K, Leuchte S, Hein W (2008) Minimally invasive vs. transgluteal total hip replacement. A 3-month follow-up of a prospective randomized clinical study. Orthopäde 37: 1121-1126

    Article  CAS  PubMed  Google Scholar 

Literatur zu Abschn. 2.14

  • Acklin YP et al (2001) Nine year results of Müller cemented titanium Straight Stems in total hip replacement. Arch Orthop Trauma Surg 121 (7): 391-398

    Article  CAS  PubMed  Google Scholar 

  • Albrektsson T et al (1981) Osseointegrated tita-niumimplants.Requirements for en-suring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52: 155-70

    Article  CAS  PubMed  Google Scholar 

  • Bobyn JD, et al (1980) The optimum pore size for the fixation of porous surfaced metal implants by the ingrowth of bone. Clin Orthop Relat Res 150: 263-270

    Google Scholar 

  • Burt CF et al (1998) A femoral component without cement in total hip arthro-plasty. A study of the Tri-Lock component with an average ten year duration of follow up. J Bone Joint Surg 80-A: 952-960

    Article  Google Scholar 

  • Clohisy JC, Harris WH (1999) The Harris-Galante uncemented femoral component in primary total hip replacement at 10 years. J Arthroplasty 14: 915-7

    Article  CAS  PubMed  Google Scholar 

  • DePuy International (2010) Tri-Lock Bone Preservation Stem. Produktinformation. DePuy International, Leeds

    Google Scholar 

  • Dorr LD, Lewonowski K, Lucero M, Harris M, Wan Z (1997) Failure mechanisms of anatomic porous replacement I cementless total hip replacement. Clin Or-thop 334: 157-67

    Google Scholar 

  • Engh CA et al (1992) Quantification of implant micromotion, strain shielding, and bone resorption with porouscoated anatomic medullary locking femoral pros-theses. Clin Orthop Relat. Res 285: 13-29

    Google Scholar 

  • Galante J (1971) Sintered fiber metal composites as a basis for attachment of im-plants to bone. J Bone Joint Surg Am 53: 101-14

    Article  CAS  PubMed  Google Scholar 

  • Goetz DD, Smith EJ, Harris WH (1994) The prevalence of femoral osteolysis as-sociated with components inserted with or without cement in total hip re-placements. A retrospective matched-pair series. J Bone Joint Surg Am 76: 1121-9

    Article  CAS  PubMed  Google Scholar 

  • Havinga M (2001) Results with the M.E. Müller cemented, straight-stem total hip prosthesis: a 10-year historical cohort study in 180 women. J Arthroplast 16 (1): 33-36

    Article  CAS  Google Scholar 

  • Healy LW (2011) Clinical results of the Tri-Lock Bone Preserving Stem at one year follow-up. DePuy Healy White Paper 0612-89-103 v1, issued: 09/2011

    Google Scholar 

  • Healy LW et al (2009) Prospective, randomized comparison of cobalt-chrome and titanium Tri-Lock femoral stems. J Arthroplasty 24; 831-836

    Article  PubMed  Google Scholar 

  • Hozack WJ, Booth RE Jr (1990) Clinical and radiographic results with the Trilock femoral component - a wedge-fit porous ingrowth stem design. Semin Arthro-plasty 1: 64-69

    CAS  Google Scholar 

  • Jasty M et al (1997) In vivo skeletal responses to porous-surfaced implants subject-ed to small induced motions. J Bone Joint Surg Am 79: 707-714

    Article  CAS  PubMed  Google Scholar 

  • Karageorgiou et al (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26: 54-74

    Article  CAS  Google Scholar 

  • Martell JM, Pierson RH 3rd, Jacobs JJ, Rosenberg AG, Maley M, Galante JO (1993) Primary total hip reconstruction with a titanium fiber-coated prosthesis inserted without cement. J Bone Joint Surg Am 75: 554-71

    Article  CAS  PubMed  Google Scholar 

  • Matsuno H, et al (2001) Biocompatibility and Osteogenesis of Refractory Metal Im-plants, Titanium, Hafnium, Niobium, Tantalum and Rhenium. Biomaterials 22 (11): 1253-62

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini VD Jr et al (1992) A collarless cobalt-chrome femoral component in uncemented total hip arthroplasty. Five-to eight-year follow-up. J Bone Joint Surg Br 74: 814-821

    Article  PubMed  Google Scholar 

  • Pilliar RM et al (1986) Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat. Res 208: 108-113

    Google Scholar 

  • Sharkey PF et al (1990) Initial stability of a collarless wedge-shaped prosthesis in the femoral canal. Semin Arthroplasty 1: 87-90

    CAS  PubMed  Google Scholar 

  • Sperati G, Ceri L (2014) Total hip arthroplasty using Tri-Lock DePuy bone preservation femoral stem: our experience. Acta Biomed 85:66-70

    PubMed  Google Scholar 

  • Swanson R, Evarts CM (1984) Dual-Lock Total Hip Arthroplasty: A preliminary Expe-rience. Clin Orthop Rel Res 191: 224-231.

    Google Scholar 

  • Teloken MA et al (2002) Ten to fifteen year follow-up after total hip arthroplasty with a tapered cobalt-chromium femoral component (Tri-Lock) inserted without cement. J Bone Joint Surg 84-A: 2140-2144

    Article  PubMed  Google Scholar 

Literatur zu Abschn. 2.15

  • Calaghan J (2009) Ceramic on crosslinked polyethylene in total hip replacement. Iowa Orthopaedic Journal 29: 1-4

    Google Scholar 

  • Fetto JF, Bettinger A (1999) Re-examination of the hip biomechanics during unilateral stance. Hip Int 9: 71-80

    Google Scholar 

  • Fritz T, Hoefer C (2013) Clinical results of the Metha short hip stem: A perspective for younger patients? Ortho Rev 5 (4): e34

    Article  Google Scholar 

  • Ghera S, Pavan L (2009) The DePuy Proxima Hip: a short stem for total hip arthroplasty. Early experience and technical considerations. Hip International 19 (3): 215-20

    PubMed  Google Scholar 

  • Goebel D, Shultz W (2009) The Mayo cementless femoral component in active patients with osteoarthritis. Hip International 19 (3): 206-10

    PubMed  Google Scholar 

  • Jenkins PJ, Clement ND (2013) Predicting the cost effectiveness of total hip and knee replacement; a health economic analysis. JBJ 95-B: 115-21

    Article  CAS  Google Scholar 

  • Hutt J, Harb Z (2014) Ten year results of the collum femoris preserving hip replacement: a prospective Cohort study of seventy five patients. Int Orthop 38 (5): 917-922

    Article  PubMed  Google Scholar 

  • JISRF (2012) A classification system for short stem uncemented THA. Joint Implant Surgery and Research Foundation (JISRF) Chagrin Plaza #118, Chagrin Falls, OH, 44022; CME ICJR Poster 4, 27.-29.4.2012, Coronado, CA

    Google Scholar 

  • Kim YH, Kim JS, Joo JH, Park JW (2012) A prospective short term outcome study of a short metaphyseal fitting total hip arthroplasty. J Arthroplasty 27 (1): 88-94

    Article  PubMed  Google Scholar 

  • Miner T, Momberger N, Paprosky W (2001) The extended trochanteric osteotomy in revision hip arthroplasty: A critical review of 166 cases at mean 3 year, 9 month follow up. J Arthroplasty 16 (8): 188-194

    Article  CAS  PubMed  Google Scholar 

  • Morrey BF, Adams RA, Kessler M (2000) A Conservative femoral replacement for total hip arthroplasty. A prospective study. J Bone Joint Surgery Br 82 (7): 952-8

    Article  CAS  Google Scholar 

  • Pipino F (2004) CFP prosthetic stem in min-invasive total hip arthroplasty. J Orthop Traumatol 5 (3): 165-71

    Article  Google Scholar 

  • Walker PS, Culligan S (1999) The effect of a lateral flare feature on uncemeted hip stems. Hip Institute 9: 71-80

    Google Scholar 

  • Waugh W, Charnley J (1990) The man and the hip. Springer, New York

    Google Scholar 

Literatur zu Abschn. 2.16

  • Atwood SA, Patten EW, Bozic JJ, Pruitt LLA, Ries MD (2010) Corrosion-induced fracture of a fracture of a double-modular hip prosthesis. A case report. JBJS 92 (6): 1522-1525

    Google Scholar 

  • Charles MN, Bourne RB, Davey JR, Greenwald AS, Morrey BF, Rorabeck CH (2005) Soft-tissue balancing of the hip: the role of femoral offset restoration. Instr Course Lect 54: 131-41

    PubMed  Google Scholar 

  • Chen H-H, Morrey BF, An K-N, Luo Z-P (2009) Bone Remodeling Characteristics of a Short-Stemmed Total Hip Replacement. J Arthroplasty 24 (6): 945-50

    Article  CAS  PubMed  Google Scholar 

  • Gruen TA, McNeice GM, Amstutz HC (1979) „Modes of failure“ of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res 141: 17-27

    Google Scholar 

  • Huiskes R, Weinans H, van Rietbergen B (1992) The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop 274: 124-34

    Google Scholar 

  • Lavigne M, Vendittoli F (2015) Oral communication presented at the Congress of SOFCOT 2015, Paris.

    Google Scholar 

  • Michael BE, Levine BR (2012) Fracture of the modular femoral neck component in total hip arthroplasty. J Arthroplasty 28 (1): 196.e1-196.e5

    Google Scholar 

  • Morrey BF, Adams RA, Kessler M (2000) Bone remodeling characteristics of a short-stemmed total hip replacement. JBJS 82B: 952-957

    Article  Google Scholar 

  • Noble PC, Alexander JW, Lindahl LJ, Yew DT, Granberry WM, Tullos HS (1988) The anatomic basis of femoral component design. Clin Ortho Rel Res 235): 148-65

    Google Scholar 

  • Pardubsky R, Sprowson A, Sarantos K, Foguet P (2014) La première expérience des PTH avec la tige courte Profemur Preserve et col modulaire chez les patients jeunes et actifs. Rev Chir Orthop Traumat 100 (7): 285-89

    Google Scholar 

  • Ribas M (2012) Modular necks in total hip replacement. White paper 2013 and oral communication presented at the annual EFORT congress in Berlin 2012

    Google Scholar 

  • Ribas M, Cardenas C, Bellotti V, Astarita E, Moya E (2015) Preliminary results of a new trochanter sparing short stem system in selected population. Proceedings, E-Poster presented at 36th Annual SICOT Orthopaedic World Congress, Guangzhou, 17.-19.9.2015

    Google Scholar 

  • Sommers JF (2015) Metal ion levels in ceramic-on-ceramic THR with modular necks: analysis of cobalt and chromium serum levels in 30 healthy patients. Hip-Int 25 (5): 484-7

    Article  Google Scholar 

  • Traina F, Baleani M, Viceconti M, Toni A (2004) Modular neck primary prosthesis: experimental and clinical outcomes. Scientific Exhibit, 71st AAOS Annual Meeting, San Francisco

    Google Scholar 

  • Traina F, De Clerico M, Biondi F, Pilla F, Tassinari E, Toni A (2009) Sex differences in hip morphology: is stem modularity effective for THA? JBJS Am 91: 121-128

    Article  PubMed  Google Scholar 

  • Traina F, De Fine M, Tassinari E, Sudanese A, Calderoni P, Toni A (2011) Modular neck protheses in DDH patients: 11-year results. J Ortho Sci 16: 14-20

    Article  Google Scholar 

  • Wang SC, Brede C, Lange D, Poster CS, Lange AW, Kohoyda-Inglis C, Sochor MR, Ipaktchi K, Rowe SA, Patel S, Garton HJ (2004) Gender differences in hip anatomy: possible implications for injury tolerance in frontal collisions. Annu Proc Assoc Adv Automot Med 48: 287-301

    PubMed  PubMed Central  Google Scholar 

  • Wilson DAJ, Dumber MJ, Aminault JD, Furhat Z (2010) Early failure of a modular femoral neck total hip arthroplasty component. JBJS 92 (6): 1514-1517

    Article  Google Scholar 

  • Wright CG, Sporer S, Urban R, Jacobs J (2010) Fracture of a modular neck after total hip arthroplasty. JBJS 92 (6): 1518-1521

    Article  Google Scholar 

Literatur zu Abschn. 2.17

  • Castelli CC, Rizzi L (2014) Short stems in total hip replacement: current status and future. Hip Int 24 (Suppl 10): S25-8

    Article  PubMed  Google Scholar 

  • Gruner A, Heller KD (2015) Patient selection for shorter femoral stems. Orthopedics 38 (3 Suppl): S27-32

    Article  PubMed  Google Scholar 

  • Lerch M (2016) Ergebnissen einer „pre-launch“ Finite Element Analyse eines neuen H-TEP Kurzschaftsystems mit zwei Schafttypen zur optimierten Lasteinleitung. ImplanTec Deutschland GmbH, Lüdinghausen

    Google Scholar 

  • Lerch M, Kurtz A, Stukenborg-Colsman C, Nolte I, Weigel N, Bouguecha A, Behrens BA (2012) Bone remodeling after total hip arthroplasty with a short stemmed metaphyseal loading implant: finite element analysis validated by a prospective DEXA investigation. J Orthop Res 30 (11): 1822-9

    Article  PubMed  Google Scholar 

  • Heller MO, Bergmann G, Kassi JP, Claes L, Haas NP, Duda GN (2005) Determination of muscle loading at the hip joint for use in pre-clinical testing. J Biomech 38 (5): 1155-63

    Article  CAS  PubMed  Google Scholar 

  • Schmidutz F, Beirer M, Weber P, Mazoochian F, Fottner A, Jansson V (2012) Biomechanical reconstruction of the hip: comparison between modular short-stem hip arthroplasty and conventional total hip arthroplasty. Int Orthop 36 (7): 1341-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Oldenrijk J, Molleman J, Klaver M, Poolmann R, Haverkamp D (2014) Revision rate after short-stem total hip arthroplasty; A systematic review of 49 clinical studies. Acta Orthopaedica 85 (3): 250-258

    Article  PubMed  PubMed Central  Google Scholar 

Literatur zu Abschn. 2.18

  • Amin S, Atkinson E, Camp J, et al (2007) regional differences in femoral neck cortical thickness with aging: implications for hip fracture risk. Presentation at „Osteoporosis Treatment and Epidemiologic Updates“, 71th Annual Scientific Meeting, American College of Rheumatology (ACR), Boston, MA. Nov 6-11 2007

    Google Scholar 

  • Cetin E (2013) Die SPORT-HIP: Das minimal invasive Hüftkonzept für den vorderen Zugang. http://orthopaedie-unfallchirurgie.universimed.com/artikel/die-sport-hip-das-minimal-invasive-h%C3%BCftkonzept-f%C3%BCr-den-vorderen, abgerufen 18.7.2016

  • Dumbleton J, Manley MT (2004) Hydroxyapatite-Coated Prostheses in Total Hip and Knee Arthroplasty. J Bone Joint Surg Am 86: 2526-2540

    Article  PubMed  Google Scholar 

  • Elias I, Krieger M (2013a) Patient Specific Approaches: Antero Lateral Minimal Invasiv Surgery. Trends, Challenges and the Future in Total Hip Replacement. Presentation at Lima Corporate Annual Scientific Meeting, Nov. 2013, Amsterdam, NL

    Google Scholar 

  • Elias I, Krieger M (2013b) Fixation Philosophies: Leaving the classical stem Philosophies for shorter stems. Trends, Challenges and the Future in Total Hip Replacement. Lima Corporate Annual Scientific Meeting, Nov. 2013, Amsterdam, NL

    Google Scholar 

  • Elias I, Krieger M, Ley C, et al (2014a) Two years outcomes of total hip arthroplasty using a short stem with femoral neck anchoring. Presentation at 10th Central European Orthopaedic Congress (CEOC), Split, Croatia

    Google Scholar 

  • Elias I, Krieger M, Rinaldi G, et al (2014b) Two years outcomes of total hip replacement using a short stem with femoral neck anchoring. Presentation at 15th EFORT Congress, London, UK

    Google Scholar 

  • Falez F, Casella F, Papalia M (2015) Current concepts, classification, and results in short stem hip arthroplasty. Orthopedics 38 (3): p6-13

    Article  Google Scholar 

  • Giorgini L (2006) Proximal femur measurement analysis. Report held on file at Lima Corporate

    Google Scholar 

  • Giorgini L (2008) FEM analysis of the Collo-MIS implant according to ISO7206-6 and FEM analysis of the Collo-MIS implant compared to anatomical situation. Reports held on file at Lima Corporate

    Google Scholar 

  • Husmann O, Rubin PJ, Leyvraz PF et al (1979) 3D Morphology of the proximal Femour. J Arthrop 12: 444-450

    Article  Google Scholar 

  • Jerosch J (2013) Kurzschaft ist nicht gleich Kurzschaft - Eine Klassifikation der Kurzschaftprothesen. OUP 1: 7-8

    Google Scholar 

  • Krieger M (2013) Collo-MIS. In: Jerosch J (Hrsg) Kurzschaftendoprothesen. Wo liegen die Unterschiede? Deutscher Ärzte-Verlag, Köln, S 123-138

    Google Scholar 

  • Lausten GS, Jorgensen F, Boesen J (1989) Measurements of anteversion of the fermoral neck. JBJS [Br] 71 (2): 237-9

    Article  CAS  Google Scholar 

  • Mai S, Pfeil J, Siebert W, et al (2016) Kalkar-geführte Kurzschäfte in der Hüftendoprothetik - eine Übersicht. OUP 6: 342-347

    Google Scholar 

  • Røkkum M, Reigstad A, Johansson CB (2002) HA particles can be released from well-fixed HA-coated stems. Acta Orthopaedica Scandinavica 73 (3): 298-306

    Article  PubMed  Google Scholar 

  • Sbaiz F (2008) Collo-MIS fatigue test report according to ISO-7206 standard. Report held on file at Lima Corporate Lto

    Google Scholar 

  • Tran P, Zhang BX, Lade JA, et al (2016) Periprosthetic bone remodeling after novel short-stem neck-sparing total hip arthroplasty. J Arthroplasty pii: S0883-5403(16)30122-X

    Google Scholar 

  • Yu H, Liu H, Jia M, et al (2016) A comparison of a short versus a conventional femoral cementless stem in total hip arthroplasty in patients 70 years and older. J Orthop Surg Res 11: 33

    Article  PubMed  PubMed Central  Google Scholar 

  • Zebaze RMD, Jones A, Welsh F, et al (2005) Femoral neck shape and the spatial distribution of its mineral mass varies with its size: Clinical and biomechanical implications. Bone 37: 243-252

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Birkenhauer, B. et al. (2017). Prothesenspezifische Aspekte. In: Jerosch, J. (eds) Kurzschaftendoprothesen an der Hüfte. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52744-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52744-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52743-6

  • Online ISBN: 978-3-662-52744-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics