Skip to main content

Instrumental Dynamic Laxity Evaluation: Non-invasive Inertial Sensors

  • Chapter
  • First Online:
Controversies in the Technical Aspects of ACL Reconstruction

Abstract

Pivot shift (PS) test analyzes the knee joint under a dynamic situation and tests both anterior-posterior and rotational laxity. The significance and role of any grading method lies in its ability to support the decision-making process during diagnosis, surgical treatment, and recovery phase after surgery. Currently, the ability to perform a correct diagnosis of the injury severity as well as quantification of recovery after surgical treatment is mainly based on the surgeon’s sensibility in interpreting the clinical examination. In fact, the main problem in the use of PS test is its complexity which makes itself a surgeon-subjective clinical examination.

To overcome this limit, during the last decades, different kinds of arthrometers have been developed. However, these tools are only able to measure the anterior-posterior laxity and not the dynamic rotation highlighted by the pivot shift.

This chapter will introduce you a number of different attempts which aim is to quantify knee joint dynamic laxity in case of ACL injury. We will focus on an innovative approach for dynamic laxity evaluation based on the analysis of the knee joint acceleration signal during PS test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oberlander MA, Shalvoy RM, Hughston JC (1993) The accuracy of the clinical knee examination documented by arthroscopy. A prospective study. Am J Sports Med 21(6):773–778

    Article  CAS  PubMed  Google Scholar 

  2. Bull AMJ, Earnshaw PH, Smith A, Katchburian MV, Hassan ANA, Amis AA (2002) Intraoperative measurement of knee kinematics in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 84(7):1075–1081

    Article  CAS  PubMed  Google Scholar 

  3. Hoshino Y, Kuroda R, Nagamune K, Yagi M, Mizuno K, Yamaguchi M, Muratsu H, Yoshiya S, Kurosaka M (2007) In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med 35(7):1098–1104

    Article  PubMed  Google Scholar 

  4. Hefti F, Müller W, Jakob RP, Stäubli HU (1993) Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 1(3–4):226–234

    Article  CAS  Google Scholar 

  5. Noyes FR, Grood ES, Cummings JF, Wroble RR (1991) An analysis of the pivot shift phenomenon. The knee motions and subluxations induced by different examiners. Am J Sports Med 19(2):148–155

    Article  CAS  PubMed  Google Scholar 

  6. Amis A, Bull A, Lie D (2005) Biomechanics of rotational instability and anatomic anterior cruciate ligament reconstruction. Operative Techniques in Orthopaedics 15(1):29–35

    Google Scholar 

  7. Tashiro Y, Okazaki K, Miura H, Matsuda S, Yasunaga T, Hashizume M, Nakanishi Y, Iwamoto Y (2009) Quantitative assessment of rotatory instability after anterior cruciate ligament reconstruction. Am J Sports Med 37(5):909–916

    Article  PubMed  Google Scholar 

  8. Csintalan RP, Ehsan A, McGarry MH, Fithian DF, Lee TQ (2006) Biomechanical and anatomical effects of an external rotational torque applied to the knee: a cadaveric study. Am J Sports Med 34(10):1623–1629

    Article  PubMed  Google Scholar 

  9. Diermann N, Schumacher T, Schanz S, Raschke MJ, Petersen W, Zantop T (2009) Rotational instability of the knee: internal tibial rotation under a simulated pivot shift test. Arch Orthop Trauma Surg 129(3):353–358

    Article  PubMed  Google Scholar 

  10. Amis A, Cuomo P, Rama R, Giron F, Bull A, Rhidian T, Aglietti P (2008) Measurement of knee laxity and pivot-shift kinematics with magnetic sensors. Operative Techniques in Orthopaedics 18(3):196–203

    Google Scholar 

  11. Kuroda R, Hoshino Y, Nagamune K, Kubo S, Nishimoto K, Araki D, Yamaguchi M, Yoshiva M, Kurosaka M (2008) Intraoperative measurement of pivot shift by electromagnetic sensors. Operative Techniques in Orthopaedics 18(3):190–195

    Google Scholar 

  12. Labbe DR, de Guise JA, Mezghani N, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Ranger P, Hagemeister N (2010) Feature selection using a principal component analysis of the kinematics of the pivot shift phenomenon. J Biomech 43(16):3080–3084

    Article  PubMed  Google Scholar 

  13. Labbe DR, de Guise JA, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Massé V, Ranger P, Hagemeister N (2011) Accounting for velocity of the pivot shift test manoeuvre decreases kinematic variability. Knee 18(2):88–93

    Article  PubMed  Google Scholar 

  14. Hoshino Y, Kuroda R, Nagamune K, Araki D, Kubo S, Yamaguchi M, Kurosaka M (2011) Optimal measurement of clinical rotational test for evaluating anterior cruciate ligament insufficiency. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20(7):1323–1330

    Article  Google Scholar 

  15. Hoshino Y, Araujo P, Ahlden M, Moore CG, Kuroda R, Zaffagnini S, Karlsson J, Fu FH, Musahl V (2012) Standardized pivot shift test improves measurement accuracy. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20(4):732–736

    Article  Google Scholar 

  16. Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32(4):975–983

    Article  PubMed  Google Scholar 

  17. Muller B, Hofbauer M, Rahnemai-Azar AA, Wolf M, Araki D, Hoshino Y, Araujo P, Debski RE, Irrgang JJ, Fu FH, Musahl V (2016) Development of computer tablet software for clinical quantification of lateral knee compartment translation during the pivot shift test. Comput Methods Biomech Biomed Eng 19(2):217–228

    Google Scholar 

  18. Fu FH, Bennett CH, Lattermann C, Ma CB (1999) Current trends in anterior cruciate ligament reconstruction. Part 1: biology and biomechanics of reconstruction. Am J Sports Med 27(6):821–830

    Article  CAS  PubMed  Google Scholar 

  19. Renstrom P, Ljungqvist A, Arendt E, Beynnon B, Fukubayashi T, Garrett W, Georgoulis T, Hewett TE, Johnson R, Krosshaug T, Mandelbaum B, Micheli L, Myklebust G, Roos E, Roos H, Schamasch P, Shultz S, Werner S, Wojtys E, Engebretsen L (2008) Non-contact ACL injuries in female athletes: an International Olympic Committee current concepts statement. Br J Sports Med 42(6):394–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ishibashi Y, Tsuda E, Yamamoto Y, Tsukada H, Toh S (2009) Navigation evaluation of the pivot-shift phenomenon during double-bundle anterior cruciate ligament reconstruction: is the posterolateral bundle more important? Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 25(5):488–495

    Article  Google Scholar 

  21. Lopomo N, Zaffagnini S, Signorelli C, Bignozzi S, Giordano G, Marcheggiani Muccioli GM, Visani A (2012) An original clinical methodology for non-invasive assessment of pivot-shift test. Comput Methods Biomech Biomed Engin 15(12):1323–1328

    Article  PubMed  Google Scholar 

  22. Zaffagnini S, Lopomo N, Signorelli C, Marcheggiani Muccioli GM, Bonanzinga T, Grassi A, Raggi F, Visani A, Marcacci M (2014) Inertial sensors to quantify the pivot shift test in the treatment of anterior cruciate ligament injury. Joints 2(3):124–129

    PubMed  PubMed Central  Google Scholar 

  23. Zaffagnini S, Lopomo N, Signorelli C, Marcheggiani Muccioli GM, Bonanzinga T, Grassi A, Visani A, Marcacci M (2013) Innovative technology for knee laxity evaluation: clinical applicability and reliability of inertial sensors for quantitative analysis of the pivot-shift test. Clin Sports Med 32(1):61–70, Epub 2012 Sep 25. Review

    Article  PubMed  Google Scholar 

  24. Lopomo N, Signorelli C, Bonanzinga T, Marcheggiani Muccioli GM, Visani A, Zaffagnini S (2012) Quantitative assessment of pivot-shift using inertial sensors. Knee Surg Sports Traumatol Arthrosc 20(4):713–717

    Article  PubMed  Google Scholar 

  25. Berruto M, Uboldi F, Gala L, Marelli B, Albisetti W (2013) Is triaxial accelerometer reliable in the evaluation and grading of knee pivot-shift phenomenon? Knee Surg Sports Traumatol Arthrosc Off J ESSKA 21(4):981–985

    Article  CAS  Google Scholar 

  26. Hoshino Y, Araujo P, Ahlden M, Moore CG, Kuroda R, Zaffagnini S, Karlsson J, Fu FH, Musahl V (2012) Standardized pivot shift test improves measurement accuracy. Knee Surg Sports Traumatol Arthrosc 20(4):732–736

    Article  PubMed  Google Scholar 

  27. Jakob RP, Stäubli HU, Deland JT (1987) Grading the pivot shift. Objective tests with implications for treatment. J Bone Joint Surg Br 69(2):294–299

    CAS  PubMed  Google Scholar 

  28. Kuroda R, Hoshino Y, Kubo S, Araki D, Oka S, Nagamune K, Kurosaka M (2012) Similarities and differences of diagnostic manual tests for anterior cruciate ligament insufficiency: a global survey and kinematics assessment. Am J Sports Med 40(1):91–99

    Article  PubMed  Google Scholar 

  29. Noyes FR, Bassett RW, Grood ES, Butler DL (1980) Arthroscopy in acute traumatic hemarthrosis of the knee. Incidence of anterior cruciate tears and other injuries. J Bone Joint Surg Am 62(5):687–695, 757

    Article  CAS  PubMed  Google Scholar 

  30. Sakai H, Yajima H, Kobayashi N, Kanda T, Hiraoka H, Tamai K, Saotome K (2006) Gravity-assisted pivot-shift test for anterior cruciate ligament injury: a new procedure to detect anterolateral rotatory instability of the knee joint. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 14(1):2–6

    Article  Google Scholar 

  31. Slocum DB, James SL, Larson RL, Singer KM (1976 Aug) Clinical test for anterolateral rotary instability of the knee. Clin Orthop (118):63–69

    Google Scholar 

  32. Donaldson WF, Warren RF, Wickiewicz T (1985) A comparison of acute anterior cruciate ligament examinations. Initial versus examination under anesthesia. Am J Sports Med 13(1):5–10

    Article  PubMed  Google Scholar 

  33. Fox JA, Pierce M, Bojchuk J, Hayden J, Bush-Joseph CA, Bach BR (2004) Revision anterior cruciate ligament reconstruction with nonirradiated fresh-frozen patellar tendon allograft. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 20(8):787–794

    Article  Google Scholar 

  34. Musahl V, Hoshino Y, Becker R, Karlsson J (2012) Rotatory knee laxity and the pivot shift. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20(4):601–602

    Article  Google Scholar 

  35. Hoshino Y, Araujo P, Ahldén M, Samuelsson K, Muller B, Hofbauer M, Wolf MR, Irrgang JJ, Fu FH, Musahl V (2013) Quantitative evaluation of the pivot shift by image analysis using the iPad. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 21(4):975–980

    Article  Google Scholar 

  36. Daniel DM, Malcom LL, Losse G, Stone ML, Sachs R, Burks R (1985) Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg Am 67(5):720–726

    Article  CAS  PubMed  Google Scholar 

  37. Galway HR, MacIntosh DL (1980 Apr) The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop (147):45–50

    Google Scholar 

  38. Muellner T, Bugge W, Johansen S, Holtan C, Engebretsen L (2001) Inter- and intratester comparison of the Rolimeter knee tester: effect of tester’s experience and the examination technique. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 9(5):302–306

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Zaffagnini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Zaffagnini, S., Grassi, A., Raggi, F., Urrizola, F., Zamora, F., Signorelli, C. (2017). Instrumental Dynamic Laxity Evaluation: Non-invasive Inertial Sensors. In: Nakamura, N., Zaffagnini, S., Marx, R., Musahl, V. (eds) Controversies in the Technical Aspects of ACL Reconstruction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52742-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52742-9_39

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52740-5

  • Online ISBN: 978-3-662-52742-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics