Skip to main content

Instrumented Static Laxity Evaluation

  • Chapter
  • First Online:
Controversies in the Technical Aspects of ACL Reconstruction

Abstract

Knee laxity is a highly complex issue, depending on an individual’s soft tissue quality and bony configuration. It can be evaluated both in a single and in multiple directions or statically and dynamically. Knee laxity is difficult to assess clinically, because it is highly dependent on the examiner’s experience, which in addition does not allow a precise quantification of knee laxity. Therefore, several devices have been developed to measure static knee laxity. In the early stages, they were limited to measurements in the sagittal plane. Over the last decade, static rotational laxity measurement devices have been added and are currently under development. Despite the fact that instrumented laxity assessments have been performed over several decades, limited knowledge is available on multidirectional static laxity assessments in large populations. Laxity evaluations in large groups followed over time could allow (1) for the study of physiological laxity and risk factors for knee injuries, (2) to confirm the diagnosis of soft tissue injuries, (3) to help distinguish between the different subtypes of anterior cruciate ligament (ACL) tears as well as associated injuries and (4) to follow patients who have had ACL reconstruction. This chapter will provide an overview of currently existing laxity devices and new findings on static knee laxity evaluations. Despite recent advances, there is still much work to be done to improve the use of arthrometers in the daily clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahlden M, Kartus J, Ejerhed L, Karlsson J, Sernert N (2009) Knee laxity measurements after anterior cruciate ligament reconstruction, using either bone-patellar-tendon-bone or hamstring tendon autografts, with special emphasis on comparison over time. Knee Surg Sports Traumatol Arthrosc 17(9):1117–1124

    Article  PubMed  Google Scholar 

  2. Alam M, Bull AM, Thomas R, Amis AA (2013) A clinical device for measuring internal-external rotational laxity of the knee. Am J Sports Med 41(1):87–94

    Article  PubMed  Google Scholar 

  3. Alam M, Bull AM, Thomas RD, Amis AA (2011) Measurement of rotational laxity of the knee: in vitro comparison of accuracy between the tibia, overlying skin, and foot. Am J Sports Med 39(12):2575–2581

    Article  PubMed  Google Scholar 

  4. Almquist PO, Arnbjornsson A, Zatterstrom R, Ryd L, Ekdahl C, Friden T (2002) Evaluation of an external device measuring knee joint rotation: an in vivo study with simultaneous Roentgen stereometric analysis. J Orthop Res 20(3):427–432

    Article  PubMed  Google Scholar 

  5. Almquist PO, Ekdahl C, Isberg PE, Friden T (2013) Knee rotation in healthy individuals related to age and gender. J Orthop Res 31(1):23–28

    Article  PubMed  Google Scholar 

  6. Almquist PO, Ekdahl C, Isberg PE, Friden T (2011) Measurements of knee rotation-reliability of an external device in vivo. BMC Musculoskelet Disord 12:291

    Article  PubMed  PubMed Central  Google Scholar 

  7. Andersen HN, Dyhre-Poulsen P (1997) The anterior cruciate ligament does play a role in controlling axial rotation in the knee. Knee Surg Sports Traumatol Arthrosc 5(3):145–149

    Article  CAS  PubMed  Google Scholar 

  8. Araujo PH, Kfuri Junior M, Ohashi B, Hoshino Y, Zaffagnini S, Samuelsson K et al (2014) Individualized ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 22(9):1966–1975

    Article  PubMed  Google Scholar 

  9. Bach BR Jr, Aadalen KJ, Dennis MG, Carreira DS, Bojchuk J, Hayden JK et al (2005) Primary anterior cruciate ligament reconstruction using fresh-frozen, nonirradiated patellar tendon allograft: minimum 2-year follow-up. Am J Sports Med 33(2):284–292

    Article  PubMed  Google Scholar 

  10. Balasch H, Schiller M, Friebel H, Hoffmann F (1999) Evaluation of anterior knee joint instability with the rolimeter a test in comparison with manual assessment and measuring with the KT-1000 arthrometer. Knee Surg Sports Traumatol Arthrosc 7(4):204–208

    Article  CAS  PubMed  Google Scholar 

  11. Ballantyne BT, French AK, Heimsoth SL, Kachingwe AF, Lee JB, Soderberg GL (1995) Influence of examiner experience and gender on interrater reliability of KT-1000 arthrometer measurements. Phys Ther 75(10):898–906

    Article  CAS  PubMed  Google Scholar 

  12. Baxter MP (1988) Assessment of normal pediatric knee ligament laxity using the genucom. J Pediatr Orthop 8(5):546–550

    Article  CAS  PubMed  Google Scholar 

  13. Beldame J, Mouchel S, Bertiaux S, Adam JM, Mouilhade F, Roussignol X et al (2012) Anterior knee laxity measurement: comparison of passive stress radiographs Telos((R)) and “Lerat”, and GNRB((R)) arthrometer. Orthop Traumatol Surg Res 98(7):744–750

    Article  CAS  PubMed  Google Scholar 

  14. Berry J, Kramer K, Binkley J, Binkley GA, Stratford P, Hunter S et al (1999) Error estimates in novice and expert raters for the KT-1000 arthrometer. J Orthop Sports Phys Ther 29(1):49–55

    Article  CAS  PubMed  Google Scholar 

  15. Bignozzi S, Zaffagnini S, Lopomo N, Fu F, Irrgang J, Marcacci M (2010) Clinical relevance of static and dynamic tests after anatomical double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 18(1):37–42

    Article  PubMed  Google Scholar 

  16. Boyer P, Djian P, Christel P, Paoletti X, Degeorges R (2004) Reliability of the KT-1000 arthrometer (medmetric) for measuring anterior knee laxity: comparison with telos in 147 knees. Rev Chir Orthop Reparatrice Appar Mot 90(8):757–764

    Article  CAS  PubMed  Google Scholar 

  17. Branch TP, Browne JE, Campbell JD, Siebold R, Freedberg HI, Arendt EA et al (2010) Rotational laxity greater in patients with contralateral anterior cruciate ligament injury than healthy volunteers. Knee Surg Sports Traumatol Arthrosc 18(10):1379–1384

    Article  CAS  PubMed  Google Scholar 

  18. Branch TP, Siebold R, Freedberg HI, Jacobs CA (2011) Double-bundle ACL reconstruction demonstrated superior clinical stability to single-bundle ACL reconstruction: a matched-pairs analysis of instrumented tests of tibial anterior translation and internal rotation laxity. Knee Surg Sports Traumatol Arthrosc 19(3):432–440

    Article  CAS  PubMed  Google Scholar 

  19. Claes S, Vereecke E, Maes M, Victor J, Verdonk P, Bellemans J (2013) Anatomy of the anterolateral ligament of the knee. J Anat 223(4):321–328

    Article  PubMed  PubMed Central  Google Scholar 

  20. Collette M, Courville J, Forton M, Gagniere B (2012) Objective evaluation of anterior knee laxity; comparison of the KT-1000 and GNRB(R) arthrometers. Knee Surg Sports Traumatol Arthrosc 20(11):2233–2238

    Article  PubMed  Google Scholar 

  21. Crain EH, Fithian DC, Paxton EW, Luetzow WF (2005) Variation in anterior cruciate ligament scar pattern: does the scar pattern affect anterior laxity in anterior cruciate ligament-deficient knees? Arthroscopy 21(1):19–24

    Article  PubMed  Google Scholar 

  22. Daniel DM, Malcom LL, Losse G, Stone ML, Sachs R, Burks R (1985) Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg Am 67(5):720–726

    Article  CAS  PubMed  Google Scholar 

  23. Dargel J, Gotter M, Mader K, Pennig D, Koebke J, Schmidt-Wiethoff R (2007) Biomechanics of the anterior cruciate ligament and implications for surgical reconstruction. Strateg Trauma Limb Reconstr 2(1):1–12

    Article  CAS  Google Scholar 

  24. Di Iorio A, Carnesecchi O, Philippot R, Farizon F (2014) Multiscale analysis of anterior cruciate ruptures: prospective study of 49 cases. Orthop Traumatol Surg Res 100(7):751–754

    Article  PubMed  Google Scholar 

  25. Feller J, Hoser C, Webster K (2000) EMG biofeedback assisted KT-1000 evaluation of anterior tibial displacement. Knee Surg Sports Traumatol Arthrosc 8(3):132–136

    Article  CAS  PubMed  Google Scholar 

  26. Fiebert I, Gresley J, Hoffman S, Kunkel K (1994) Comparative measurements of anterior tibial translation using the KT-1000 knee arthrometer with the leg in neutral, internal rotation, and external rotation. J Orthop Sports Phys Ther 19(6):331–334

    Article  CAS  PubMed  Google Scholar 

  27. Flynn JM, Mackenzie W, Kolstad K, Sandifer E, Jawad AF, Galinat B (2000) Objective evaluation of knee laxity in children. J Pediatr Orthop 20(2):259–263

    CAS  PubMed  Google Scholar 

  28. Fowler PJ, Lubliner JA (1989) The predictive value of five clinical signs in the evaluation of meniscal pathology. Arthroscopy 5(3):184–186

    Article  CAS  PubMed  Google Scholar 

  29. Freedman KB, D’Amato MJ, Nedeff DD, Kaz A, Bach BR Jr (2003) Arthroscopic anterior cruciate ligament reconstruction: a meta-analysis comparing patellar tendon and hamstring tendon autografts. Am J Sports Med 31(1):2–11

    Article  PubMed  Google Scholar 

  30. Ganko A, Engebretsen L, Ozer H (2000) The rolimeter: a new arthrometer compared with the KT-1000. Knee Surg Sports Traumatol Arthrosc 8(1):36–39

    Article  CAS  PubMed  Google Scholar 

  31. Ghodadra NS, Mall NA, Grumet R, Sherman SL, Kirk S, Provencher MT et al (2012) Interval arthrometric comparison of anterior cruciate ligament reconstruction using bone-patellar tendon-bone autograft versus allograft: do grafts attenuate within the first year postoperatively? Am J Sports Med 40(6):1347–1354

    Article  PubMed  Google Scholar 

  32. Giannotti BF, Fanelli GC, Barrett TA, Edson C (1996) The predictive value of intraoperative KT-1000 arthrometer measurements in single incision anterior cruciate ligament reconstruction. Arthroscopy 12(6):660–666

    Article  CAS  PubMed  Google Scholar 

  33. Goldblatt JP, Fitzsimmons SE, Balk E, Richmond JC (2005) Reconstruction of the anterior cruciate ligament: meta-analysis of patellar tendon versus hamstring tendon autograft. Arthroscopy 21(7):791–803

    Article  PubMed  Google Scholar 

  34. Granan LP, Bahr R, Lie SA, Engebretsen L (2009) Timing of anterior cruciate ligament reconstructive surgery and risk of cartilage lesions and meniscal tears: a cohort study based on the Norwegian National Knee Ligament Registry. Am J Sports Med 37(5):955–961

    Article  PubMed  Google Scholar 

  35. Hanten WP, Pace MB (1987) Reliability of measuring anterior laxity of the knee joint using a knee ligament arthrometer. Phys Ther 67(3):357–359

    Article  CAS  PubMed  Google Scholar 

  36. Harter RA, Osternig LR, Singer KM (1989) Instrumented Lachman tests for the evaluation of anterior laxity after reconstruction of the anterior cruciate ligament. J Bone Joint Surg 71(7):975–983

    Article  CAS  PubMed  Google Scholar 

  37. Harter RA, Osternig LR, Singer KM, James SL, Larson RL, Jones DC (1988) Long-term evaluation of knee stability and function following surgical reconstruction for anterior cruciate ligament insufficiency. Am J Sports Med 16(5):434–443

    Article  CAS  PubMed  Google Scholar 

  38. Hinton RY, Rivera VR, Pautz MJ, Sponseller PD (2008) Ligamentous laxity of the knee during childhood and adolescence. J Pediatr Orthop 28(2):184–187

    Article  PubMed  Google Scholar 

  39. Hofbauer M, Muller B, Murawski CD, Eck CF, Fu FH (2014) The concept of individualized anatomic anterior cruciate ligament (ACL) reconstruction. Knee Surg Sports Traumatol Arthrosc 22(5):979–986

    CAS  PubMed  Google Scholar 

  40. Hsu WH, Fisk JA, Yamamoto Y, Debski RE, Woo SL (2006) Differences in torsional joint stiffness of the knee between genders: a human cadaveric study. Am J Sports Med 34(5):765–770

    Article  PubMed  Google Scholar 

  41. Jenny JY, Arndt J, Computer Assisted Orthopaedic S-F (2013) Anterior knee laxity measurement using stress radiographs and the GNRB((R)) system versus intraoperative navigation. Orthop Traumatol Surg Res 99(6 Suppl):S297–S300

    Article  PubMed  Google Scholar 

  42. Jonsson H, Karrholm J, Elmqvist LG (1993) Laxity after cruciate ligament injury in 94 knees. The KT-1000 arthrometer versus roentgen stereophotogrammetry. Acta Orthop Scand 64(5):567–570

    Article  CAS  PubMed  Google Scholar 

  43. Kim SJ, Choi DH, Mei Y, Hwang BY (2011) Does physiologic posterolateral laxity influence clinical outcomes of anterior cruciate ligament reconstruction? J Bone Joint Surg Am 93(21):2010–2014

    Article  PubMed  Google Scholar 

  44. Kim SJ, Lee SK, Kim SH, Kim SH, Kim JS, Jung M (2014) Does anterior laxity of the uninjured knee influence clinical outcomes of ACL reconstruction? J Bone Joint Surg Am 96(7):543–548

    Article  PubMed  Google Scholar 

  45. Klouche S, Lefevre N, Cascua S, Herman S, Gerometta A, Bohu Y (2015) Diagnostic value of the GNRB (R) in relation to pressure load for complete ACL tears: a prospective case-control study of 118 subjects. Orthop Traumatol Surg Res 101(3):297–300

    Article  CAS  PubMed  Google Scholar 

  46. Kongtharvonskul J, Attia J, Thamakaison S, Kijkunasathian C, Woratanarat P, Thakkinstian A (2013) Clinical outcomes of double- vs single-bundle anterior cruciate ligament reconstruction: a systematic review of randomized control trials. Scand J Med Sci Sports 23(1):1–14

    Article  CAS  PubMed  Google Scholar 

  47. Kraeutler MJ, Bravman JT, McCarty EC (2013) Bone–patellar tendon–bone autograft versus allograft in outcomes of anterior cruciate ligament reconstruction: a meta-analysis of 5182 patients. Am J Sports Med 41(10):2439–2448

    Article  PubMed  Google Scholar 

  48. Lane JG, Irby SE, Kaufman K, Rangger C, Daniel DM (1994) The anterior cruciate ligament in controlling axial rotation. An evaluation of its effect. Am J Sports Med 22(2):289–293

    Article  CAS  PubMed  Google Scholar 

  49. Lefevre N, Bohu Y, Naouri JF, Klouche S, Herman S (2014) Validity of GNRB(R) arthrometer compared to telos in the assessment of partial anterior cruciate ligament tears. Knee Surg Sports Traumatol Arthrosc 22(2):285–290

    Article  CAS  PubMed  Google Scholar 

  50. Lerat JL, Moyen B, Jenny JY, Perrier JP (1993) A comparison of pre-operative evaluation of anterior knee laxity by dynamic X-rays and by the arthrometer KT 1000. Knee Surg Sports Traumatol Arthrosc 1(1):54–59

    Article  CAS  PubMed  Google Scholar 

  51. Lerat JL, Moyen BL, Cladiere F, Besse JL, Abidi H (2000) Knee instability after injury to the anterior cruciate ligament. Quantification of the Lachman test. J Bone Joint Surg Br 82(1):42–47

    Article  CAS  PubMed  Google Scholar 

  52. Li X, Xu CP, Song JQ, Jiang N, Yu B (2013) Single-bundle versus double-bundle anterior cruciate ligament reconstruction: an up-to-date meta-analysis. Int Orthop 37(2):213–226

    Article  PubMed  Google Scholar 

  53. Lin HC, Lai WH, Shih YF, Chang CM, Lo CY, Hsu HC (2009) Physiological anterior laxity in healthy young females: the effect of knee hyperextension and dominance. Knee Surg Sports Traumatol Arthrosc 17(9):1083–1088

    Article  PubMed  Google Scholar 

  54. Lorbach O, Pape D, Maas S, Zerbe T, Busch L, Kohn D et al (2010) Influence of the anteromedial and posterolateral bundles of the anterior cruciate ligament on external and internal tibiofemoral rotation. Am J Sports Med 38(4):721–727

    Article  PubMed  Google Scholar 

  55. Lorbach O, Wilmes P, Maas S, Zerbe T, Busch L, Kohn D et al (2009) A non-invasive device to objectively measure tibial rotation: verification of the device. Knee Surg Sports Traumatol Arthrosc 17(7):756–762

    Article  PubMed  Google Scholar 

  56. Lorbach O, Wilmes P, Theisen D, Brockmeyer M, Maas S, Kohn D et al (2009) Reliability testing of a new device to measure tibial rotation. Knee Surg Sports Traumatol Arthrosc 17(8):920–926

    Article  PubMed  Google Scholar 

  57. Mariscalco MW, Magnussen RA, Mehta D, Hewett TE, Flanigan DC, Kaeding CC (2014) Autograft versus nonirradiated allograft tissue for anterior cruciate ligament reconstruction: a systematic review. Am J Sports Med 42(2):492–499

    Article  PubMed  Google Scholar 

  58. Markolf KL, Kochan A, Amstutz HC (1984) Measurement of knee stiffness and laxity in patients with documented absence of the anterior cruciate ligament. J Bone Joint Surg Am 66(2):242–252

    Article  CAS  PubMed  Google Scholar 

  59. McQuade KJ, Crutcher JP, Sidles JA, Larson RV (1989) Tibial rotation in anterior cruciate deficient knees: an in vitro study. J Orthop Sports Phys Ther 11(4):146–149

    Article  CAS  PubMed  Google Scholar 

  60. Meredick RB, Vance KJ, Appleby D, Lubowitz JH (2008) Outcome of single-bundle versus double-bundle reconstruction of the anterior cruciate ligament: a meta-analysis. Am J Sports Med 36(7):1414–1421

    Article  PubMed  Google Scholar 

  61. Mouton C, Seil R, Agostinis H, Maas S, Theisen D (2012) Influence of individual characteristics on static rotational knee laxity using the Rotameter. Knee Surg Sports Traumatol Arthrosc 20(4):645–651

    Article  PubMed  Google Scholar 

  62. Mouton C, Theisen D, Meyer T, Agostinis H, Nuhrenborger C, Pape D et al (2015) Noninjured knees of patients with noncontact ACL injuries display higher average anterior and internal rotational knee laxity compared with healthy knees of a noninjured population. Am J Sports Med 43(8):1918–1923

    Article  PubMed  Google Scholar 

  63. Muellner T, Bugge W, Johansen S, Holtan C, Engebretsen L (2001) Inter- and intratester comparison of the rolimeter knee tester: effect of tester’s experience and the examination technique. Knee Surg Sports Traumatol Arthrosc 9(5):302–306

    Article  CAS  PubMed  Google Scholar 

  64. Musahl V, Citak M, O’Loughlin PF, Choi D, Bedi A, Pearle AD (2010) The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med 38(8):1591–1597

    Article  PubMed  Google Scholar 

  65. Myrer JW, Schulthies SS, Fellingham GW (1996) Relative and absolute reliability of the KT-2000 arthrometer for uninjured knees: testing at 67, 89, 134, and 178 N and manual maximum forces. Am J Sports Med 24(1):104–108

    Article  CAS  PubMed  Google Scholar 

  66. Nakase J, Toratani T, Kosaka M, Ohashi Y, Tsuchiya H (2013) Roles of ACL remnants in knee stability. Knee Surg Sports Traumatol Arthrosc 21(9):2101–2106

    Article  PubMed  Google Scholar 

  67. Nielsen S, Ovesen J, Rasmussen O (1984) The anterior cruciate ligament of the knee: an experimental study of its importance in rotatory knee instability. Arch Orthop Trauma Surg 103(3):170–174

    Article  CAS  PubMed  Google Scholar 

  68. Noyes FR, Cummings JF, Grood ES, Walz-Hasselfeld KA, Wroble RR (1991) The diagnosis of knee motion limits, subluxations, and ligament injury. Am J Sports Med 19(2):163–171

    Article  CAS  PubMed  Google Scholar 

  69. Panisset JC, Duraffour H, Vasconcelos W, Colombet P, Javois C, Potel JF et al (2008) Clinical, radiological and arthroscopic analysis of the ACL tear. A prospective study of 418 cases. Rev Chir Orthop Reparatrice Appar Mot 94(8 Suppl):362–368

    Article  PubMed  Google Scholar 

  70. Panisset JC, Ntagiopoulos PG, Saggin PR, Dejour D (2012) A comparison of telos stress radiography versus rolimeter in the diagnosis of different patterns of anterior cruciate ligament tears. Orthop Traumatol Surg Res 98(7):751–758

    Article  PubMed  Google Scholar 

  71. Park HS, Wilson NA, Zhang LQ (2008) Gender differences in passive knee biomechanical properties in tibial rotation. J Orthop Res 26(7):937–944

    Article  PubMed  Google Scholar 

  72. Pugh L, Mascarenhas R, Arneja S, Chin PY, Leith JM (2009) Current concepts in instrumented knee-laxity testing. Am J Sports Med 37(1):199–210

    Article  PubMed  Google Scholar 

  73. Robert H, Nouveau S, Gageot S, Gagniere B (2009) A new knee arthrometer, the GNRB: experience in ACL complete and partial tears. Orthop Traumatol Surg Res 95(3):171–176

    Article  CAS  PubMed  Google Scholar 

  74. Rozzi SL, Lephart SM, Gear WS, Fu FH (1999) Knee joint laxity and neuromuscular characteristics of male and female soccer and basketball players. Am J Sports Med 27(3):312–319

    Article  CAS  PubMed  Google Scholar 

  75. Rupp S, Muller B, Seil R (2001) Knee laxity after ACL reconstruction with a BPTB graft. Knee Surg Sports Traumatol Arthrosc 9(2):72–76

    Article  CAS  PubMed  Google Scholar 

  76. Salmon LJ, Russell VJ, Refshauge K, Kader D, Connolly C, Linklater J et al (2006) Long-term outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft: minimum 13-year review. Am J Sports Med 34(5):721–732

    Article  PubMed  Google Scholar 

  77. Samson W, Cheze L (2015) An experimental set-up to assess knee stiffness: a pilot study. Comput Methods Biomech Biomed Engin. doi:10.1080/10255842.2015.10696181-2

    PubMed  Google Scholar 

  78. Scerpella TA, Stayer TJ, Makhuli BZ (2005) Ligamentous laxity and non-contact anterior cruciate ligament tears: a gender-based comparison. Orthopedics 28(7):656–660

    PubMed  Google Scholar 

  79. Schuster AJ, McNicholas MJ, Wachtl SW, McGurty DW, Jakob RP (2004) A new mechanical testing device for measuring anteroposterior knee laxity. Am J Sports Med 32(7):1731–1735

    Article  PubMed  Google Scholar 

  80. Sernert N, Helmers J, Kartus C, Ejerhed L, Kartus J (2007) Knee-laxity measurements examined by a left-hand- and a right-hand-dominant physiotherapist, in patients with anterior cruciate ligament injuries and healthy controls. Knee Surg Sports Traumatol Arthrosc 15(10):1181–1186

    Article  PubMed  Google Scholar 

  81. Sernert N, Kartus JT Jr, Ejerhed L, Karlsson J (2004) Right and left knee laxity measurements: a prospective study of patients with anterior cruciate ligament injuries and normal control subjects. Arthroscopy 20(6):564–571

    Article  PubMed  Google Scholar 

  82. Sharma L, Lou C, Felson DT, Dunlop DD, Kirwan-Mellis G, Hayes KW et al (1999) Laxity in healthy and osteoarthritic knees. Arthritis Rheum 42(5):861–870

    Article  CAS  PubMed  Google Scholar 

  83. Shoemaker SC, Markolf KL (1985) Effects of joint load on the stiffness and laxity of ligament-deficient knees. An in vitro study of the anterior cruciate and medial collateral ligaments. J Bone Joint Surg Am 67(1):136–146

    Article  CAS  PubMed  Google Scholar 

  84. Shoemaker SC, Markolf KL (1982) In vivo rotatory knee stability. Ligamentous and muscular contributions. J Bone Joint Surg Am 64(2):208–216

    Article  CAS  PubMed  Google Scholar 

  85. Shultz SJ, Dudley WN, Kong Y (2012) Identifying multiplanar knee laxity profiles and associated physical characteristics. J Athl Train 47(2):159–169

    Article  PubMed  PubMed Central  Google Scholar 

  86. Shultz SJ, Kirk SE, Johnson ML, Sander TC, Perrin DH (2004) Relationship between sex hormones and anterior knee laxity across the menstrual cycle. Med Sci Sports Exerc 36(7):1165–1174

    Article  CAS  PubMed  Google Scholar 

  87. Shultz SJ, Levine BJ, Nguyen AD, Kim H, Montgomery MM, Perrin DH (2010) A comparison of cyclic variations in anterior knee laxity, genu recurvatum, and general joint laxity across the menstrual cycle. J Orthop Res 28(11):1411–1417

    Article  PubMed  PubMed Central  Google Scholar 

  88. Shultz SJ, Nguyen AD, Levine BJ (2009) The relationship between lower extremity alignment characteristics and anterior knee joint laxity. Sports Health 1(1):54–60

    Article  PubMed  PubMed Central  Google Scholar 

  89. Shultz SJ, Shimokochi Y, Nguyen AD, Schmitz RJ, Beynnon BD, Perrin DH (2007) Measurement of varus-valgus and internal-external rotational knee laxities in vivo – Part I: assessment of measurement reliability and bilateral asymmetry. J Orthop Res 25(8):981–988

    Article  PubMed  Google Scholar 

  90. Shultz SJ, Shimokochi Y, Nguyen AD, Schmitz RJ, Beynnon BD, Perrin DH (2007) Measurement of varus-valgus and internal-external rotational knee laxities in vivo – part II: relationship with anterior-posterior and general joint laxity in males and females. J Orthop Res 25(8):989–996

    Article  PubMed  Google Scholar 

  91. Sorensen OG, Larsen K, Jakobsen BW, Kold S, Hansen TB, Lind M et al (2011) The combination of radiostereometric analysis and the telos stress device results in poor precision for knee laxity measurements after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 19(3):355–362

    Article  CAS  PubMed  Google Scholar 

  92. Spindler KP, Kuhn JE, Freedman KB, Matthews CE, Dittus RS, Harrell FE (2004) Anterior cruciate ligament reconstruction autograft choice: bone-tendon-bone versus hamstring: does It really matter? A systematic review. Am J Sports Med 32(8):1986–1995

    Article  PubMed  Google Scholar 

  93. Stefan Aronson A, Hoist L, Selvik G (1974) An instrument for insertion of radiopaque bone markers. Radiology 113(3):733–734

    Article  Google Scholar 

  94. Sullivan D, Levy IM, Sheskier S, Torzilli PA, Warren RF (1984) Medical restrains to anterior-posterior motion of the knee. J Bone Joint Surg 66(6):930–936

    Article  CAS  PubMed  Google Scholar 

  95. Tashman S, Anderst W, Kolowich P, Havstad S, Arnoczky S (2004) Kinematics of the ACL-deficient canine knee during gait: serial changes over two years. J Orthop Res 22(5):931–941

    Article  PubMed  Google Scholar 

  96. Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32(4):975–983

    Article  PubMed  Google Scholar 

  97. Tiamklang T, Sumanont S, Foocharoen T, Laopaiboon M (2012) Double-bundle versus single-bundle reconstruction for anterior cruciate ligament rupture in adults. Cochrane Database Syst Rev (11):CD008413

    Google Scholar 

  98. Uh BS, Beynnon BD, Churchill DL, Haugh LD, Risberg MA, Fleming BC (2001) A new device to measure knee laxity during weightbearing and non-weightbearing conditions. J Orthop Res 19(6):1185–1191

    Article  CAS  PubMed  Google Scholar 

  99. Uhorchak JM, Scoville CR, Williams GN, Arciero RA, St Pierre P, Taylor DC (2003) Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med 31(6):831–842

    Article  PubMed  Google Scholar 

  100. van Eck CF, Kopf S, Irrgang JJ, Blankevoort L, Bhandari M, Fu FH et al (2012) Single-bundle versus double-bundle reconstruction for anterior cruciate ligament rupture: a meta-analysis – does anatomy matter? Arthroscopy 28(3):405–424

    Article  PubMed  Google Scholar 

  101. van Eck CF, Loopik M, van den Bekerom MP, Fu FH, Kerkhoffs GM (2013) Methods to diagnose acute anterior cruciate ligament rupture: a meta-analysis of instrumented knee laxity tests. Knee Surg Sports Traumatol Arthrosc 21(9):1989–1997

    Article  PubMed  Google Scholar 

  102. Vauhnik R, Morrissey MC, Perme MP, Sevsek F, Rugelj D (2014) Inter-rater reliability of the GNRB(R) knee arthrometer. Knee 21(2):541–543

    Article  PubMed  Google Scholar 

  103. Vauhnik R, Perme MP, Barcellona MG, Rugelj D, Morrissey MC, Sevsek F (2013) Robotic knee laxity testing: reliability and normative data. Knee 20(4):250–255

    Article  PubMed  Google Scholar 

  104. Wiertsema SH, van Hooff HJ, Migchelsen LA, Steultjens MP (2008) Reliability of the KT1000 arthrometer and the Lachman test in patients with an ACL rupture. Knee 15(2):107–110

    Article  CAS  PubMed  Google Scholar 

  105. Woodford-Rogers B, Cyphert L, Denegar CR (1994) Risk factors for anterior cruciate ligament injury in high school and college athletes. J Athl Train 29(4):343–346

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zarins B, Rowe CR, Harris BA, Watkins MP (1983) Rotational motion of the knee. Am J Sports Med 11(3):152–156

    Article  CAS  PubMed  Google Scholar 

  107. Zhu Y, Tang RK, Zhao P, Zhu SS, Li YG, Li JB (2013) Double-bundle reconstruction results in superior clinical outcome than single-bundle reconstruction. Knee Surg Sports Traumatol Arthrosc 21(5):1085–1096

    Article  PubMed  Google Scholar 

  108. Zyroul R, Hossain MG, Azura M, Abbas AA, Kamarul T (2014) Knee laxity of Malaysian adults: gender differentials, and association with age and anthropometric measures. Knee 21(2):557–562

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Seil MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Seil, R., Robert, H., Theisen, D., Mouton, C. (2017). Instrumented Static Laxity Evaluation. In: Nakamura, N., Zaffagnini, S., Marx, R., Musahl, V. (eds) Controversies in the Technical Aspects of ACL Reconstruction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52742-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52742-9_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52740-5

  • Online ISBN: 978-3-662-52742-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics